• Aucun résultat trouvé

FlorentHivertVivianePonsDecember2019 Advisors: HugoMlodecki Basisoftotallyprimitiveelementsof WQSym

N/A
N/A
Protected

Academic year: 2022

Partager "FlorentHivertVivianePonsDecember2019 Advisors: HugoMlodecki Basisoftotallyprimitiveelementsof WQSym"

Copied!
50
0
0

Texte intégral

(1)

BasisRof WQSym Bidendriform biaglebra BasisP Annex

Basis of totally primitive elements of WQSym

Hugo Mlodecki Advisors:

Florent Hivert Viviane Pons

December 2019

(2)

BasisRof WQSym Bidendriform biaglebra BasisP Annex Packed words Product Coproduct

Packed words

Definition

A word over the alphabet N >0 is packed if all the letters from 1 to its maximum m appears at least once.

Example

4152142 ∈ / PW but pack(4152142) = 3142132 ∈ PW One representation : #rows ≤ #columns

• •

2 3 1 4 3

(3)

BasisRof WQSym Bidendriform biaglebra BasisP Annex Packed words Product Coproduct

Packed words

Definition

A word over the alphabet N >0 is packed if all the letters from 1 to its maximum m appears at least once.

Example 4152142 ∈ / PW

but pack(4152142) = 3142132 ∈ PW One representation : #rows ≤ #columns

• •

2 3 1 4 3

(4)

BasisRof WQSym Bidendriform biaglebra BasisP Annex Packed words Product Coproduct

Packed words

Definition

A word over the alphabet N >0 is packed if all the letters from 1 to its maximum m appears at least once.

Example

4152142 ∈ / PW but pack(4152142) = 3142132 ∈ PW

One representation : #rows ≤ #columns

• •

2 3 1 4 3

(5)

BasisRof WQSym Bidendriform biaglebra BasisP Annex Packed words Product Coproduct

Packed words

Definition

A word over the alphabet N >0 is packed if all the letters from 1 to its maximum m appears at least once.

Example

4152142 ∈ / PW but pack(4152142) = 3142132 ∈ PW One representation : #rows ≤ #columns

• •

(6)

BasisRof WQSym Bidendriform biaglebra BasisP Annex Packed words Product Coproduct

Hopf algebra

unitary associative product ·

counitary coassociative coproduct ∆ Hopf relation ∆(a · b) = ∆(a) · ∆(b)

Example WQSym

R w with w ∈ PW

R 12 R 11 = R 1233 + R 1323 + R 1332 + R 3123 + R 3132 + R 3312

∆( R 24231 ) = 1 ⊗ R 24231 + R 121 ⊗ R 21 + R 1312 ⊗ R 1 + R 24231 ⊗ 1

(7)

BasisRof WQSym Bidendriform biaglebra BasisP Annex Packed words Product Coproduct

Hopf algebra

unitary associative product ·

counitary coassociative coproduct ∆ Hopf relation ∆(a · b) = ∆(a) · ∆(b) Example

WQSym

R w with w ∈ PW

R 12 R 11 = R 1233 + R 1323 + R 1332 + R 3123 + R 3132 + R 3312

∆( R 24231 ) = 1 ⊗ R 24231 + R 121 ⊗ R 21 + R 1312 ⊗ R 1 + R 24231 ⊗ 1

(8)

BasisRof WQSym Bidendriform biaglebra BasisP Annex Packed words Product Coproduct

Shuffle product on packed words

• 1 2

• • 1 1

= R

R 12 R 11 = R 1233 + R 1323 + R 1332 + R 3123 + R 3132 + R 3312

• •

1 2 3 3

• •

3 1 2 3 +

+

• •

1 3 2 3

• •

3 1 3 2 +

+

• •

1 3 3 2

• •

3 3 1 2

(9)

BasisRof WQSym Bidendriform biaglebra BasisP Annex Packed words Product Coproduct

Shuffle product on packed words

• 1 2

• •

1 1 =

R

R 12 R 11 = R 1233 + R 1323 + R 1332 + R 3123 + R 3132 + R 3312

• •

1 2 3 3

• •

+

+

• •

1 3 2 3

• •

+

+

• •

1 3 3 2

• •

(10)

BasisRof WQSym Bidendriform biaglebra BasisP Annex Packed words Product Coproduct

Shuffle product on packed words

• 1 2

• •

1 1 = R

R 12 R 11 = R 1233 + R 1323 + R 1332 + R 3123 + R 3132 + R 3312

• •

1 2 3 3

• •

+

+

• •

1 3 2 3

• •

+

+

• •

1 3 3 2

• •

(11)

BasisRof WQSym Bidendriform biaglebra BasisP Annex Packed words Product Coproduct

Shuffle product on packed words

• 1 2

• •

1 1

= R

R σ R µ := P

ν∈σ µ

R ν

• •

1 2 3 3

• •

+

+

• •

1 3 2 3

• •

+

+

• •

1 3 3 2

• •

(12)

BasisRof WQSym Bidendriform biaglebra BasisP Annex Packed words Product Coproduct

Deconcatenation

• •

• 2 4 2 3 1

• •

• 2 3 2 4 1

• •

• 2 4 2 3 1

+

+

• •

• 2 4 2 3 1

• •

2 4 2 3 1

(13)

BasisRof WQSym Bidendriform biaglebra BasisP Annex Packed words Product Coproduct

Deconcatenation

• •

• 2 4 2 3 1

• •

• 2 3 2 4 1

• •

• 2 4 2 3 1

+

+

• •

• 2 4 2 3 1

• •

2 4 2 3 1

(14)

BasisRof WQSym Bidendriform biaglebra BasisP Annex Packed words Product Coproduct

Deconcatenation

• •

• 2 4 2 3 1

• •

• 2 3 2 4 1

• •

• 2 4 2 3 1

+

+

• •

• 2 4 2 3 1

• •

2 4 2 3 1

(15)

BasisRof WQSym Bidendriform biaglebra BasisP Annex Packed words Product Coproduct

Deconcatenation

• •

• 2 4 2 3 1

• •

• 2 3 2 4 1

• •

• 2 4 2 3 1

+

+

• •

• 2 4 2 3 1

• •

2 4 2 3 1

(16)

BasisRof WQSym Bidendriform biaglebra BasisP Annex Packed words Product Coproduct

Deconcatenation

• •

• 2 4 2 3 1

• •

• 2 3 2 4 1

• •

• 2 4 2 3 1

+

+

• •

• 2 4 2 3 1

• •

2 4 2 3 1

(17)

BasisRof WQSym Bidendriform biaglebra BasisP Annex Packed words Product Coproduct

Deconcatenation

• •

• 2 4 2 3 1

• •

• 2 3 2 4 1

• •

• 2 4 2 3 1

+

+

• •

• 2 4 2 3 1

• •

2 4 2 3 1

(18)

BasisRof WQSym Bidendriform biaglebra BasisP Annex Packed words Product Coproduct

Deconcatenation

R 24231

• •

• 2 3 2 4 1

• •

• 2 4 2 3 1

+

+

• •

• 2 4 2 3 1

• •

2 4 2 3 1

(19)

BasisRof WQSym Bidendriform biaglebra BasisP Annex Packed words Product Coproduct

Deconcatenation

R 24231

R ⊗ R 24231

• •

• 2 4 2 3 1

+

+

• •

• 2 4 2 3 1

• •

2 4 2 3 1

(20)

BasisRof WQSym Bidendriform biaglebra BasisP Annex Packed words Product Coproduct

Deconcatenation

R 24231

R ⊗ R 24231

• •

• 2 4 2 3 1

+

+

• •

2 4 2

• 3 1

• •

2 4 2 3 1

(21)

BasisRof WQSym Bidendriform biaglebra BasisP Annex Packed words Product Coproduct

Deconcatenation

R 24231

R ⊗ R 24231

• •

• 2 4 2 3 1

+

+

• •

1 2 1

• 2 1

• •

2 4 2 3 1

(22)

BasisRof WQSym Bidendriform biaglebra BasisP Annex Packed words Product Coproduct

Deconcatenation

R 24231

R ⊗ R 24231

• •

• 2 4 2 3 1

+

+

R 121 ⊗ R 21

• •

2 4 2 3 1

(23)

BasisRof WQSym Bidendriform biaglebra BasisP Annex Packed words Product Coproduct

Deconcatenation

R 24231

R ⊗ R 24231

R 1312 ⊗ R 1

+

+

R 121 ⊗ R 21

R 24231 ⊗ R

(24)

BasisRof WQSym Bidendriform biaglebra BasisP Annex Half products and coproducts Primitive elements

Half products

Recursive definition of Shuffle product

w = w = w

ua vb = (u vb)a + (ua v)b

= ua ≺ vb + ua vb Example of left and right products

R 12 R 11 = R 1233 + R 1323 + R 1332 + R 3123 + R 3132 + R 3312

R 12 ≺ R 11 = R 1332 + R 3132 + R 3312

R 12 R 11 = R 1233 + R 1323 + R 3123

(25)

BasisRof WQSym Bidendriform biaglebra BasisP Annex Half products and coproducts Primitive elements

Half products

Recursive definition of Shuffle product

w = w = w

ua vb = (u vb)a + (ua v)b = ua ≺ vb + ua vb

Example of left and right products

R 12 R 11 = R 1233 + R 1323 + R 1332 + R 3123 + R 3132 + R 3312

R 12 ≺ R 11 = R 1332 + R 3132 + R 3312

R 12 R 11 = R 1233 + R 1323 + R 3123

(26)

BasisRof WQSym Bidendriform biaglebra BasisP Annex Half products and coproducts Primitive elements

Half products

Recursive definition of Shuffle product

w = w = w

ua vb = (u vb)a + (ua v)b = ua ≺ vb + ua vb Example of left and right products

R 12 R 11 = R 1233 + R 1323 + R 1332 + R 3123 + R 3132 + R 3312

R 12 ≺ R 11 = R 1332 + R 3132 + R 3312

R 12 R 11 = R 1233 + R 1323 + R 3123

(27)

BasisRof WQSym Bidendriform biaglebra BasisP Annex Half products and coproducts Primitive elements

Half products

Recursive definition of Shuffle product

w = w = w

ua vb = (u vb)a + (ua v)b = ua ≺ vb + ua vb Example of left and right products

R 12 R 11 = R 1233 + R 1323 + R 1332 + R 3123 + R 3132 + R 3312

R 12 ≺ R 11 = R 1332 + R 3132 + R 3312

R 12 R 11 = R 1233 + R 1323 + R 3123

(28)

BasisRof WQSym Bidendriform biaglebra BasisP Annex Half products and coproducts Primitive elements

Half coproducts

Definitions

∆ ≺ ( R u ) : = P n−1

i=k

{u1,...,ui}∩{ui+1,...,un}=∅

u

k

=max(u)

R pack(u

1

···u

i

) ⊗ R pack(u

i+1

···u

n

) ,

∆ ( R u ) : = P k−1

i=1

{u1,...,ui}∩{ui+1,...,un}=∅

u

k

=max(u)

R pack(u

1

···u

i

) ⊗ R pack(u

i+1

···u

n

)

Example of left and right coproducts

∆( ˜ R 2425531 ) = R 121 ⊗ R 3321 + R 12133 ⊗ R 21 + R 131442 ⊗ R 1

∆ ≺ (R 2425531 ) = R 12133 ⊗ R 21 + R 131442 ⊗ R 1

∆ ( R 2425531 ) = R 121 ⊗ R 3321

(29)

BasisRof WQSym Bidendriform biaglebra BasisP Annex Half products and coproducts Primitive elements

Half coproducts

Definitions

∆ ≺ ( R u ) : = P n−1

i=k

{u1,...,ui}∩{ui+1,...,un}=∅

u

k

=max(u)

R pack(u

1

···u

i

) ⊗ R pack(u

i+1

···u

n

) ,

∆ ( R u ) : = P k−1

i=1

{u1,...,ui}∩{ui+1,...,un}=∅

u

k

=max(u)

R pack(u

1

···u

i

) ⊗ R pack(u

i+1

···u

n

)

Example of left and right coproducts

∆( ˜ R 2425531 ) = R 121 ⊗ R 3321 + R 12133 ⊗ R 21 + R 131442 ⊗ R 1

∆ ≺ (R 2425531 ) = R 12133 ⊗ R 21 + R 131442 ⊗ R 1

(30)

BasisRof WQSym Bidendriform biaglebra BasisP Annex Half products and coproducts Primitive elements

Half coproducts

Definitions

∆ ≺ ( R u ) : = P n−1

i=k

{u1,...,ui}∩{ui+1,...,un}=∅

u

k

=max(u)

R pack(u

1

···u

i

) ⊗ R pack(u

i+1

···u

n

) ,

∆ ( R u ) : = P k−1

i=1

{u1,...,ui}∩{ui+1,...,un}=∅

u

k

=max(u)

R pack(u

1

···u

i

) ⊗ R pack(u

i+1

···u

n

)

Example of left and right coproducts

∆( ˜ R 2425531 ) = R 121 ⊗ R 3321 + R 12133 ⊗ R 21 + R 131442 ⊗ R 1

∆ ≺ (R 2425531 ) = R 12133 ⊗ R 21 + R 131442 ⊗ R 1

(31)

BasisRof WQSym Bidendriform biaglebra BasisP Annex Half products and coproducts Primitive elements

Goal

Automorphism,

Subspace that generate the algebra with (half) products.

Answer

Totally primitive elements

(32)

BasisRof WQSym Bidendriform biaglebra BasisP Annex Half products and coproducts Primitive elements

Goal

Automorphism,

Subspace that generate the algebra with (half) products.

Answer

Totally primitive elements

(33)

BasisRof WQSym Bidendriform biaglebra BasisP Annex Half products and coproducts Primitive elements

Definitions

Primitive elements

P is a primitive element ⇐⇒ ∆(P ˜ ) = 0 Ex : R 1213 − R 2321

Totally primitive Element

P is a totally primitive element ⇐⇒ ∆ ≺ (P ) = ∆ (P ) = 0

Ex : R 12443 − R 21443 − R 23441 + R 32441

(34)

BasisRof WQSym Bidendriform biaglebra BasisP Annex Half products and coproducts Primitive elements

Definitions

Primitive elements

P is a primitive element ⇐⇒ ∆(P ˜ ) = 0 Ex : R 1213 − R 2321

Totally primitive Element

P is a totally primitive element ⇐⇒ ∆ ≺ (P ) = ∆ (P ) = 0

Ex : R 12443 − R 21443 − R 23441 + R 32441

(35)

BasisRof WQSym Bidendriform biaglebra BasisP Annex Half products and coproducts Primitive elements

Notations

Let A be a bidendriforme bialgebra

Prim(A) = Ker( ˜ ∆),

TPrim(A) = Ker(∆ ≺ ) ∩ Ker(∆ ), A(z) =

+ inf

X

n=1

dim(A n )z n ,

P(z) =

+ inf

X

n=1

dim(Prim(A n ))z n ,

+ inf

(36)

BasisRof WQSym Bidendriform biaglebra BasisP Annex Half products and coproducts Primitive elements

Theorems

Bidendriforme version of Carier Milnor-Moore [Foissy]

Let A a bidendriforme bialgebra. Then A is freely generated as a dendriform algebra by TPrim(A). Moreover :

P(z) = A(z)

A(z) + 1 , T (z) = A(z) (A(z ) + 1) 2 . or equivalently

A(z) = P (z )

1 − P(z) , P (z ) = T (z )(1 + A(z )).

n 1 2 3 4 5 6 7 OEIS

(37)

BasisRof WQSym Bidendriform biaglebra BasisP Annex Decorated forests A new basisP

Decorated forests

An exemple of decorated biplan forest:

2, 5

1 1, 3 1, 2 2

1 1, 2

1 1

On board: 8767595394312.

(38)

BasisRof WQSym Bidendriform biaglebra BasisP Annex Decorated forests A new basisP

Decorated forests

An exemple of decorated biplan forest:

2, 5

1 1, 3 1, 2 2

1 1, 2

1

1

On board: 8767595394312.

(39)

BasisRof WQSym Bidendriform biaglebra BasisP Annex Decorated forests A new basisP

Algorithm on 8767595394312

global descente factorization

remove maximums

global descente factorization left and right groups

positions of maximums recursively

87675953943 12

87675 · 53 · 4 8 767 5 · 5 3 · 4 8 767 | 5 · 5 3 · 4

· · · · | 123 456

(40)

BasisRof WQSym Bidendriform biaglebra BasisP Annex Decorated forests A new basisP

Algorithm on 8767595394312

global descente factorization remove maximums

global descente factorization left and right groups

positions of maximums recursively

87675953943 12 87675 · 53 · 4

8 767 5 · 5 3 · 4 8 767 | 5 · 5 3 · 4

· · · · | 123 456

(41)

BasisRof WQSym Bidendriform biaglebra BasisP Annex Decorated forests A new basisP

Algorithm on 8767595394312

global descente factorization remove maximums

global descente factorization

left and right groups positions of maximums recursively

87675953943 12 87675 · 53 · 4 8 767 5 · 5 3 · 4

8 767 | 5 · 5 3 · 4

· · · · | 123 456

(42)

BasisRof WQSym Bidendriform biaglebra BasisP Annex Decorated forests A new basisP

Algorithm on 8767595394312

global descente factorization remove maximums

global descente factorization left and right groups

positions of maximums recursively

87675953943 12 87675 · 53 · 4 8 767 5 · 5 3 · 4 8 767 | 5 · 5 3 · 4

· · · · | 123 456

(43)

BasisRof WQSym Bidendriform biaglebra BasisP Annex Decorated forests A new basisP

Algorithm on 8767595394312

global descente factorization remove maximums

global descente factorization left and right groups

positions of maximums recursively

87675953943 12 87675 · 53 · 4 8 767 5 · 5 3 · 4 8 767 | 5 · 5 3 · 4

· · · · | 123 456

(44)

BasisRof WQSym Bidendriform biaglebra BasisP Annex Decorated forests A new basisP

New basis P

P := R 1 ,

P t

1

,...,t

k

:= (...( P t

k

≺ ...) ≺ P t

2

) ≺ P t

1

, P

I

r1 . . . rd

:= Φ I (P r

1

,...,r

d

),

P

I

`1 . . . `g r1 . . . rd

:= h P l

1

, P l

2

, ..., P l

k

; Φ I ( P r

1

,...,r

d

)i.

Theorem

(45)

BasisRof WQSym Bidendriform biaglebra BasisP Annex

Th´ eor` emes

Corolaire du Th´ eor` eme Carier Milnor-Moore version dendriforme Soit A une alg` ebre de Hopf bidendriforme. Prim(A) est g´ en´ er´ e librement par TPrim(A) en tant que alg` ebre de brace avec l’op´ eration n-multilin´ eaire suivante :

hp 1 , ..., p n−1 ; p n i =

n−1

X

i =0

(−1) n−1−i

(p 1 ≺ (p 2 ≺ (... ≺ p i )...) p n ≺ (...(p i+1 p i+2 ) ...) p n−1 ).

(46)

BasisRof WQSym Bidendriform biaglebra BasisP Annex

Les premiers arbres

.

; ;

1,2

.

;

2

; ;

; ; ;

1,2

;

1,3

;

1,2

;

1,2

;

2

1

12; 21; 11

123; 132; 213;

231; 312; 321;

122; 212; 221; 112;

121; 211; 111.

(47)

BasisRof WQSym Bidendriform biaglebra BasisP Annex

Les premiers arbres

.

; ;

1,2

.

;

2

; ;

; ; ;

1,2

;

1,3

;

1,2

;

1,2

;

2

1

12; 21; 11

123; 132; 213;

231; 312; 321;

122; 212; 221; 112;

(48)

BasisRof WQSym Bidendriform biaglebra BasisP Annex

;

3

;

2

;

3 2

;

2

;

2 2

; ;

3

; ; ;

2

;

2

; ;

2

; ; ; ;

; ;

2

; ; ; ;

;

(49)

BasisRof WQSym Bidendriform biaglebra BasisP Annex

1,2

;

2,4

;

2,3

;

1,2

;

1,3

;

1,2

;

1,4

;

1,3

;

1,4

;

1,3

;

1,2

;

1,2

;

1,2

;

3 1,2

;

2 1,2

;

1,3

;

3 1,3

;

1,2

;

1,2

;

2 1,3

;

2

1,2

;

1,2

;

1,3

;

1,2

;

(50)

BasisRof WQSym Bidendriform biaglebra BasisP Annex

1,2,3

;

1,3,4

;

1,2,4

;

1,2,3

;

1,2

;

3

1,2

;

2

1,2

;

3 2

1,2

;

2

1,2

;

2 2

1,2

;

1,2

;

2 1,2

;

1,2

;

1,2

;

2 1,2

;

1,2

;

1,2

1,2

;

2,4

1,2

;

2,3

1,2

;

1,4

1,2

;

1,3

1,2

;

1,2 1,2

;

1,2,3

;

3 2

Références

Documents relatifs

Th`emes d’analyse pour l’agr´egation, St´ephane GONNORD & Nicolas TOSEL, page

Comme f est continue sur [0, 1] (compact) elle est born´ee et atteint

[r]

Si M est un num´ eraire, on peut ´ evaluer la valeur V t d’une strat´ egie en terme de ce num´ eraire, soit V t /M

Histoire récente 2002 extension par Karu aux polytopes éventails non simples mais plus relié au f -vecteur 2012 Panina présente l’algèbre des polytopes à Lyon 2015

On consid`ere un triangle quelconque ABC et deux points M et N situ´es respectivement sur les cˆ ot´es [AB] et [AC] tels que (M N)//(BC).. Prouver que le rapport des aires des

Petit guide de calcul diff´ erentiel ` a l’usage de la licence et de l’agr´ egation..

La diff´ erence entre le th´ eor` eme et sa r´ eciproque tient aux conclusions et aux hypoth` eses : Pour montrer que deux droites sont parall` eles, on utilise le th´ eor` eme de