• Aucun résultat trouvé

MPSI B 2009-2010 Corrigé du DS 8 29 juin 2019

N/A
N/A
Protected

Academic year: 2022

Partager "MPSI B 2009-2010 Corrigé du DS 8 29 juin 2019"

Copied!
4
0
0

Texte intégral

(1)

MPSI B 2009-2010 Corrigé du DS 8 29 juin 2019

Exercice

Décomposons en éléments simples la fraction 4X − 3 X(X − 2)(X + 2) il vient :

4X − 3

X (X − 2)(X + 2) = 1 8

6

X − 11

X + 2 + 5 X − 2

On en déduit

n

X

k=3

4k − 3

k(k − 2)(k + 2) = 1 8 6

n

X

k=3

1 k − 11

n

X

k=3

1 k + 2 + 5

n

X

k=3

1 k − 2

!

= 1 8 6

n

X

k=3

1 k − 11

n+2

X

k=5

1 k + 5

n−2

X

k=1

1 k

!

Comme 6 − 11 + 5 = 0 , les termes des sommes entre 5 et n − 2 disparaissent. Il reste :

n

X

k=3

4k − 3

k(k − 2)(k + 2) = 1 8

6( 1

3 + 1

4 ) + 5(1 + 1 2 + 1

3 + 1 4 ) − ε n

où ε n est formé de termes qui tendent vers 0. On en déduit que

n

X

k=3

4k − 3

k(k − 2)(k + 2) → 1 8

6( 1

3 + 1

4 ) + 5(1 + 1 2 + 1

3 + 1 4 )

= 167 96

Problème

Partie I. Existence : méthode de Picard

1. a. Le calcul de l'intégrale conduit à

y 1 (t) = t 3 6

b. Par dénition, comme les bornes de l'intégrales sont égales :

∀n ∈ N : y n (0) = 0

Toutes les fonctions sont polynomiales par le calcul explicite des intégrales. Elles sont toutes dérivables avec :

∀n ∈ N , ∀t ∈ R : y 0 n+1 (t) = 1

2 t 2 + y 2 n (t)

≥ 0

Ce qui entraine la croissance de chaque fonction y n . c. Comme chaque y n est croissante, on a :

∀n ∈ N , ∀t ∈ [0, 1] : 0 = y n (0) ≤ y n (t) ≤ y n (1)

Avec y 0 (0) = 0 et y 1 (1) = 1 6 tous les deux inférieurs à 1 . Supposons y n (1) ≤ 1 , alors :

∀t ∈ [0, 1] : y n+1 (t) = 1 2

Z t 0

τ 2

|{z}

≤1

+ y n 2 (τ)

| {z }

≤1

dτ ≤ 1

2. La question précédente portait sur le comportement pour chaque n de la fonction y n . Celle ci en revanche porte, pour chaque t , sur la suite (y n (t)) n∈ N .

a. On va montrer par récurrence que la suite est croissante. On sait déjà que les deux premiers termes sont dans le bon sens :

∀t ∈ [0, 1] : y 1 (t) − y 0 (t) = t 3 6 ≥ 0.

Supposons que pour un n ≥ 1 et tous t ∈ [0, 1] : y n (t) − y n−1 (t) ≥ 0 . Alors :

y n+1 (t) − y n (t) = 1 2

Z t 0

y 2 n (τ) − y n−1 2 (τ) dτ

= 1 2

Z t 0

y n (τ) + y n−1 (τ )

| {z }

≥0

y n (τ) − y n−1 (τ)

| {z }

≥0

dτ ≥ 0

On en déduit que pour chaque t ∈ [0, 1] , la suite (y n (t)) n∈ N est croissante. Elle est majorée par 1 d'après la première question, elle est donc convergente. Sa limite est notée y(t) ce qui dénit une fonction y dans [0, 1] . Il s'agit maintenant de prouver que cette fonction est eectivement solution de l'équation diérentielle.

b. De l'encadrement 0 ≤ y n (t) ≤ 1 , on déduit par le théorème de passage à la limite dans une inégalité pour la suite (y n (t)) n∈ N que 0 ≤ y(t) ≤ 1 .

Cette création est mise à disposition selon le Contrat

Paternité-Partage des Conditions Initiales à l'Identique 2.0 France disponible en ligne http://creativecommons.org/licenses/by-sa/2.0/fr/

1

Rémy Nicolai S0908C

(2)

MPSI B 2009-2010 Corrigé du DS 8 29 juin 2019

c. Soit a et b dans [0, 1] , on choisit a < b pour xer les idées. Par dénition de y n et parce que la fonction y n−1 est croissante avec y n−1 (1) ≤ 1 , on a :

0 ≤ y n (b) − y n (a) = 1 2

Z b a

τ 2

|{z}

≤1

+ y n−1 2 (τ)

| {z }

≤1

dτ ≤ 1

2 Z b

a

2dτ = b − a

On applique alors le théorème de passage à la limite dans une inégalité aux suites convergentes (y n (a)) n∈ N et (y n (b)) n∈ N . On en déduit

0 ≤ y(b) − y(a) ≤ b − a

Ce qui montre que la fonction y est lipschitzienne de rapport 1 (on dit aussi contractante), donc continue donc intégrable.

3. a. Comme les suites sont croissantes, on sait déjà que 0 ≤ y n+1 (t) − y n (t) . On va montrer l'autre inégalité par récurrence.

Pour n = 0 :

∀t ∈ [0, a] : y 1 (t) − y 0 (t) = t 3

6 ≤ 1 = a 0 Montrons maintenant que l'ordre n − 1 entraine l'ordre n :

y n+1 (t) − y n (t) = 1 2

Z t 0

y n 2 (τ) − y 2 n−1 (τ) dτ

= 1 2

Z t 0

y n (τ) + y n−1 (τ )

| {z }

≤2

y n (τ) − y n−1 (τ)

| {z }

≤a

n−1

dτ car τ ∈ [0, t] ⊂ [0, a]

≤ ta n−1 ≤ a n pour t ∈ [0, a]

b. Pour tous les naturels n et p , on peut considérer y n+p 0 (t) − y n (t) = y n+1 (t) − y n (t)

+ y n+2 (t) − y n+1 (t) +

· · · + y n+p (t) − y n+p−1 (t)

≤ a n + a n+1 + · · · + a n+p = a n (1 − a p+1 ) 1 − a ≤ a n

1 − a Pour n et t xés, appliquons le théorème de passage à la limite dans une inégalité à la suite convergente (y n+p (t)) p∈ N . On obtient :

0 ≤ y(t) − y n (t) ≤ a n 1 − a

c. Notons I n (t) l'expression que l'on nous demande d'encadrer. Remplaçons y n+1 (t) par son expression intégrale. On obtient :

I n (t) = 1 2

Z t 0

y 2 (τ) − y 2 n (τ) dτ ≥ 0

car 0 ≤ y n (τ ) ≤ y(τ) les suites dénissant y étant croissantes. D'autre part : I n (t) = 1

2 Z t

0

y(τ ) + y n (τ)

| {z }

≤2

y(τ) − y n (τ)

| {z }

1−aan

dτ ≤

Z t 0

a n

1 − a dτ = a n t 1 − a

4. a. Pour un t ∈ [0, 1[ quelconque, il existe un a ∈ [0, 1[ tel que t ∈ [0, a] . On peut donc écrire l'encadrement de la question précédente :

0 ≤ 1

2 Z t

0

τ 2 + y 2 (τ) dτ

− y n+1 (t) ≤ a n t 1 − a

Appliquons encore une fois le théorème de passage à la limite aux suites (y n+1 (t)) n∈ N et ( 1−a a

n

t ) n∈ N qui convergent respectivement vers y(t) et 0 . On en déduit :

0 ≤ 1

2 Z t

0

τ 2 + y 2 (τ) dτ

− y(t) ≤ 0 ⇒ y(t) = 1 2

Z t 0

τ 2 + y 2 (τ) dτ

b. La formule précédente est valable dans [0, 1[ . En revanche on ne peut pas l'obtenir en 1 par la méthode précédente car il n'existe pas de a < 1 assurant la convergence géométrique. La formule est encore valable en 1 simplement par continuité des deux fonctions.

La fonction y est continue dans [0, 1] car contractante. La fonction t → 1

2 Z t

0

τ 2 + y 2 (τ) dτ

est elle aussi continue dans [0, 1] d'après les propriétés d'une intégrale fonction de sa borne supérieure. Elle est même dérivable de dérivée

t → t 2 + y 2 (t)

Comme ces fonctions coïncident dans [0, 1[ , elles prennent la même valeur en 1 et leurs dérivées aussi. La fonction y est donc solution de l'équation diérentielle citée au début.

Cette création est mise à disposition selon le Contrat

Paternité-Partage des Conditions Initiales à l'Identique 2.0 France disponible en ligne http://creativecommons.org/licenses/by-sa/2.0/fr/

2

Rémy Nicolai S0908C

(3)

MPSI B 2009-2010 Corrigé du DS 8 29 juin 2019

Partie II. Unicité : lemme de Gronwall

1. a. Les fonctions |y| et |z| sont continues, leur somme aussi. Sur le segment [0, 1] , elle est bornée et atteint ses bornes ce qui justie l'existence de M . De plus, en utilisant les expressions intégrales de y et z , il vient :

y(t) − z(t) = 1 2

Z t 0

y 2 (τ ) − z 2 (τ) dτ

⇒ u(t) ≤ 1 2

Z t 0

y(τ) + z(τ )

| {z }

≤M

u(τ)dτ ≤ M 2

Z t 0

u(τ)dτ

b. Il s'agit de simples manipulations algébriques. (noter l'ajout arbitraire d'un ε > 0 quelconque ) :

u(t) ≤ M 2

Z t 0

u(τ )dτ ⇒ u(t) ≤ ε + M 2

Z t 0

u(τ)dτ

⇒ M

2 u(t) ≤ M 2

ε + M

2 Z t

0

u(τ )dτ

M 2 u(t) ε + M 2 R t

0 u(τ )dτ ≤ M 2

2. a. On remarque que

t →

M 2 u(t) ε + M 2 R t

0 u(τ)dτ est la dérivée de

t → ln

ε + M 2

Z t 0

u(τ)dτ

En intégrant l'inégalité du 1.b. entre 0 et t on obtient donc : ln

ε + M

2 Z t

0

u(τ)dτ

− ln ε ≤ M 2 t On compose alors par la fonction exponentielle ce qui donne :

ε + M 2 R t 0 u(τ)dτ ε ≤ e

M2

t

b. On en déduit

ε + M 2

Z t 0

u(τ )dτ ≤ εe

M2

t

Combinée avec

u(t) ≤ ε + M 2

Z t 0

u(τ)dτ Cela donne

u(t) ≤ εe

M2

t 3. Pour chaque t xé, on a

∀ε > 0 : u(t) ≤ εe

M2

t

Comme ε est quelconque, on en déduit (raisonnement à la Cauchy) que u(t) ≤ 0 c'est à dire en fait u(t) = 0 et y(t) = z(t) .

On peut raisonner ainsi pour tous les t . Cela prouve l'unicité de la solution avec la condition initiale donnée.

Partie III. Approximation : méthode d'Euler

1. L'inégalité demandée découle immédiatement de la convexité de la fonction exponen- tielle ou de l'étude des variations de x → e x − x − 1 .

2. a. Pour tout n : E n − e n ≥ 0 se montre par récurrence car E 0 − e 0 = 0 et on déduit des relations :

E n+1 − e n+1 ≥ A(E n − e n ) ≥ 0 car A > 0 .

b. On applique la question précédente en utilisant le fait que

∀n ∈ N : E n = B

A − 1 (A n − 1)

On peut se contenter de vérier la relation de récurrence ou bien trouver la suite vériant une telle relation (suite arithmético-géométrique).

3. Il s'agit en fait de majorer l'erreur commise en utilisant la méthode du rectangle pour approcher une intégrale. On adapte la méthode du cours Approximations d'une intégrale pour les trapèzes. Cela revient à une inégalité de Taylor-Lagrange. On pose

F (x) = Z x

α

ϕ(t)dt − (x − α)ϕ(α)

Cette création est mise à disposition selon le Contrat

Paternité-Partage des Conditions Initiales à l'Identique 2.0 France disponible en ligne http://creativecommons.org/licenses/by-sa/2.0/fr/

3

Rémy Nicolai S0908C

(4)

MPSI B 2009-2010 Corrigé du DS 8 29 juin 2019

Alors

F 0 (x) = ϕ(x) − ϕ(α) ≤ M 1 (x − α) d'après l'inégalité des accroissements nis. On peut alors intégrer :

Z β α

ϕ(t)dt − (x − α)ϕ(α) = F (β) − F (α) = Z β

α

F 0 (x)dx

≤ Z β

α

M 1 (x − α) dx = (β − α) 2 2 M 1

4. On écrit les deux accroissements à l'aide d'intégrales sur un segment de longueur h :

 

 

 

 

u i+1 =u i + h

2 (t 2 i + u 2 i ) = u i + 1 2

Z t

i+1

t

i

t 2 i + u 2 i dt

y(t i+1 ) =y(t i ) + 1 2

Z t

i+1

t

i

t 2 + y 2 (t) dt

⇒ e i+1 = e i + 1 2

Z t

i+1

t

i

t 2 − t 2 i + y 2 (t) − u 2 i dt

5. a. Montrons par récurrence que e i ≥ 0 . C'est vrai à l'ordre 0 car e 0 = 0 . Supposons u i ≥ 0 . Alors t 2 − t 2 i ≥ 0 pour t ∈ [t i , t] . Comme y est croissante (sa dérivée est positive), y(t) ≥ y(t i ) ≥ u i donc y 2 (t) − u 2 i ≥ 0 et l'intégrale est positive. On en déduit que e i est positive. En fait on a montré que la suite des e i est croissante ce qui se voit bien sur la gure.

Si e i ≥ 0 , on a u i ≥ y(t i ) ≥ 1 .

b. On majore l'expression intégrale de la question 4. avec l'inégalité suivante qui est une conséquence de la question 3. :

Z β α

ϕ(t) dt ≤ (β − α)ϕ(α) + M 1

2 (β − α) 2 . Ici α = t i , β = t i+1 = t i + h , ϕ : t → 1 2 t 2 − t 2 i + y 2 (t) − u 2 i

1 2

Z t

i+1

t

i

t 2 − t 2 i + y 2 (t) − u 2 i

≤ h

2 (y 2 (t i ) − u 2 i ) + M 1

2 h 2 .

On peut prendre M 1 = 2 dans la majoration car ϕ 0 (t) = t+y 0 (t)y(t) avec t i+1 ≤ 1 et y(t) ≤ 1 , donc

y 0 (t) = 1

2 t 2 + y 2 (t)

≤ 1 ⇒ ϕ 0 (t) ≤ 2.

Cela conduit à :

e i+1 ≤ e i + h(y(t i ) 2 − u 2 i ) + h 2 ≤ e i + h

2 (y(t i ) − u i )

| {z }

=e

i

(y(t i ) + u i )

| {z }

≤2

+ h 2

≤ e i + he i + h 2 = (1 + h)e i + h 2 6. D'après 2. avec A = 1 + h et B = h 2 :

e i ≤ h 2

1 + h − 1 (1 + h) i − 1

≤ h (1 + h) N − 1

car i ≤ N . Or 1 + h ≤ e h donc (1 + h) N ≤ e N h avec N h = 1 e i ≤ h(e − 1)

Cette création est mise à disposition selon le Contrat

Paternité-Partage des Conditions Initiales à l'Identique 2.0 France disponible en ligne http://creativecommons.org/licenses/by-sa/2.0/fr/

4

Rémy Nicolai S0908C

Références

Documents relatifs

Par contraposition, si t 0 est un point de franchissement qui n'est ni vers le haut ni vers le bas, la fonction f prend une innité de fois la valeur u dans un intervalle

Déterminer les matrices diagonales D qui commutent avec toutes les matrices triangulaires supérieures strictes.. Caractériser les fonctions vériant (1) par une

Les fonctions sont intégrables car elles sont majorées en valeur absolue par √ 1 t e −t qui est intégrable d'après la question précédente.. Il est clair que u est paire et v

Les trisectrices sont les droites qui découpent un angle en trois angles égaux... Étude de la

Ceci entraine l'existence d'une équation diérentielle linéaire à coecients constants dont f est solution.. Cette création est mise à disposition selon

D'après les questions précédentes, b n est la diérence entre l'intégrale de f et une de ses sommes

L'objet de ce problème 1 est de donner quelques applications géométriques des matrices de Gram.. Interprétation géométrique de la matrice

Paternité-Partage des Conditions Initiales à l'Identique 2.0 France disponible en ligne http://creativecommons.org/licenses/by-sa/2.0/fr/. 2 Rémy