• Aucun résultat trouvé

Nouvelles avancées et perspectives

De nombreux travaux ont été consacrés à la mise au point d’appâts attractifs, mais c’est seulement depuis peu que l’on s’efforce d’identifier des produits ayant un puissant effet répulsif sur les glossines. On en a trouvé un certain nombre soit d’origine synthétique (34), soit issus d’animaux peu prisés comme hôtes comme le cobe onctueux, qui sont présents dans les habitats de tsé-tsé mais sur lesquels les mouches se nourrissent rarement. Lors d’essais sur le terrain avec ces répulsifs, on a constaté que l’incidence de la maladie était réduite de près de 90 % chez le bétail. On s’efforce d’optimiser ces produits pour qu’ils réduisent sensiblement le taux de piqûres de mouches non seulement chez les bestiaux, mais aussi chez l’Homme. L’utilisation de répulsifs peut être associée à d’autres techniques pour pouvoir disposer de meilleures stratégies de lutte intégrée moins dépendantes des médicaments. Ces produits pourraient aussi être utilisés pour mettre au point des barrières efficaces.

Récemment, de nouveaux écrans plus petits contre G. fuscipes et G.

palpalis ont été mis au point ; ils sont d’un meilleur rapport coût-efficacité (31, 83). Les informations dont on dispose maintenant au sujet du génome des tsé-tsé, de leurs symbiontes et des trypanosomes qu’elles transmettent ont considérablement accru le nombre de voies de recherche scientifique (43). Les banques de génomique actuelles comme GeneDB et Vector Base comportent des bibliothèques très complètes de marqueurs de séquence exprimée annotée relatives au genre Glossina et l’annotation de l’ensemble du génome de la tsé-tsé devrait être achevée en 2013. On va alors pouvoir développer des stratégies de lutte ciblant directement la mouche ou son aptitude à transmettre les parasites.

L’identification des gènes liés aux interactions hôte-parasite est d’une importance capitale pour manipuler génétiquement les mouches afin de les rendre inaptes à transmettre le trypanosome. La génomique des bactéries symbiontes des tsé-tsé est également intéressante car la longévité et la reproduction de ces mouches est fortement compromise en l’absence de leur flore intestinale (55,103,104). On a montré que deux bactéries pouvaient modifier la compétence vectorielle de leur hôte (Sodalis glossinidius et Wigglesworthia glossinidia) et qu’une troisième, Wolbachia, pouvait entraîner la stérilité des accouplements. Des mouches réfractaires para-transgéniques de ce genre pourraient être lâchées au milieu de populations naturelles pour qu’elles se substituent à leurs homologues sensibles et réduisent ainsi la transmission de la maladie. Elles pourraient également être immédiatement utilisées dans les programmes de lâchers d’insectes stériles, ce qui permettrait d’abaisser le coût des projets et d’améliorer leur efficacité dans les zones où la THA est endémique. On pourrait également tirer parti des gènes liés à l’olfaction pour élaborer des substances attractives ou répulsives plus actives.

101

La campagne panafricaine d’éradication des tsé-tsé et de la trypanosomiase dont la mise en place résulte de la Décision AHG/156(XXXVI) prise à Lomé (Togo) en juillet 2000 par les Chefs d’État et de Gouvernement lors du 36ième Sommet ordinaire de l’Organisation de l’Unité africaine, en vue de débarrasser l’Afrique de la mouche tsé-tsé, a donné un grand élan à la lutte antivectorielle et à la maîtrise, à l’élimination et à l’éradication effectives de cette menace.

4.14 Bibliographie

1. Vreysen MJB et al. The use of the sterile insect technique (SIT) for the eradication of the tsetse fly Glossina austeni (Diptera: Glossinidae) on the island of Unguja (Zanzibar). Journal of Economic Entomology, 2000, 93:123–135.

2. Elsen P, Amoudi MA, Leclercq M. A propos de la découverte, en Arabie Saoudite, de deux espèces de mouches tsé-tsé vectrices de trypanosomiases humaines et animales [Discovery in Saudi Arabia of two species of tsetse fly that are vectors of human and animal trypanosomiasis]. Revue Médicale de Liège, 1990, 46:225–231.

3. Newstead R. A revision of the tsetse flies (Glossina) based on a study of the male genital armature. Bulletin of Entomological Research, 1911, 2:9–36.

4. Control and surveillance of African trypanosomiasis. Geneva, World Health Organization, 1998 (WHO Technical Report Series, No. 881).

5. Solano P et al. Cyclical vectors of trypanosomosis. In: Lefèvre PC et al., eds. Infectious and parasitic diseases of livestock. Paris, Lavoisier, 2010:155–180.

6. Robays J et al. Human African trypanosomiasis amongst urban residents in Kinshasa: a case–control study. Tropical Medicine and International Health, 2004, 9(8):869–875.

7. Reid SR et al. Human population growth and the extinction of the tsetse fly. Agriculture, Ecosystem and Environment, 2000, 77:227–236.

8. Courtin F et al. Impacts observés des évolutions démo-climatiques sur la répartition spatiale des hommes, des tsé-tsé et des trypanosomoses en Afrique de l’Ouest [Observed impacts of demo-climatic evolution on the spatial distribution of humans, tsetses and trypanomosiases in West Africa]. Parasite, 2009, 16:3–10.

102

rie de rapports techniques de l’OMS N°984, 2013

9. Rayaisse JB et al. Influence de l’anthropisation sur la végétation et l’abondance des tsé-tsé au sud du Burkina-Faso [Influence of human activities on the vegetation and the abundance of tsetses in south Burkina Faso]. Parasite, 2009, 16:21–28.

10. Gooding RH. Genetic analysis of hybrid sterility in crosses of the tsetse flies Glossina palpalis palpalis and Glossina palpalis gambiensis (Diptera: Glossinidae). Canadian Journal of Zoology, 1997, 75:1109–

1117.

11. Gooding RH, Solano P, Ravel S. X chromosome mapping experiments suggest occurrence of cryptic species in the tsetse fly, Glossina palpalis palpalis (Diptera: Glossinidae). Canadian Journal of Zoology, 2004, 82:1902–1909.

12. Gooding RH, Krafsur ES. Tsetse genetics: contributions to biology, systematics, and control of tsetse flies. Annual Review of Entomology, 2005, 50:101–123.

13. Vreysen MJB. Monitoring sterile and wild insects in area-wide integrated pest management programmes. In: Dyck VA, Hendrichs J, Robinson AS, eds. Sterile insect technique. Principles and practice in area-wide integrated pest management. Dordrecht, Springer, 2005:325–361.

14. Itard J. Les glossines ou mouches tsé-tsé [Glossina or tsetse flies]. Etudes et Synthèses de l’ Institut d’Elevage et Médecine Vétérinaire Tropicale, 1986, 15:155.

15. Kgori P, Modo S, Torr SJ. The use of aerial spraying to eliminate tsetse from the Okavango delta of Botswana. Acta Tropica, 2006, 99:184–199.

16. Leak S. Tsetse biology and ecology: their role in the epidemiology and control of trypanosomosis. Wallingford, Oxfordshire, CABI Publishing, 1998.

17. Lehane MJ, Hargrove J. Field experiments on a new method for determining age in tsetse flies. Ecological Entomology, 1988, 13:319–322.

18. Rogers DJ, Randolph SE. A review of density-dependent processes in tsetse populations. Insect Science and its Application, 1984, 5:397–402.

19. Torr SJ, Maudlin I, Vale GA. Less is more: restricted application of insecticide to cattle to improve the cost and efficacy of tsetse control.

Medical and Veterinary Entomology, 2007, 21: 53–64.

103

20. Bouyer J et al. Tsetse control in cattle from pyrethroid footbaths.

Preventive Veterinary Medicine, 2006, 78(3–4):223–238.

21. Akoda G et al. Nutritional stress of adult female tsetse flies (Diptera:

Glossinidae) affects the susceptibility of their offspring to trypanosomal infections. Acta Tropica, 2009, 111:263–267.

22. Van den Bossche P et al. A changing environment and the epidemiology of tsetse-transmitted livestock trypanosomiasis. Trends in Parasitology, 2010, 26(5):236–243.

23. Challier A, Gouteux JP, Coosemans M. La limite géographique entre les sous-espèces Glossina palpalis palpalis (Rob.-Desv.) et Glossina palpalis gambiensis Vanderplanck en Afrique occidentale [The geographical limit between the subspecies Glossina palpalis palpalis (Rob.-Desv.) and Glossina palpalis gambiensis Vanderplanck in West Africa]. Cahiers ORSTOM: Série entomologie médicale et parasitologie, 1983, 21:207–220.

24. Brunhes J et al. Les glossines ou mouches tsé-tsé, logiciel d’identification et d’enseignement [Glossina or tsetse flies, software for identification and teaching]. CD-ROM PC. Montpellier, Institut de Recherche pour le Developpment, Centre de coopération internationale en recherche agronomique pour le développement, 1998.

25. Torr SJ et al. Where, when and why do tsetse contact humans? Answers from studies in a national park of Zimbabwe. PLoS Neglected Tropical Diseases, 2012, 6(8):e1791.

26. Moore S et al. Predicting the effect of climate change on African trypanosomiasis: integrating epidemiology with parasite and vector biology. Journal of the Royal Society Interface, 2011, 9:817–830.

27. Courtin F et al. Updating the northern tsetse limit distribution in Burkina Faso: impact of global change. International Journal of Environmental Research and Public Health, 2010, 7:1708–1719.

28. Vreysen MJB et al. Tsetse flies: their biology and control using area-wide integrated pest management approaches. Journal of Invertebrate Pathology, 2012, 112(Suppl. 1):S15–S25.

29. Vale GA et al. Odour-baited targets to control tsetse flies, Glossina spp.

(Diptera: Glossinidae), in Zimbabwe. Bulletin of Entomological Research, 1988, 78:31–49.

104

rie de rapports techniques de l’OMS N°984, 2013

30. Torr SJ, Solano P. Olfaction in Glossina–host interactions: a tale of two tsetse. In: Knols B, Takken W, eds. Olfaction in vector hosts interactions: Ecology and control of vector borne diseases. Wageningen, Wageningen University, 2010:265–289.

31. Esterhuizen J et al. Improving the cost-effectiveness of visual devices for the control of riverine tsetse flies, the major vectors of human African trypanosomiasis. PLoS Neglected Tropical Diseases, 2011, 5(8):e1257.

32. Rayaisse JB et al. Towards an optimal design of target for tsetse control:

Comparisons of novel targets for the control of palpalis group tsetse in West Africa. PLoS Neglected Tropical Diseases, 2011, 5(9):e1332.

33. Tirados I et al. How do tsetse recognise their hosts? The role of shape in the responses of tsetse (Glossina fuscipes and G. palpalis) to artificial hosts. PLoS Neglected Tropical Diseases, 2011, 5(8):e1226.

34. Saini RK, Hassanali A. A 4-alkyl substituted analogue of guaiacol shows greater repellency to savannah tsetse (Glossina spp.). Journal of Chemical Ecology, 2007, 33:985–995.

35. Hargrove JW. Effect of human presence on the behavior of tsetse (Glossina spp) near a stationary ox. Bulletin of Entomological Research, 1976, 66:173–178.

36. Rayaisse JB et al. Prospects for odour bait development to control vectors of trypanosomiasis in West Africa, the tsetse flies Glossina tachinoides and G. palpalis s.l. PLoS Neglected Tropical Diseases, 2010, 4:e632.

37. Challier A. The ecology of tse-tse (Glossina sp.) (Diptera, Glossinidae): a review (1970–1981). Insect Science and its Application, 1982, 3:97–143.

38. Laveissière C et al. Les glossines vectrices de la trypanosomiase humaine africaine [Tsetse vectors of human African trypanosomiasis]. Paris, Institut de Recherche pour le Développement, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, 2000.

39. Buxton PA. The natural history of tsetse flies. An account of the biology of the genus Glossina (Diptera). London, H.K. Lewis, 1955.

40. Hargrove JW. A theoretical study of the invasion of cleared areas by tsetse flies (Diptera: Glossinidae). Bulletin of Entomological Research, 2000, 90:201–209.

105

41. Bouyer J et al. Control methods in trypanosomosis. In: Lefèvre PC et al., eds. Infectious and parasitic diseases of livestock. Paris, Lavoisier, 2010:1927–1959.

42. Laveissière C, Kienou JP, Traore T. Ecologie de G. tachinoides en savane d’Afrique de l’Ouest. VII. Lieux de repos diurnes, variations saisonnières [Ecology of G. tachinoides in the West African savannah. VII. Diurnal resting places, seasonal variations]. Cahiers ORSTOM: Série entomologie médicale et parasitologie, 1979, 17:181–191.

43. Solano P, Ravel S, de Meeûs T. How can tsetse population genetics contribute to African trypanosomosis control? Trends in Parasitology, 2010, 26:255–263.

44. Solano P et al. Population structures of insular and continental Glossina palpalis gambiensis in littoral Guinea. PLoS Neglected Tropical Diseases, 2009, 3(3):e392.

45. Ouma JO et al. Genetic diversity and population structure of Glossina pallidipes in Uganda and western Kenya. Parasites and Vectors, 2011, 4:122.

46. Dujardin JP, Kaba D, Henry AB. The exchangeability of shape. BMC Research Notes, 2010, 3:266.

47. Camara M et al. Genetic and morphometric evidence for population isolation of Glossina palpalis gambiensis from Loos islands, Guinea.

Journal of Medical Entomology, 2006, 43:853–860.

48. Bouyer J et al. Stratified entomological sampling in preparation for an area-wide integrated pest management program: the example of Glossina palpalis gambiensis (Diptera: Glossinidae) in the Niayes of Senegal.

Journal of Medical Entomology, 2010, 47:543–552.

49. Solano P et al. Population genetics as a tool to select tsetse control strategies: suppression or eradication of Glossina palpalis gambiensis in the Niayes of Senegal. PLoS Neglected Tropical Diseases, 2010, 4:e692.

50. Kaba D et al. Phenetic and genetic structure of tsetse fly populations (Glossina palpalis palpalis) in southern Ivory Coast. Parasites and Vectors, 2012, 5:153.

51. Klassen W. Area-wide integrated pest management and the sterile insect technique. In: Dyck VA, Hendrichs J, Robinson AS, eds. Sterile insect technique: principles and practice in area-wide integrated pest management.

Dordrecht, Springer, 2005:39–68.

106

rie de rapports techniques de l’OMS N°984, 2013

52. Lindner AK, Priotto G. The unknown risk of vertical transmission in sleeping sickness—a literature review. PLoS Neglected Tropical Diseases, 2010, 4(12):e783.

53. Aksoy S, Rio RVM. Interactions among multiple genomes: tsetse, its symbionts and trypanosomes. Insect Biochemistry and Molecular Biology, 2005, 35:691–698.

54. Geiger A et al. First isolation of Enterobacter, Enterococcus, and Acinetobacter spp. as inhabitants of the tsetse fly (Glossina palpalis palpalis) midgut. Infection, Genetics and Evolution, 2009, 9:1364–1370.

55. Walshe DP et al. The enemy within: interactions between tsetse, trypanosomes and symbionts. In: Simpson SJ, Casas J. Advances in insect physiology, Burlington, Massachusetts, Academic Press, 2009, 37:119–175.

56. Rogers DJ. A general model for the African trypanosomiases. Parasitology, 1988, 97:193–212.

57. Gouteux JP, Artzrouni M. Is vector control needed in the fight against sleeping sickness? A biomathematical approach. Bulletin de la Société de Pathologie Exotique, 1996, 89:299–305.

58. Jamonneau V et al. Mixed trypanosome infections in tsetse and pigs and their epidemiological significance in a sleeping sickness focus in Côte d’Ivoire. Parasitology, 2004, 129:693–702.

59. Auty HK et al. Using molecular data for epidemiological inference:

assessing the prevalence of Trypanosoma brucei rhodesiense in tsetse in Serengeti, Tanzania. PLoS Neglected Tropical Diseases, 2012, 6:e1501.

60. van den Abbeele J et al. Trypanosoma brucei modifies the tsetse salivary composition, altering the fly feeding behavior that favors parasite transmission. PLoS Pathogens, 2010, 6(6):e1000926.

61. Knipling EF. Possibilities of insect control or eradication through the use of sexually sterile males. Journal of Economic Entomology, 1955, 48(4):459–466.

62. Kgori PM, Orsmond G, Phillemon-Motsu TK. Integrating GIS and GPS-assisted navigation systems to enhance the execution of a SAT- based tsetse elimination project in the Okavango delta (Botswana). In:

Cecchi G, Mattioli RC, eds. Geospatial datasets and analyses for an environmental approach to African trypanosomiasis. Rome, Food and Agriculture Organization of the United Nations, 2009:61–67 (Technical and Scientific Series, No. 9).

107

63. Ford J, Nash TAM, Welch JR. Control by clearing of vegetation. In:

Mulligan HW, ed. The African trypanosomiases. London, George Allen and Unwin, 1970:543–563.

64. Potts WH, Jackson CHN. The Shinyanga game destruction experiment.

Bulletin of Entomological Research, 1952, 53:365–374.

65. Robertson, A.G. The feeding habits of tsetse flies in Zimbabwe (formerly Rhodesia) and their relevance to some tsetse control measures. Smithersia, 1983, 1:1–72.

66. Jordan AM. Trypanosomiasis control and African rural development.

London, Longman, 1986.

67. Adam Y et al. The sequential aerosol technique: a major component in an integrated strategy of intervention against riverine tsetse in Ghana.

PLoS Neglected Tropical Diseases, 2013, 7:3:e2135.

68. Perkins JS, Ramberg L, eds. Environmental recovery monitoring of tsetse fly spraying impacts in the Okavango delta—2003. Final report. Maun, Harry Oppenheimer Research Centre, University of Botswana, 2004 (Okavango Report Series, No. 3).

69. Bauer B et al. Evaluation of a preliminary title to protect zero-grazed dairy cattle with insecticide-treated mosquito netting in western Kenya.

Tropical Animal Health and Production, 2006, 38(1):29–34.

70. Bauer B et al. Managing tsetse transmitted trypanosomosis by insecticide treated nets: an affordable and sustainable method for resource poor pig farmers in Ghana. PLoS Neglected Tropical Diseases, 2011, 5(10):e1343.

71. Hargrove JW, Vale GA. Aspects of the feasibility of employing odour- baited traps for controlling tsetse flies (Diptera; Glossinidae). Bulletin of Entomological Research, 1979, 69:283–290.

72. Green CH, Cosens D. Spectral responses of the tsetse fly Glossina morsitans morsitans. Journal of Insect Physiology, 1983, 29:795–800.

73. Challier A, Laveissière C. Un nouveau piège pour la capture des glossines (Glossina: Diptera: Muscidae). Description et essais sur le terrain [A new trap for capturing tsetse (Glossina: Diptera: Muscidae). Description and field trials]. Cahiers ORSTOM: Série Entomologie Médicale et Parasitologie, 1973, 11:251–262.

108

rie de rapports techniques de l’OMS N°984, 2013

74. Challier A et al. Amélioration du rendement du piège biconique pour glossines (Diptera, Glossinidae), par l’emploi d’un cône inférieur bleu [Improved productivity of biconical traps for tsetse (Diptera, Glossinidae) with use of a blue lower cone]. Cahiers ORSTOM, Série Entomologie Médicale et Parasitologie, 1977, 15:283–286.

75. Goutex JP, Lancien J. Le piège pyramidal à tsetse (Diptera: Glossinidae) pour la capture et la lutte. Essais comparatifs et déscription de nouveaux systèmes de capture [The pyramidal tsetse (Diptera: Glossinidae) trap for capture and control. Comparative tests and description of new capture systems]. Tropical Medicine and Parasitology, 1986, 37:61–66.

76. Laveissière C, Grebaut P. Recherches sur les pièges à glossines (Diptera:

Glossinidae). Mise au point d’un modèle économique: le piège Vavoua [Research on Glossina (Diptera: Glossinidae) traps. Design of an economic model: the Vavoua trap]. Tropical Medicine and Parasitology, 1990, 41:185–192.

77. Lancien J. Déscription du piège monoconique utilisé pour l’élimination des glossines en République populaire du Congo [Description of the monoconical trap used for the elimination of tsetse in the Democratic Republic of the Congo]. Cahiers ORSTOM: Série Entomologie Médicale et Parasitologie, 1981, 19:235–238.

78. Use of attractive devices for tsetse survey and control. Rome, Food and Agriculture Organization of the United Nations, 1992 (Tsetse Training Manual Vol. 4).

79. Kappmeier K. A newly developed odour-baited “H trap” for the live collection of Glossina brevipalpis and Glossina austeni (Diptera:

Glossinidae) in South Africa. Onderstepoort Journal of Veterinary Research, 2000, 67:15–26.

80. Brightwell R et al. A new trap for Glossina pallidipes. Tropical Pest Management, 1987, 33:151–189.

81. Brightwell R, Dransfield RD, Kyorku C. Development of a low-cost tsetse trap and odour baits for Glossina pallidipes and G. longipennis in Kenya.

Medical and Veterinary Entomology, 1991, 5:153–164.

82. Mihok S. The development of a multipurpose trap (the Nzi) for tsetse and other biting flies. Bulletin of Entomological Research, 2002, 92:385–

403.

109

83. Green CH. The effect of colour in trap- and screen-orientated responses in Glossina palpalis palpalis (Robineau-Desvoidy) (Diptera: Glossinidae).

Bulletin of Entomological Research, 1988, 78:591–604.

84. Green CH. The use of two-coloured screens for catching Glossina palpalis palpalis (Robineau-Desvoidy) (Diptera: Glossinidae). Bulletin of Entomological Research, 1989, 79:81–93.

85. Hall DR et al. 1-Octen-3-ol: a potent olfactory stimulant and attractant for tsetse isolated from cattle odours. Insect Science and its Application, 1984, 5:335–339.

86. Torr SJ. Dose responses of tsetse flies (Glossina) to carbon dioxide, acetone and octenol in the field. Physiological Entomology, 1990, 15:93–

103.

87. Vale GA. Field studies of the responses of tsetse flies (Glossinidae) and other Diptera to carbon dioxide, acetone and other chemicals.

Bulletin of Entomological Research, 1980, 70:763–570.

88. Vale GA, Hall DR. The role of 1-octen-3-ol, acetone and carbon dioxide in the attraction of tsetse flies, Glossina spp. (Diptera: Glossinidae), to host odour. Bulletin of Entomological Research, 1985, 75:209–217.

89. Saini RK, Hassanali A, Dransfield RD. Antennal response of tsetse to analogues of the attractant 1-octen-3- ol. Physiological Entomology, 1989, 14:85–90.

90. Tour SJ, Hall DR, Smith JL. Responses of tsetse flies (Diptera: Glossinidae) to natural and synthetic ox odours. Entomological Research, 1995, 85:157–166.

91. Hassanali A et al. Identification of tsetse attractants from excretory products of a wild host animal, Syncerus caffer. Insect Science and its Application, 1986, 7(1):5–9.

92. Saini RK. Olfactory sensitivity of tsetse flies to phenolic kairomones.

Insect Science and its Application, 1992, 13:95–104

93. Saini RK. Responses of tsetse flies Glossina spp. (Diptera: Glossinidae) to phenolic kairomones in a wind tunnel. Insect Science and its Application, 1990, 11:369–375.

94. Saini RK et al. Close range responses of tsetse flies Glossina morsitans morsitans Westwood (Diptera: Glossinidae) to host body kairomones.

Discovery and Innovation, 1993, 5:149–153.

110

rie de rapports techniques de l’OMS N°984, 2013

95. Improved attractants for enhancing tsetse fly suppression. Final report of a co-ordinated research project 1996–2002. Vienna, International Atomic Energy Agency, 2003 (IAEA-TECDOC-1373 FAO//IAEA).

96. Bauer B et al. Successful application of deltamethrin pour-on to cattle in a campaign against tsetse flies (Glossina spp.) in the pastoral zone of Samorogouan, Burkina Faso. Tropical Medicine and Parasitology, 1995, 46:183–189.

97. Hargrove JW et al. Insecticide-treated cattle for tsetse control: the power and the problems. Medical and Veterinary Entomology, 2000, 14:123–

130.

98. Hargrove JW, Torr SJ, Kindness HM. Factors affecting the efficacy of using insecticide-treated cattle to control tsetse. Bulletin of Entomological Research, 2002, 93:203–217.

99. Magona JW, Walubengo J. Mass treatment of insecticide-spraying of animal reservoirs for emergency control of rhodesiense sleeping sickness in Uganda. Journal of Vector Borne Diseases, 2011, 48:105–108.

100. Hendrichs J et al. Strategic options in using sterile insects for area-wide integrated pest management. In: Dyck VA, Hendrichs J, Robinson AS, eds. Sterile insect technique. Principles and practice in area-wide integrated pest management. Dordrecht, Springer, 2005:563–600.

101. Vreysen MJB. Evaluation of sticky panels to monitor populations of Glossina austeni (Diptera: Glossinidae) on Unguja island of Zanzibar.

Bulletin of Entomological Research, 1996, 86:289–296.

102. Shaw AP et al. Estimating the costs of tsetse control options: an example for Uganda. Preventive Veterinary Medicine, 2013, 110:290–303.

103. Geiger A et al. The human African trypanosomiasis: interactions between the tsetse fly, its secondary symbiont Sodalis glossinidius, and the parasite.

Infection, Genetics and Evolution, 2008, 8:S25–S26.

104. Rita VM et al. Comparative genomics of insect-symbiotic bacteria:

influence of host environment on microbial genome. Applied and Environmental Microbiology, 2003, 69(11):6825–6832.

111

5. La maladie

Le tableau clinique de la THA dépend de l’espèce du parasite, de la phase de la maladie et de l’hôte. Les signes et les symptômes qui caractérisent la maladie sont généralement les mêmes pour les deux formes, mais ils diffèrent par leur

Le tableau clinique de la THA dépend de l’espèce du parasite, de la phase de la maladie et de l’hôte. Les signes et les symptômes qui caractérisent la maladie sont généralement les mêmes pour les deux formes, mais ils diffèrent par leur