• Aucun résultat trouvé

The generation of the stenthull

5.2 Future work

The final goal of developing SFDM is to integrate it to medical imaging devices to provide clinicians with a rapid and reliable estimate of the efficiency of the flow diverter which they plan to implant in a patient. The main future work can be focused on two aspects:

5.2 Future work 87 Screen based flow diverter model aspect. As we have seen from the results, SFDM produces similar velocity and WSS fields as the fully resolved simulation, but we still need to improve the accuracy. For example, more numerical experiments are needed to find out where the error comes from and analyze how to solve them. Besides, in order to develop the framework into a mature method, a systematical experiments on many patient-specific stented aneurysms needs to be carried out.

Application aspect. For the next step of application, our approach needs to be integrated to medical imaging devices. The implementation of SFDM requires the geometry of the deployed flow diverter. Therefore, to estimate the impact of the flow diverter, first the the geometries of the artery and aneurysm are needed. 3D rotational anigography is the common medical imagery for this purpose. Then the uncompressed flow diverter should be virtually deployed in the aneurysm. Due to the highly irregular manifold aneurysm shapes and locations, the choice of the stent and the deployment strategy can be a very difficult decision [32]. After the flow diverter stent is deployed, SFDM could be used for the next step: the simulation of the blood flow through flow diverter. Therefore, in order to be ultimately employed by clinicians, all these steps need to be integrated into imaging devices.

References

[1] Anzai, H., Falcone, J.-L., Chopard, B., Hayase, T., and Ohta, M. (2014). Optimization of strut placement in flow diverter stents for four different aneurysm configurations. J. Biomech.

Eng, 136(6):061006–06100013.

[2] Anzai, H., Ohta, M., Falcone, J.-L., and Chopard, B. (2012). Optimization of flow diverters for cerebral aneurysms. Journal of Computational Science, 3(1):1 – 7.

[3] Appanaboyina, S., Mut, F., Löhner, R., Putman, C., and Cebral, J. (2009). Simulation of intracranial aneurysm stenting: Techniques and challenges. Computer Methods in Applied Mechanics and Engineering, 198(45):3567 – 3582. Models and Methods in Computational Vascular and Cardiovascular Mechanics.

[4] Appanaboyina, S., Mut, F., Löhner, R., Putman, C. M., and Cebral, J. R. (2008). Computa-tional fluid dynamics of stented intracranial aneurysms using adaptive embedded unstruc-tured grids. International Journal for Numerical Methods in Fluids, 57(5):475–493.

[5] Augsburger, L., Farhat, M., Reymond, P., Fonck, E., Kulcsar, Z., Stergiopulos, N., and Rüfenacht, D. A. (2009). Effect of flow diverter porosity on intraaneurysmal blood flow.

Clinical Neuroradiology, 19(3):204–214.

[6] Augsburger, L., Reymond, P., Rufenacht, D. A., and Stergiopulos, N. (2011). Intracranial stents being modeled as a porous medium: Flow simulation in stented cerebral aneurysms.

Annals of Biomedical Engineering, 39(2):850–863.

[7] Baldi, S., Mounayer, C., Piotin, M., Spelle, L., and Moret, J. (2003). Balloon-assisted coil placement in wide-neck bifurcation aneurysms by use of a new, compliant balloon microcatheter. American Journal of Neuroradiology, 24(6):1222–1225.

[8] Bao, Y. B. and Meskas, J. (2011).Lattice Boltzmann method for fluid simulations. Courant Institute of Mathematical Science, New York:Department of Mathematics,.

[9] Brundrett, E. (1993). Prediction of pressure drop for incompressible flow through screens.

Journal of Fluids Engineering, 115(2):239–242.

[10] Burleson, A. C., Strother, C. M., and Turitto, V. T. (1995). Computer modeling of intracra-nial saccular and lateral aneurysms for the study of their hemodynamics. Neurosurgery, 37(4):774–784.

[11] Castro, M., Putman, C., and Cebral, J. (2006). Computational fluid dynamics model-ing of intracranial aneurysms: Effects of parent artery segmentation on intra-aneurysmal hemodynamics. American Journal of Neuroradiology, 27(8):1703–1709.

[12] Cebral, J. R., Castro, M. A., Appanaboyina, S., Putman, C. M., Millan, D., and Frangi, A. F. (2005). Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity.IEEE Transactions on Medical Imaging, 24(4):457–467.

[13] Cebral, J. R., Castro, M. A., Soto, O., Löhner, R., and Alperin, N. (2003). Blood-flow models of the circle of willis from magnetic resonance data. Journal of Engineering Mathematics, 47(3):369–386.

[14] Cebral, J. R. and Löhner, R. (2005). Efficient simulation of blood flow past complex endovascular devices using an adaptive embedding technique.IEEE Transactions on Medical Imaging, 24(4):468–476.

[15] Chen, S., Chen, H., Martnez, D., and Matthaeus, W. (1991). Lattice boltzmann model for simulation of magnetohydrodynamics. Phys. Rev. Lett., 67:3776–3779.

[16] Chen, S. and Doolen, G. D. (1998). Lattice boltzmann method for fluid flows. Annual Review of Fluid Mechanics, 30(1):329–364.

[17] Chen, S., Martínez, D., and Mei, R. (1996). On boundary conditions in lattice boltzmann methods. Physics of Fluids, 8(9):2527–2536.

[18] Debrun, G., Lacour, P., Caron, J. P., Hurth, M., Comoy, J., and Keravel, Y. (1975).

Inflatable and released balloon technique experimentation in dog — application in man.

Neuroradiology, 9(5).

[19] Dunn, W. and Tavoularis, S. (2007). The use of curved screens for generating uniform shear at low reynolds numbers. Experiments in Fluids, 42(2):281–290.

[20] D’Urso, P. I., Lanzino, G., Cloft, H. J., and Kallmes, D. F. (2011). Flow diversion for intracranial aneurysms. Stroke, 42(8):2363–2368.

[21] Elder, J. (1959). Steady flow through non-uniform gauzes of arbitrary shape. Journal of Fluid Mechanics, 5(3):355–368.

[22] Flórez-Valencia, L., Dávila Serrano, E. E., Riveros Reyes, J. G., Bernard, O., Latt, J., Malaspinas, O., Chopard, B., Courbebaisse, G., and Orkisz, M. (2012). Virtual deployment of pipeline flow diverters in cerebral vessels with aneurysms to understand thrombosis.

In MICCAI-STENT’12 The 1st International MICCAI-Workshop on Computer Assisted Stenting, page 49, Nice, France.

[23] Gibbings, J. C. (1973). The pyramid gauze diffuser. Ingenieur-Archiv, 42(4):225–233.

[24] Gross, B. A. and Frerichs, K. U. (2013). Stent usage in the treatment of intracranial aneurysms: past, present and future. Journal of Neurology, Neurosurgery & Psychiatry, 84(3):244–253.

[25] Guglielmi, G. (2009). The beginning and the evolution of the endovascular treatment of intracranial aneurysms: from the first catheterization of brain arteries to the new stents.

Journal of NeuroInterventional Surgery, 21:85–91.

References 91 [26] Guglielmi, G., Vinuela, F., Dion, J., and Duckwiler, G. (1991a). Electrothrombosis of saccular aneurysms via endovascular approach, part 1: preliminary clinical experience.

J.Neurosurg., 75:8–14.

[27] Guglielmi, G., Vinuela, F., Septka, I., and Macellari, M. (1991b). Electrothrombosis of saccular aneurysms via endovascular approach, part 1: electrochemical basis, technique and experimental results. J.Neurosurg., 75:1–7.

[28] Guo, Z., Zheng, C., and Shi, B. (2002). An extrapolation method for boundary conditions in lattice boltzmann method. Physics of Fluids, 14(6):2007–2010.

[29] He, X. and Luo, L.-S. (1997). Lattice boltzmann model for the incompressible navier–

stokes equation. Journal of Statistical Physics, 88(3):927–944.

[30] Higashida, R. T., Halbach, V. V., Barnwell, S. L., Dowd, C., Dormandy, B., Bell, J., and Hieshima, G. B. (1990). Treatment of intracranial aneurysms with preservation of the parent vessel: results of percutaneous balloon embolization in 84 patients. American Journal of Neuroradiology, 11(4):633–640.

[31] Idelchik, I. E. (1986). Handbook of hydraulic resistance (2nd revised and enlarged edition). Hemisphere Publishing Corp., 1986, 662 p. Translation., Washington, DC.

[32] Janiga, G., Daróczy, L., Berg, P., Thévenin, D., Skalej, M., and Beuing, O. (2015). An automatic cfd-based flow diverter optimization principle for patient-specific intracranial aneurysms. Journal of Biomechanics, 48(14):3846 – 3852.

[33] Kim, Y. H., Xu, X., and Lee, J. S. (2010). The effect of stent porosity and strut shape on saccular aneurysm and its numerical analysis with lattice boltzmann method. Annals of Biomedical Engineering, 38(7):2274–2292.

[34] Koelman, J. M. V. A. (1991). A simple lattice boltzmann scheme for navier-stokes fluid flow. EPL (Europhysics Letters), 15(6):603.

[35] Kołodziej, A., Jaroszy´nski, M., Janus, B., Kleszcz, T., Łojewska, J., and Łojewski, T.

(2009). An experimental study of the pressure drop in fluid flows through wire gauzes.

Chemical Engineering Communications, 196(8):932–949.

[36] Latt, J. (2007).Hydrodynamic limit of lattice Boltzmann equations. PhD thesis, University of Geneva.

[37] Laws, E. M. and Livesey, J. L. (1978). Flow through screens. Annual Review of Fluid Mechanics, 10(1):247–266.

[38] Lee, C. J., Townsend, S., and Srinivas, K. (2011). Optimisation of stents for cerebral aneurysm. InComputational Fluid Dynamics 2010, pages 377–382, Berlin, Heidelberg.

Springer Berlin Heidelberg.

[39] Löhner, R., Appanaboyina, S., and Cebral, J. R. (2007). Comparison of body-fitted, embedded and immersed solutions of low reynolds-number 3-d incompressible flows. Inter-national Journal for Numerical Methods in Fluids, 57(1):13–30.

[40] Li, S., Latt, J., and Chopard, B. (2017). Model for pressure drop and flow deflection in the numerical simulation of stents in aneurysms. International Journal for Numerical Methods in Biomedical Engineering, 34(3):e2949.

[41] Li, S., Latt, J., and Chopard, B. (2018). The application of the screen-model based approach for stents in cerebral aneurysms. Computers & Fluids, 172:651 – 660.

[42] Lieber, B. B., Stancampiano, A. P., and Wakhloo, A. K. (1997). Alteration of hemody-namics in aneurysm models by stenting: Influence of stent porosity. Annals of Biomedical Engineering, 25(3):460–469.

[43] Liou, T. M., Liou, S. N., and Chu, K. L. (2004). Intra-aneurysmal flow with helix and mesh stent placement across side-wall aneurysm pore of a straight parent vessel. J. Biomech.

Eng, 126:36–43.

[44] Luessenhop, A. J. and Velasquez, A. C. (1964). Observations on the tolerance of the intracranial arteries to catheterization. J.Neurosurg., 21:85–91.

[45] Ma, D., Dargush, G. F., Natarajan, S. K., Levy, E. I., Siddiqui, A. H., and Meng, H. (2012).

Computer modeling of deployment and mechanical expansion of neurovascular flow diverter in patient-specific intracranial aneurysms. Journal of Biomechanics, 45(13):2256 – 2263.

[46] Malaspinas, O., Turjman, A., de Sousa, D. R., Garcia-Cardena, G., Raes, M., Nguyen, P.-T. P.-T., Zhang, Y., Courbebaisse, G., Lelubre, C., Boudjeltia, K. Z., and Chopard, B. (2016). A spatio-temporal model for spontaneous thrombus formation in cerebral aneurysms. Journal of Theoretical Biology, 394:68 – 76.

[47] MEHTA, R. D. (1985). Turbulent boundary layer perturbed by a screen. AIAA Journal, 23(9):1335–1342.

[48] Mei, R., Shyy, W., Yu, D., and Luo, L.-S. (2000). Lattice boltzmann method for 3-d flows with curved boundary. Journal of Computational Physics, 161(2):680 – 699.

[49] Mohamad, A. A. (2014). Lattice Boltzmann method: fundamentals and engineering applications with computer codes. Springer, London.

[50] Moret, J., Cognard, C., Weill, A., Castaings, L., and Rey, A. (1997). The “remodelling technique” in the treatment of wide neck intracranial aneurysms: Angiographic results and clinical follow-up in 56 cases. Interventional Neuroradiology, 3(1):21–35.

[51] Ohta, M., Anzai, H., Miura, Y., and Nakayama, T. (2015). Parametric study of porous media as substitutes for flow-diverter stent. Biomaterials and Biomedical Engineering, 2(2):111–125.

[52] Perumal, D. A. and Dass, A. K. (2015). A review on the development of lattice boltzmann computation of macro fluid flows and heat transfer. Alexandria Engineering Journal, 54(4):955 – 971.

[53] Pierot, L. (2011). Flow diverter stents in the treatment of intracranial aneurysms: Where are we? Journal of Neuroradiology, 38(1):40 – 46.

References 93 [54] Qian, Y. H., D’Humières, D., and Lallemand, P. (1992). Lattice bgk models for

navier-stokes equation. EPL (Europhysics Letters), 17(6):479.

[55] Raschi, M., Mut, F., Löhner, R., and Cebral, J. (2014). Strategy for modeling flow diverters in cerebral aneurysms as a porous medium. International Journal for Numerical Methods in Biomedical Engineering, 30(9):909–925.

[56] Reynolds, A. J. (1969). Flow deflection by gauze screens. Journal of Mechanical Engineering Science, 11(3):290–294.

[57] Ribeiro de Sousa, D., Vallecilla, C., Chodzynski, K., Corredor Jerez, R., Malaspinas, O., Eker, O. F., Ouared, R., Vanhamme, L., Legrand, A., Chopard, B., Courbebaisse, G., and Zouaoui Boudjeltia, K. (2016). Determination of a shear rate threshold for thrombus formation in intracranial aneurysms. Journal of NeuroInterventional Surgery, 8(8):853–858.

[58] Ringer, A. J., Lopes, D. K., Boulos, A. S., Guterman, L. R., and Hopkins, L. N. (2001).

Current techniques for endovascular treatment of intracranial aneurysms. Seminars in Cere-brovascular Diseases and Stroke, 1(1):39 – 51. Endovascular Approaches to CereCere-brovascular Disorders.

[59] Satoh, T., Onoda, K., and Tsuchimoto, S. (2003). Visualization of intraaneurysmal flow patterns with transluminal flow images of 3d mr angiograms in conjunction with aneurysmal configurations. American Journal of Neuroradiology, 24(7):1436–1445.

[60] Schubauer, G. B., Spangenberg, W. G., and Klebanoff, P. S. (1950). Aerodynamic characteristics of damping screens. NACA, Technical Notes 2001, Washington, USA.

[61] Serbinenko, F. A. (1974). Balloon catheterization and occlusion of major cerebral vessels.

J.Neurosurg., 41:125–145.

[62] Sforza, D. M., Putman, C. M., and Cebral, J. R. (2009). Hemodynamics of cerebral aneurysms. Annual Review of Fluid Mechanics, 41(1):91–107.

[63] Shi, Y., Tang, G. H., and Tao, W. Q. (2014). Lattice boltzmann study of non-newtonian blood flow in mother and daughter aneurysm and a novel stent treatment. Advances in Applied Mathematics and Mechanics, 6(2):165–178.

[64] TAYLOR, G. I., BATCHELOR, G. K., DRYDEN, H. L., and SCHUBAUER, G. B. (1949).

The effect of wire gauze on small disturbances in a uniform stream. The Quarterly Journal of Mechanics and Applied Mathematics, 2(1):1–29.

[65] Teitelbaum, G. P., Larsen, D. W., Zelman, V., Lysachev, A. G., and Likhterman, L. B.

(2000). A tribute to dr. fedor a. serbinenko, founder of endovascular neurosurgery. Neuro-surgery, 46(2):462–469.

[66] Tenjin, H., Asakura, F., Nakahara, Y., Matsumoto, K., Matsuo, T., Urano, F., and Ueda, S.

(1998). Evaluation of intraaneurysmal blood velocity by time-density curve analysis and digital subtraction angiography. American Journal of Neuroradiology, 19(7):1303–1307.

[67] Ujiie, H., Tachi, H., Hiramatsu, O., Hazel, A. L., Matsumoto, T., Ogasawara, Y., Nakajima, H., Hori, T., Takakura, K., and Kajiya, F. (1999). Effects of size and shape (aspect ratio) on the hemodynamics of saccular aneurysms: A possible index for surgical treatment of intracranial aneurysms. Neurosurgery, 45(1):119–130.

[68] Vanninen, R., Manninen, H., and Ronkainen, A. (2003). Broad-based intracranial aneurysms: Thrombosis induced by stent placement. American Journal of Neuroradiology, 24(2):263–266.

[69] Wakeland, R. S. and Keolian, R. M. (2003). Measurements of resistance of individual square-mesh screens to oscillating flow at low and intermediate reynolds numbers. Journal of Fluids Engineering, 125(5):851–862.

[70] Wanke, I. and Forsting, M. (2008). Stents for intracranial wide-necked aneurysms: more than mechanical protection. Neuroradiology, 50(12):991–998.

[71] Wolpert, S. M. (2000). In re: Serbinenko fa. balloon catheterization and occlusion of major cerebral vessels. j neurosurg 1974;41:1974. American Journal of Neuroradiology, 21(7):1359–1360.

[72] Wong, G. K., Kwan, M. C., Ng, R. Y., Yu, S. C., and Poon, W. (2011). Flow diverters for treatment of intracranial aneurysms: Current status and ongoing clinical trials. Journal of Clinical Neuroscience, 18(6):737 – 740.

[73] Zhang, Y., Chong, W., and Qian, Y. (2013). Investigation of intracranial aneurysm hemodynamics following flow diverter stent treatment. Medical Engineering & Physics, 35(5):608 – 615.

[74] Zhao, J., Lin, H., Summers, R., Yang, M., Cousins, B. G., and Tsui, J. (2018). Current treatment strategies for intracranial aneurysms: An overview. Angiology, 69(1):17–30.

[75] Ziegler, D. P. (1993). Boundary conditions for lattice boltzmann simulations. Journal of Statistical Physics, 71(5):1171–1177.

[76] Zou, Q. and He, X. (1997). On pressure and velocity boundary conditions for the lattice boltzmann bgk model. Physics of Fluids, 9(6):1591–1598.