• Aucun résultat trouvé

POST-COMBUSTION CO2 CAPTURE: Global Process Simulation and Solvent Degradation

N/A
N/A
Protected

Academic year: 2021

Partager "POST-COMBUSTION CO2 CAPTURE: Global Process Simulation and Solvent Degradation"

Copied!
1
0
0

Texte intégral

(1)

POST-COMBUSTION CO

2

CAPTURE:

Global Process Simulation and Solvent

Degradation

G. Léonard

1

, H. Lepaumier

2

, F. Blandina

2

, M.-L. Thielens

2

, D.Toye

3

, G.Heyen

1

1Laboratory for Analysis and Synthesis of Chemical Systems, B6a, University of Liège,

2Laborelec, Rodestraat 125, 1630 Linkebeek,

3Laboratory of Chemical Engineering, B6c, University of Liège

Corresponding address: g.leonard@ulg.ac.be

Abstract

One of the biggest upcoming challenges concerning both environmental and energy systems engineering is the control and limitation of greenhouse gas emissions due to human activity. Fossil fuels-fired power plants are in this context one of the main contributors due to the large amounts of CO2 emitted. Different technologies are developed for capturing CO2 from such power plants. This work focuses on post-combustion CO2 capture by reactive absorption of CO2 into amine solvents like 2-ethanolamine (MEA). Two main aspects are considered: process modelling and solvent degradation since amine solvents are susceptible to degrade, inducing important additional costs. The objective is to perform a multi-objective optimization of the capture process and to propose operating conditions that will minimize the process energy consumption as well as the environmental impact due to solvent degradation.

Model description

CO2 contained in the power plant flue gas reacts with amine solvents in the absorber. The flue gas exiting the capture plant after washing contains 90% less CO2. The rich solvent is pumped to a stripper where it is regenerated at higher temperature, releasing an almost pure CO2 flow. The regenerated lean solvent flows back to the absorber.

To model the CO2 capture process, there are two different approaches:

- Equilibrium: Column stages are in thermo-dynamical equilibrium - Rate-based: Mass and heat transfer as well as kinetics limitations

are considered. Since this model is more precise, it has been used for further calculations.

Process optimization and modifications

Three parameters have a large influence on the process energy consumption: the stripper pressure, the solvent flow rate and the solvent concentration. Moreover, different process modifications have been tested: lean vapor compression,

inter-cooling of an absorber stage and split-flow configuration.

Solvent degradation

Solvent make-up cost due to degradation may represent up to 22% of the post-combustion capture OPEX![1] Moreover, degraded solvent may reduce the process efficiency, increase corrosion, induce foaming and fouling in the columns.

In order to study solvent degradation under accelerated conditions, a degradation test rig has been built at the University of Liège.

The final objective of this PhD thesis is to make the link

between experimental degradation results and simulation work. A multi-objective optimization of the CO2 capture process will be performed, considering both degradation and regeneration energy consumption aspects.

Acknowledgements

The authors are grateful to the belgian FRIA-FNRS and to the company Laborelec for financial support and industrial partnership .

[1]: Abu Zahra M., 2009. Carbon dioxide capture from flue gas, PhD Thesis, TU Delft, The Netherlands.

MEA-LEAN FG-P FLU E-OFF MEA-R ICH MEA-R -C MEA-L-C WSU W-IN VEN TGAS W-OUT MEA-R -H LIQ MEA-L-H VAP PRODU CT WEX FLU EGAS ABSOR BER PUMP C OOLER WASHER STR IPPER C ON DENS LRH EATX SPLITTER BLOWER Process parameter Stripper pressure Solvent flow rate Solvent concentration Regeneration energy -16.9% -5.4% -2.8% Process modification Lean vapor compression Absorber inter-cooling Split-flow configuration Regeneration energy -14% -4% -4%

Figure 1: Flowsheet of the CO2 capture process

Figure 2: Flowsheet of the CO2 capture process with process modifications

Figure 3: Degradation Test Rig at the University of Liège

Références

Documents relatifs

En d'autres termes, toute modification des sorties du compteurs ne peut être engendrée que par une transition active du signal d'horloge (front descendant ou front montant). De

Dans chaque cas, détailler et commenter la conception ainsi que les contraintes

Si Init=0, le mot de sortie (s7..s0) est alternativement décalé (sur front montant de l’horloge) d’une position vers la gauche puis de deux positions vers la droite.. Lors du

Remarque : Chaque bloc combinatoire intervenant dans la réalisation de ce circuit devra être représenté au moins une fois au niveau

Concevoir un circuit logique ayant une structure itérative (succession de blocs identiques) recevant en entrée un nombre A codé en binaire naturel sur 4 bits (A=a3,a2,a1,a0)

Remarque : Chaque bloc combinatoire intervenant dans la réalisation de ce circuit devra être représenté au moins une fois. Le dessin à porte n’est pas indispensable. Les

Déterminer la structure d’un tel système sachant qu’il doit être entièrement synchrone et en particulier, la commutation de l'entrée de sélection ne doit pas entraîner

Concevoir ce dispositif sachant qu’il peut être partitionné en 2 machines ; un compteur par 16 et une machine d’état M spécifique (la structure du compteur est supposée