• Aucun résultat trouvé

RESUME Titre: Résistance aux carbapénèmes chez les bactéries

Auteur: LAHMIDI Dounia.

Rapporteur: professeur SEKHSOKH Yassine

Mots clés: Carbapénèmases, Carbapénème, Dépistage, Recommandations, Résistance

L’émergence des bactéries productrices de carbapénèmases représente un véritable risque de santé publique et un problème clinique car les carbapénèmases confèrent une résistance à la plupart des β-lactames, ces derniers présentent fréquemment de multiples mécanismes de résistances qui peuvent conduire à une impasse thérapeutique. Une détection précoce des mécanismes de résistance émergents peut permettre d’envisager de limiter leur diffusion en milieu nosocomial et d’optimiser l’antibiothérapie. ces souches nécessitent d’être rapidement et efficacement détectées afin de prendre au plus vite les mesures préventives et thérapeutiques appropriées vis à vis des patients qui les hébergent. Cependant, afin de prévenir le développement de poussées nosocomiales, l'identification des producteurs de carbapénèmases doit réellement être suivie d'une adaptation rapide de l'antibiothérapie et de l'isolement des patients colonisés. Plusieurs études, rétrospectives pour la plupart, ont montré que les monothérapies sont associées à une mortalité et une sélection de résistance élevées, démontrant l’importance d’utiliser des associations de molécules actives in vitro pour le traitement des infections à entérobactéries productrices de carbapénèmases.

ABSTRACT

Title: Resistance to carbapenems in bacteria.

Author: LAHMIDI Dounia.

Raporter: Pr. SEKHSOKH Yassine

Key words: Carbapenemases, Carbapenem, Screening, Recommendations, Resistance.

The emergence of carbapenemase-producing bacteria represents a real public health risk and a clinical problem because carbapenemases confer resistance to most β-lactams, which frequently exhibit multiple resistance mechanisms which can lead to a therapeutic impasse. Early detection of emerging resistance mechanisms can make it possible to consider limiting their diffusion in a nosocomial environment and optimizing antibiotic therapy. these strains need to be quickly and efficiently detected in order to take the appropriate preventive and therapeutic measures as quickly as possible for the patients who harbor them. However, in order to prevent the development of nosocomial outbreaks, the identification of producers of carbapenemases must really be followed by a rapid adaptation of antibiotic therapy and the isolation of colonized patients. Several studies, mostly retrospective, have shown that monotherapies are associated with high mortality and resistance selection, demonstrating the importance of using combinations of active molecules in vitro for the treatment of carbapenemase-producing enterobacterial infections.





:









.



:







:











:













































































.











































.







































.





















































.





































































[1]. Kahan J S, Kahan F M, Goegelman R et al. Thienamycin, a new beta-lactam

antibiotic. I. Discovery, taxonomy, isolation and physical properties. J Antibiot Tokyo 1979; 32: 1–12

[2]. Kahan F M, Kropp H, Sundelof J G, Birnbaum J. Thienamycin: development of

imipenen–cilastatin. J Antimicrob Chemother 1983; 12: 1–35.

[3]. Bonfiglio G, Russo G, Nicoletti G. Recent developments in carbapenems. Expert

Opin Investig Drugs 2002; 11: 529– 544.

[4]. Hellinger W C, Brewer N S. Carbapenems and monobactams: imipenem,

meropenem, and aztreonam. Mayo Clin Proc 1999; 74: 420–434.

[5]. Kropp H, Sundelof J G, Hajdu R, Kahan F M. Metabolism of thienamycin and

related carbapenem antibiotics by the renal dipeptidase, dehydropeptidase. Antimicrob Agents Chemother 1982; 22: 62–70.

[6]. Birnbaum J, Kahan F M, Kropp H, MacDonald J S. Carbapenems, a new class of

beta-lactam antibiotics. Discovery and development of imipenem ⁄ cilastatin. Am J Med 1985; 78: 3–21.

[7]. Mouton J W, Touzw D J, Horrevorts A M, VinksA A .

Comparativepharmacokinetics of the carbapenems: clinical implications. ClinPharmacokinet 2000; 39:185–201

[8]. Shah P M, Isaacs R D. Ertapenem, the first of a new group of carbapenems. J.

Antimicrob. Chemother 2003; 52: 538-542.

[9]. Lolans K, Quinn J P. PZ-601 Susceptibility against Gramnegative pathogens with

known resistance mechanisms. Programs and abstracts of the American society for microbiology’s 47th Annual International Conference on Antimicrobial Agents and Chemotherapy (ICAAC) Chicago2007.

[10]. Mohammed I, El-Gamal, Chang-Hyun Oh. Current Status of Carbapenem

Antibiotics. Department of Biomolecular Science, University of Science and Technology, 113 Gwahangno, Yuseong-gu, Daejeon 305-333, Republic of Korea, Biomaterials Center, Korea Institute of Science and Technology, PO Box 131, Cheongryang, Seoul 130-650, Republic of Korea 2010; 10: 1882-1897

[11]. Bonfi glio G, Russo G, Nicoletti G. Recent developments in carbapenems. Expert

Opin Investig Drugs 2002 ; 11 : 529 -44

[12]. Dalhoff A, Nebojsa J , Echols R. Redefining penems 2006

[13]. Mouton J W, Touzw D J, Horrevorts A M, Vinks A A. Comparative

pharmacokinetics of the carbapenems: clinical implications. Clin Pharmacokinet 2000;39:185–201.

[14]. Drusano G L, Hutchison M. The pharmacokinetics of meropenem. Scand J Infect

Dis Suppl 1995;96:11–6.

[15]. Keam S J. Doripenem: A review of its use in the treatment of bacterial infections.

Drugs 2008;68:2021–57.

[16]. Majumdar A K, Musson D G, Birk K L, Kitchen C J, Holland S, McCrea J, et al.

Pharmacokinetics of ertapenem in healthy young volunteers. Antimicrob Agents Chemother 2002; 46:3506–11.

[17]. Lister P D. Carbapenems in the USA: focus on doripenem. Expert Rev Anti Infect

Ther 2007;5:793–809.

[18]. Drusano G L, Standiford H C, Bustamante C, Forrest A, Rivera G, Leslie J, et al.

Multiple-dose pharmacokinetics of imipenem-cilastatin. Antimicrob Agents Chemother 1984; 26:715–21.

[19]. Burkhardt O, Kumar V, Katterwe D, Majcher-Peszynska J, Drewelow B, Derendorf H, et al. Ertapenem in critically Ill patients with early-onset

ventilator-associated pneumonia: pharmacokinetics with special consideration of free-drug concentration. J Antimicrob Chemother 2007;59:277–84.

[20]. Wong B K, Sahly Y, Mistry G, Waldman S, Musson D, Majumdar A, et al.

Comparative disposition of [14c]Ertapenem, a novel carbapenem antibiotic, in rat, monkey and man. Xenobiotica 2004;34:379–89.

[22]. Zhanel G G, Wiebe R, Dilay L, Thomson K, Rubinstein E, Hoban D J, et al.

Comparative review of the carbapenems. Drugs 2007;67:1027–52.

[23]. Condon R E, Walker A P, Hanna C B, Greenberg R N, Broom A, Pitkin D.

Penetration of meropenem in plasma and abdominal tissues from patients undergoing intraabdominal surgery. Clin Infect Dis 1997;24(Suppl 2):S181–3

[24]. Craig W A, Ebert S C. Killing and regrowth of bacteria in vitro: a review. Scand J

Infect Dis 1991;74(Suppl):63–70.

[25]. Dalhoff A, Ullmann U. Correlation between pharmacokinetics, pharmacodynamics

and efficacy of antibacterial agents in animal models. Eur J Clin Micro Infect Dis 1990;9:479–87.

[26]. Andes D, Craig W A. Animal model pharmacokinetics and pharmacodynamics: a

critical review. Int J Antimicrob Agents 2002;19:261–8.

[27]. Ferrara A, Grassi G, Grassi F A, Piccioni P D, Gialdroni Grassi G. Bactericidal

activity of meropenem and interaction with other antibiotics. J Antimicrob Chemother 1989;24(Suppl A):239–50.

[28]. Nadler H L, Pitkin D H, Sheikh W. The postantibiotic effect of meropenem and

imipenem on selected bacteria. J Antimicrob Chemother 1989;24(Suppl A):225–31

[29]. Neu H C. Carbapenems: special properties contributing to their activity. Am J Med

1985;78(Suppl 6a):33–40.

[30]. Schaper K, Schubert S, Dalhoff A. Kinetics and quantification of antibacterial

effects of beta-lactams, macrolide and fluoroquinolones against Gram-positive and Gram-negative pathogens. Infection 2006;33(Suppl2), in press

[31]. Boswell F J, Andrews J M, Wise R. Pharmacodynamic properties of faropenem

demonstrated by studies of timekill kinetics and postantibiotic effect. J Antimicrob Chemother 1997;39:415–8.

[32]. Marchese A, Debbia E A, Bryskier A, Schito G C. Antimicrobial activity of

faropenem, a new oral penem, against lower respiratory tract pathogens. Clin Micro Infect 1999;5:282–7.

[33]. Drusano G L. An overview of the pharmacology of imipenem/ cilastatin. J

[34]. Mueller B A, Scarim S K, Macias W L. Comparison of imipenem pharmacokinetics

in patients with acute or chronic renal failure treated with continuous hemofiltration. Am J Kidney Dis. 1993;21:172–9.

[35]. Tegeder I, Bremer F, Oelkers R, Schobel H, Schuttler J, Brune K, et al.

Pharmacokinetics of imipenem-cilastatin in critically Ill patients undergoing continuous venovenous hemofiltration. Antimicrob Agents Chemother 1997;41:2640– 5.

[36]. halhammer F, Horl W H. Pharmacokinetics of meropenem in patients with renal

failure and patients receiving renal replacement therapy. Clin Pharmacokinet 2000;39:271–9.

[37]. Drusano G L, Hutchison M. The pharmacokinetics of meropenem. Scand J Infect

Dis Suppl 1995;96:11–6.

[38]. Bonfi glio G, Russo G, Nicoletti G. Recent developments in carbapenems. Expert

Opin Investig Drugs 2002 ; 11 : 529 -44

[39]. Ueda Y, Sunagawa M. In vitro and in vivo activities of novel

2-(thiazol-2-ylthio)-1betamethylcarbapenems with potent activities against multiresistant gram-positive bacteria. Antimicrob Agents Chemother 2003 ; 47 : 2471 -80

[40]. Hellinger W C, Brewer N S. Carbapenems and monobactams: imipenem,

meropenem, and aztreonam. Mayo Clin Proc 1999 ; 74 : 420 -34

[41]. Davies T, Bush K, Flamm R. Differences in Escherichia coli and Pseudomonas

aeruginosa cell morpholgy after exposure to doripenem, imipenem and meropenem. 107th American Society for Microbiology Canada 2007

[42]. Moellering R C Jr, Eliopoulos G M, Sentochnik D E. The carbapenems: new broad

spectrum beta-lactam antibiotics. J. Antimicrob. Chemother 1989, 24 (Suppl.), 1-7.

[43]. Chambers H F. Other ß -lactam antibiotics. In Principles and Practice of Infectious

[45]. Quale J, Bratu S, Gupta J, Landman D. Interplay of efflux system, ampC, and oprD

expression in carbapenem resistance of Pseudomonas aeruginosa clinical isolates. Antimicrob. Agents Chemother 2006; 50: 1633-1641.

[46]. Hellinger W C, Brewer N S. Carbapenems and monobactams: imipenem,

meropenem, and aztreonam. Mayo. Clin. Proc 1999; 74: 420-434.

[47]. Tellado J M, Wilson S E. Empiric treatment of nosocomial intraabdominal

infections: a focus on the carbapenems. Surg. Infect (Larchmt) 2005; 6: 329-343.

[48]. Livermore D M, Carter M W, Bagel S, Wiedemann B, Baquero F, Loza E, Endtz H P, van Den Braak N, Fernandes C J, Fernandes L, Frimodt-Moller N, Rasmussen L S, Giamarellou H, Giamarellos-Bourboulis E, Jarlier V, Nguyen J, Nord C E, Struelens M J, Nonhoff C, Turnidge J, Bell J, Zbinden R, Pfister S, Mixson L, Shungu D L. In vitro activities of ertapenem (MK-0826) against recent

clinical bacteria collected in Europe and Australia. Antimicrob. Agents Chemother 2001; 45: 1860-1867.

[49]. John R, Brazier J S. Antimicrobial susceptibility of polymerase chain reaction

ribotypes of Clostridium difficile commonly isolated from symptomatic hospital patients in the UK. J. Hosp. Infect 2005; 61: 11-14.

[50]. Bonfiglio G, Russo G, Nicoletti G. Recent developments in carbapenems. Expert

Opin. Investig. Drugs 2002; 11: 529-544.

[51]. Ragnar Norrby S, MD, PhD. CARBAPENEMS . From the Department of

Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Sha Tin, Hong Kong JULY 1995; 79

[52]. David N. Gilbert, Robert C, Moellering Jr, George M Eliopoulos.The Sanford

Guide to Antimicrobial Therapy

[53]. Adeline bouetet-dubois, Alix pantel, Albert sotto, Jean-Philippe lavigne. Les

entérobactéries productrices de carbapénèmases .allin&as synthese AVRIL 2012

[54]. Patrice Nordmann. Résistance aux carbapénèmes chez les bacilles à Gram négatif.

Service de bactériologie-virologie, hôpital de Bicêtre et unité Inserm U914, 78, rue du général Leclerc, 94275 Le Kremlin Bicêtre, France 2010 ; 26 : 950-9

[55]. Shelley Miller, Romney M Humphries. Clinical laboratory detection of

carbapenemresistant and carbapenemase-producing Enterobacteriaceae .Expert Review of Anti-infective Therapy Jun 2016.

[56]. Opazo A, Domínguez M, Helia Bello, Sebastian G. B. Amyes2, González-Rocha G. OXA-type carbapenemases in Acinetobacter baumannii in South America. J Infect

Dev Ctries 2012; 6(4):311-6

[57]. Sridhar Rao P. Carbapenemases (serine and metallo-beta-lactamases) .N Assistant

Professor Dept. of Microbyology JJMMC,Davangere 27 May 2012

[58]. Tzouvellekis l s,Markogiannakis A,Psichogiou M,Tassios P T,Daikos G l.

Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin. Microbiol 2012; 25: 682-707

[59]. NORDMANN P, Dortet l,poirel. Carbapenem resistance in Enterobacteriaceae: here

is the storm. Trends Mol Med 2012;18:263-272.

[60]. Seydina MDiene ,Rolain, J M. Carbapenemase genes and genetic platforms in

Gram-negative bacilli: Enterobacteriaceae, Pseudomonas, and Acinetobacter species (E.P.A). ix-Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, 27 Bd Jean Moulin 13385 Marseille Cedex 05 France 2014

[61]. Turner C, Mosby D, PartridgeD, Mason C, Parsons H. A patient sink tap

facilitating CPE transmission. Journal of Hospital Infection 2019

[62]. Stoesser N, Giess A, Batty E M, et al. Genome sequencing of an extended series of

NDM-producing Klebsiella pneumoniae isolates from neonatal infections in a Nepali hospital characterizes the extent of community- versus hospitalassociated transmission in an endemic setting. Antimicrob Agents Chemother. 2014;58(12):7347–7357.

[63]. Temkin E, Adler A, Lerner A, et al. Carbapenem-resistant Enterobacteriaceae:

biology, epidemiology, and management. Ann N Y Acad Sci. 2014;1323:22–42.

[65]. Breilh D, Texier-Maugein J, Allaouchiche B, Marie-Claude Saux, Boselli E.

Carbapenems Journal of Chemotherapy 2013

[66]. Jodi M Thomson, Robert A Bonomo. The threat of antibiotic resistance in

Gram-negative pathogenic bacteria: b-lactams in peril 2005

[67]. Nordmann P, Dortet L, Poirel L . Carbapenem resistance in Enterobacteriaceae: here

is the storm! 2012

[68]. PAGÈS J M, JAMES C E, Winerhalter M. The porin and the permeating antibiotic:

a selective diffusion barrier in Gram-negative bacteria. Nat Rev Microbiol 2008;6: 893-903.

[69]. Leclercq R, Canton R, Brown D F J et al. EUCAST expert rules in antimicrobial

susceptibility testing. Clin Microb Infect 2013;19:141-160.

[70]. Levy Hara G, Gould I, Endimiani A et al. Detection treatment and prevention of

carbapenemase-producing Enterobacteriaceae: recommendations from an international working group. J Chemother 2013;25:129-140

[71]. Hrabák J, Chudáčková E, Costas C Papagiannitsis. Detection of carbapenemases

in Enterobacteriaceae: a challenge for diagnostic microbiological laboratories. Department of Microbiology, Faculty of Medicine and University Hospital in Plzeň, Charles University in Prague, Plzeň 304 60, Czech Republic 2014

[72]. Degand N, Ruimy R. Interests and current limits of MALDI-TOF in clinical

bacteriology. Elsevier Masson 2012.

[73]. Abed Zahedi Bialvaei, Hossein Samadi Kafil, Mohammad Asgharzadeh, Mohammad Yousef Memar , Mehdi Yousefi. Current methods for the identification

of carbapenemases. University of California Santa Barbara 17 March 2016

[74]. Nordmann P, Poirel L. Résistances aux antibiotiques émergentes et importantes chez

les bactéries Gram négatif : épidémiologie, aspects théoriques et détection

[75]. Elif Aktasx, Gülsxah Malkocoglu, Barısx Otlu, Aysxegül çopur çiçek, Canan Külah, Füsun Cömert, Cemal Sandallı, Nafia Canan Gürsoy, Duygu Erdemir, Mehmet Emin Bulut. Evaluation of the Carbapenem Inactivation Method for

Detection of Carbapenemase-Producing Gram-Negative Bacteria in Comparison with the rapidec carba NP

[76]. Pasteran F, Mendez T, Guerriero L, Rapoport M, Corso A. Sensitive screening

tests for suspected class A carbapenemase production in species of Enterobacteriaceae. J Clin Microbiol 2009; 47: 1631–1639.

[77]. Doi Y, Potoski BA, Adams-Haduch JM and al. Simple disk-based method for

detection of Klebsiella pneumoniae carbapenemase-type beta-lactamase by use of a boronic acid compound. J Clin Microbiol 2008; 46: 4083–4086.

[78]. Tsakris A, Kristo I, Poulou A et al. Evaluation of boronic acid disk tests for

differentiating KPCpossessing Klebsiella pneumoniae isolates in the clinical laboratory. J Clin Microbiol 2009; 47: 362– 367.

[79]. Yan JJ, Hsueh PR, Ko WC et al. Metallo-β-lactamases in clinical Pseudomonas

isolates in Taiwan and identification of VIM-3, a novel variant of the VIM-2 enzyme. Antimicrob Agents Chemother 2001; 45: 2224–2228.

[80]. Lolans K, Queenan AM, Bush K, Sahud A, Quinn JP. First nosocomial outbreak of

Pseudomonas aeruginosa producing an integronborne metallo-β-lactamase (VIM-2) in the United States. Antimicrob Agents Chemother 2005; 49: 3538–3540.

[81]. Queenan AM, Bush K. Carbapenemases: the versatile β-lactamases. Clin Microbiol

Rev 2007; 20: 440–458.

[82]. Ellington MJ, Kistler J, Livermore DM, Woodford N. Multiplex PCR for rapid

detection of genes encoding acquired metallo-β-lactamases. J Antimicrob Chemother 2007; 59: 321-322.

[83]. Mostachio AK, van der Heidjen I, Rossi F, Levin AS, Costa SF. Multiplex PCR for

repid detection of genes encoding oxacillinases and metallo-beta-lactamases in carbapenem-resistant Acinetobacter spp. J Med Microbiol 2009; 58: 1522-1524.

[84]. Dallenne C, Da Costa A, Decré D, Favier C, Arlet G. Development of a set of

multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. J. Antimicrob. Chemother 2010; 65: 490–495.

[86]. Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of

acquired carbapenemase genes. Diagn Microbiol Infect Dis 2011; 70: 119–125.

[87]. Bisiklis A, Papageorgiou F, Frantzidou, Alexiou-Daniel S. Specific detection of

blaVIM and blaIMP metallo-beta-lactamase genes in a single real-time PCR. Clin Microbiol Infect 2007; 13: 1201–1203.

[88]. Mendes RE, Kiyota KA, Monteiro J et al. Rapid detection and identification of

metallo-β-lactamaseencoding genes by multiplex real-time PCR assay and meltcurve analysis. J Clin Microbiol 2007; 45: 544 –547.

[89]. Chen L, Mediavalla JR, Endimiani A et al. Multiplex real-time PCR assay for

detection and classification of Klebsiella pneumoniae carbapenemase gene (blaKPC) variants. J Clin Microbiol 2011; 49: 579–585.

[90]. Monteiro J, Widen RH, Pignatari A, Kubasek C, Silbert S. Rapid detection of

carbapenemase genes by multiplex real-time PCR. J Antimicrob Chemother 2012; 67: 906 –909.

[91]. Naas T, Cuzon G, Bogaerts P, Glupczynski Y, Nordmann P. Evaluation of a DNA

microarray (CheckMDR CT102) for rapid detection of TEM, SHV, and CTX-M extended-spectrum beta-lactamases and of KPC, OXA-48, VIM, IMP, and NDM-1 carbapenemases. J Clin Microbiol 2011; 49: 1608 –1613.

[92]. Stuart JC, Voets G, Scharringa J, Fluit AC, Leverstein-Van Hall MA. Detection

of carbapenemase producing Enterobacteriaceae with a commercial DNA Microarray. J Med Microbiol 2012; 61: 809- 812

[93]. Laurent Dortet, Ludivine Bréchard, Gaëlle Cuzon, Laurent Poirel , Patrice Nordmann. Strategy for Rapid Detection of Carbapenemase-Producing Enterobacteriaceae 2014

[94]. Nordmann P, Poirel L. Résistances aux antibiotiques émergentes et importantes chez

les bactéries Gram négatif: épidémiologie, aspects théoriques et détection . Med Suisse 2014; 10 : 902-7

[95]. Nordmann P, Poirel L. The difficult-to-control spread of carbapenemase producers in

[96]. Akova M, Daikos G L, Tzouvelekis L, Carmeli Y. Interventional strategies and

current clinical experience with carbapenemase producing Gram negative bacteria. Clin Microbiol Infect 2012; 18:439-448

[97]. Tacconelli E, Cataldo M A, Dancer S J, Deangelis G, Falcoone M, Frank U, Kahlmeter G, Pan A , Petrosillo N, Rodriguez-bano J, Singh N, Venditti M, Yokoe D S, Cookson B. ESCMID guidelines for the management of the infection

control measures to reduce transmission of multidrug-resistant Gram negative bacteria in hospitalized patients. Clin Microbiol Infect 2014; 20 Suppl 1:1-55

[98]. Temkin E, Adler A, Lerner A, Carmeli Y. Carbapenem resistant Enterobacteriaceae: biology, epidemiology and management. Ann NY Acad Sci USA 2014;1323:22-42.

[99]. Dortet L, Cuzon G, Nordmann P. Note technique . Détection des souches

d’entérobactéries productrices d’une carbapénèmase. Hôpital de Bicêtre, Service de Bactériologie-Hygiène, 78 avenue du Général Leclerc, 94270 Le Kremlin-Bicêtre Janvier 2014

[100]. Meklit Workneh, M.D, M.P.H , Rebecca Yee, Ph D, Patricia J. Simner, Ph D, Johns Hopkins. Phenotypic Methods for Detection of Carbapenemase Production in

Carbapenem-Resistant Organisms: What Method Should Your Laboratory Choose? 2019

[101]. D. Hammoudi , C. Ayoub Moubareck ,D. Karam Sarkis. How to detect

carbapenemase producers? A literature review of phenotypic and molecular methods 2014

[102]. van der Zwaluw K, de Haan A, Pluister GN, Bootsma HJ, de Neeling AJ, Schouls LM. The carbapenem inactivation method (CIM), a simple and low-cost alternative

for the Carba NP test to assess phenotypic carbapenemase activity in gram-negative rods. PLoS One 2015

[104]. Uechi K, Tada T, Shimada K, Kuwahara-Arai K, Arakaki M, Tome T, et al. A

modified carbapenem inactivation method, CIMTris, for carbapenemase production in Acinetobacter and Pseudomonas species. J Clin Microbiol 2017;55:3405-10.

[105]. Pierce VM, Simner PJ, Lonsway DR, Roe-Carpenter DE, Johnson JK, Brasso WB, et al. Modified carbapenem inactivation method for phenotypic detection of

carbapenemase production among Enterobacteriaceae. J Clin Microbiol 2017;55:2321-33.

[106]. Camelena F, Cointe A, Mathy V, Hobson C, Doit C, Bercot B, et al. Within a day

detection and rapid characterization of carbapenemase using a new CIM test: “CIMplus”. J Clin Microbiol 2018: pii: e00137- 18.

[107]. Muntean MM, Muntean AA, Gauthier L, Creton E, Cotellon G, Popa MI, et al.

Evaluation of the rapid carbapenem inactivation method (rCIM): a phenotypic screening test for carbapenemase-producing Enterobacteriaceae. J Antimicrob Chemother 2018;73:900-8.

[108]. Hodge W, Clak J, Tramont EC. Simple method for detection of

penicillinaseproducing Neisseria gonorrhoeae. J Clin Microbiol 1978;7:102-3.

[109]. [109] CLSI. Performance standards for antimicrobial susceptibility testing. 26th ed.

Wayne, PA: Clinical and Laboratory Standards Institute 2016.

[110]. Nordmann P, Girlich D, Poirel L. Detection of carbapenemase producers in

Enterobacteriaceae by use of a novel screening medium. J Clin Microbiol 2012;50:2761-6.

[111]. Fattouh R, Tijet N, McGeer A, Poutanen SM, Melano RG, Patell SN. What it the

appropriate meropenem MIC for screening of carbapenemase-producing Enterobacteriaceae in low-prevalence settings? Antimicrob Agents Chemother 2016;60:1556-9.

[112]. Riethmuller J. La résistance des entérobactéries aux carbapénèmes. Etude

prospective aux Hôpitaux Civils de Colmar du dépistage avec un milieu sélectif et intérêt de la spectrométrie de masse MALDI-TOF pour le criblage. These pour le diplôme d'etat de docteur en pharmacie soutenu le 29 Novembre 2013

[113]. PASTERAN F G, OTAEGUI L, GUERRIERO L, RADICE G, MAGGIORA R, RAPOPORT M, FACCONE D, DI MARTINO A, GALAS M. Klebsiella

pneumoniae Carbapenemase-2, Buenos Aires, Argentina. Emerg. Infect. Dis 2008, 14, 1178-1180.

[114]. MIRIAGOU V, CORNAGLIA G, EDELSTEIN M, GALANI I, GISKE C G, GNIADKOWSKI M , MALAMOU-LADA E, MARTINEZ-MARTINEZ L, NAVARRO F, NORDMANN P, PEIXE L , POURNARAS S, ROSSOLINI GM, TSAKRIS A, VATOPOULOS A, CANTÓN R : Acquired carbapenemases in

Gram-negative bacterial pathogens: detection and surveillance issues. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis 2010;16: 112-122.

[115]. GISKE C G, GEZELIUS L , SAMUELSEN Ø , WARNER M , SUNDSFJORD A , WOODFORD N. A sensitive and specific phenotypic assay for detection of

metallo-βlactamases and KPC in Klebsiella pneumoniae with the use of meropenem disks supplemented with aminophenylboronic acid, dipicolinic acid and cloxacillin. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis 2011; 17: 552-556.

[116]. GIAKKOUPI P, PAPPA O, POLEMIS M, VATOPOULOS A C, MIRIAGOU V, ZIOGA A, PAPAGIANNITSIS C C, TZOUVELEKIS L S. Emerging Klebsiella

pneumoniae isolates coproducing KPC-2 and VIM-1 carbapenemases. Antimicrob. Agents Chemother 2009; 53: 4048-4050.

[117]. Vrioni G, Daniil I, Voulgari E, Ranellou K, Koumaki V, Ghirardi S, et al.

Comparative evaluation of a prototype chromogenic medium (ChromID CARBA) for detecting carbapenemase-producing Enterobacteriaceae in surveillance rectal swabs. J Clin Microbiol. 2012;50(6):1841–6

[118]. Naas T, Ergani A, Carrer A, Nordmann P. Real-time PCR for detection of NDM-1

carbapenemase genes from spiked stool samples. Antimicrob Agents Chemother. 2011;55(9):4038–43.

[120]. Samra Z, Bahar J, Madar-Shapiro L, Aziz N, Israel S, Bishara J. Evaluation of

CHROMagar KPC for rapid detection of carbapenemresistant Enterobacteriaceae. J Clin Microbiol. 2008;46(9):3110–1.

[121]. Wilkinson K M, Winstanley T G, Lanyon C, Cummings S P, Raza M W, Perry J D. Comparison of four chromogenic culture media for carbapenemase-producing

Enterobacteriaceae. J Clin Microbiol. 2012;50(9):3102–4.

[122]. Simner P J, Gilmour M W, DeGagne P, Nichol K, Karlowsky J A. Evaluation of

five chromogenic agar media and the ROSCO Rapid CARB Screen kit for the detection and confirmation of carbapenemase production in Gram-negative bacilli. J Clin Microbiol 2015;53(1):105–12.

[123]. Girlich D, Anglade C, Zambardi G, Nordmann P. Comparative evaluation of a

novel chromogenic medium (chromID OXA-48) for detection of OXA-48 producing Enterobacteriaceae. Diagn Microbiol Infect Dis2013;77(4):296–300.

[124]. Bracco S, Migliavacca R, Pini B, Corbo N, Nucleo E, Brigante G, et al. Evaluation

of Brilliance CRE Agar for the detection of carbapenem-resistant Gram-negative bacteria. New Microbiol. 2013;36(2):181–6.

[125]. Cohen Stuart J, Voets G, Rottier W, Voskuil S, Scharringa J, Van Dijk K, et al.

Evaluation of the Oxoid Brilliance CRE Agar for the detection of carbapenemase-producing Enterobacteriaceae. Eur J Clin Microbiol Infect Dis. 2013; 32(11):1445–9.

[126]. Kotsakis S D, Petinaki E, Scopes E, Siatravani E, Miriagou V, Tzelepi E.

Laboratory evaluation of Brilliance™ CRE Agar for screening carbapenem-resistant Enterobacteriaceae: performance on a collection of characterised clinical isolates from Greece. J Glob Antimicrob Resist. 2013; 1(2):85–90.

[127]. Nordmann P, Girlich D, Poirel L. Detection of carbapenemase producers in

Enterobacteriaceae using a novel screening medium. J Clin Microbiol. 2012; 50(8):2761–6.

[128]. Fattouh M , Nasr El-din A, A. Omar M. Detection of Klebsiella pneumoniae

Carbapenemase (KPC) Producing Gram Negative Superbugs: An Emerging Cause of Multidrug-Resistant Infections in General Surgery Department of Sohag University Hospital, Egypt. International Journal of Current Microbiology and Applied Sciences May 2015

[129]. Aguirre-Quinoñero A , Martínez-Martínez L . Non-molecular detection of

carbapenemases in Enterobacteriaceae clinical isolates. Journal of Infection and Chemotherapy 2016

[130]. https://fr.m.wikipedia.org/wiki/fichier:Schéma_de_montage_focalisation_isoélectrique

.jpg

[131]. Wang M, Shen Y, Turko NelsonDC IV, Li S. Determining carbapenemase activity

with 18O labeling and targeted mass spectrometry. Anal Chem 2013;85(22):11014–9.

[132]. Sparbier K, Schubert S, Weller U, Boogen C, Kostrzewa M. Matrixassisted laser

desorption ionization-time of flight mass spectrometrybased functional assay for rapid detection of resistance against betalactam antibiotics. J Clin Microbiol 2012;50(3):927–37.

[133]. Carricajo A, Verhoeven PO, Guezzou S, Fonsale N, Aubert G. Detection of