• Aucun résultat trouvé

5.2 Synthèse de multicouches (Ti,Al)N/Ti 2 AlN

5.2.4 Autres approches

Le recuit de multicouches TiN/TiAl(N) à 800°C sous nitruration plasma met en évidence une transformation partielle des couches de TiN. Même si ce résultat est encourageant en vue d’une transformation totale du film en Ti2AlN, il n’en reste pas moins vrai que TiN est très stable si l’on considère la haute température à laquelle ces expériences sont réalisées (800°C). Nous nous sommes donc penchés sur le dépôt de multicouches [Ti6/TiAl(N)10]8 suivi d’un recuit d’une heure à 800°C sous nitruration plasma. La figure II.44 présente le diffractogramme de RX des films après nitruration. Nous observons la présence de pics de diffraction attribuables à Ti2AlN, cette dernière étant fortement texturée. Remarquons que le rapport des intensités des deux réflexions les plus intenses de la phase MAX est proche de celui attendu pour les réflexions (0002) et (0006), c’est à dire que l’on peut exclure une contribution sgnificative des plans (10¯13) dans le présent cas. Notons toutefois la présence d’un pic relativement large à 2θ ∼

37,5°, attribuable à (Ti,Al)N (111). Ce résultat indique également qu’un système multicouche optimisé permettrait d’améliorer la transformation en vue d’obtenir un film monophasé de Ti2AlN.

6

Conclusion

Des films minces monophasés de Cr2AlC, pleinement orientés (000), ont été déposés à 800°C par co-pulvérisation de cibles de chrome, aluminium, et graphite, sur substrat d’oxyde de magnésium (111) après dépôt préalable d’une couche tampon de TiN (111). Une relation d’épitaxie MgO(111)[1¯10]Cr2AlC(0001)[11¯20] est mise en évidence. Des dépôts monophasés et épitaxiés de Cr2AlC sont également déposés directement sur substrat de saphire (0001) et d’oxyde de magnésium (111). L’orientation majoritaire (000) des films n’est que faiblement affectée par la nature du substrat et par la présence d’une couche tampon de TiN. Il appa- raît intéressant de tester la validité de cette observation sur des dépôts réalisés à plus basse température.

Des films minces monophasés de Cr2GeC ont également été déposés par co-pulvérisation de trois cibles de chrome, germanium et graphite, directement sur substrat saphire (0001) à des températures comprises entre 700 et 800°C. Ces films présentent majoritairement une relation d’épitaxie Al2O3(0001)[10¯10]Cr2GeC(0001)[11¯20]. Il existe également une population de grains ayant une orientation (10¯13) et relation d’épitaxie : Al2O3(0001)[10¯10]Cr2GeC(10¯13)[11¯20]. Cependant, il s’avère que des dépôts réalisés avec une couche tampon de TiN (111) sur Al2O3 (0001) et directement sur MgO (111) conduisent à une croissance épitaxiale de Cr2GeC (0001) avec une contribution de grains orientés (10¯13) négligeable. Pour interpréter ces phénomènes, nous avons évoqué une possible différence de mobilité des adatomes suivant la surface de crois- sance qui faciliterait la croissance de Cr2GeC selon les plans de base sur TiN (111) et MgO (111), et l’introduction de dislocations résultant du désaccord paramétrique important entre substrat et film qui pourraient jouer le rôle de sites de nucléation pour les grains orientés (10¯13). Au contraire des films synthétisés à 700-800°C, ceux déposés à 500-600°C sont polycristallins avec une orientation majoritaire (10¯10). Une ségrégation du germanium est observable en sur- face de ces échantillons en conséquence des forts taux de diffusion du germanium suivant les plans de base. Il apparaît possible de contrôler l’orientation du film en jouant sur la nature du substrat et la puissance appliquée sur la cible de germanium (films multiphasés), ou encore sur la température du substrat lors du dépôt.

dans des multicouches déposées par pulvérisation par faisceau d’ions. Le simple recuit de dépôts sur substrat silicium pouvant engendrer une diffusion à l’interface, nous avons opté pour des dépôts sur substrat de saphire. La concentration en azote dans les couches de TiAl, condition- nant la réussite de la transformation de phase par recuit thermique, est difficilement contrôlable lors de l’élaboration et nous avons utilisé la nitruration plasma pour obtenir un film contenant une forte proportion de phase MAX. La structure multicouche est conservée après nitruration, et la proportion de (Ti,Al)N semble être diminuée en comparaison avec un simple recuit, ce qui amène à penser qu’une transformation totale de la structure initiale est envisageable par une investigation plus poussée des conditions de nitruration (nature du plasma, rampes de mon- tée, maintien et descente en température. . .) sur la transformation de phase. Le succès de la nitruration de multicouches TiN/TiAl(N), Ti/TiAl(N), ou d’un superréseau TiN/TiAl montre que de nombreuses approches indirectes sont envisageables pour la synthèse de films minces de Ti2AlN, ce qui ouvre la voie à la synthèse d’autres phases MAX nitrures. Jusqu’à présent nous nous sommes uniquement penchés sur la caractérisation structurale des films élaborés au moyen de la diffraction des rayons X et de la microscopie électronique en transmission. Dans le prochain chapitre, nous allons caractériser la structure électronique de certains de ces composés.

[1] J.-P. Palmquist, U. Jansson, T. Seppänen, P. O. Å. Persson, J. Birch, L. Hultmann, and P. Isberg. Magnetron sputtered epitaxial single-phase Ti3SiC2

thin films. Applied Physics Letters 81(5), 835 (2002).

[2] J.-P. Palmquist, S. Li, P. O. Å. Persson, J. Emmerlich, O. Wilhelmsson, H. Högberg, M. I. Katsnelson, B. Johansson, R. Ahuja, O. Eriksson, L. Hultman, and U. Jansson. Mn+1AXn phases in the Ti-Si-C system studied by

thin-film synthesis and ab initio calculations. Phys. Rev. B 70(16), 165401 Oct (2004).

[3] S. Myhra, J. W. B. Summers, and E. H. Kisi. Ti3SiC2 - a layered ceramic exhibiting ultra-low friction. Materials Letters 39(1), 6–11 (1999).

[4] K. Buchholt, R. Ghandi, M. Domeij, C.-M. Zetterling, J. Lu, P. Eklund, L. Hultman, and A. Lloyd Spetz. Ohmic contact properties of magnetron sputtered

Ti3SiC2 on n- and p-type 4H-silicon carbide. Applied Physics Letters 98(4), 042108

(2011).

[5] B. Veisz and B. Pacz. Polarity dependent Al-Ti contacts to 6H-SiC. Applied Surface Science 233(1-4), 360–365 (2004).

[6] M. A. Borysiewicz, E. Kami¨nska, A. Piotrowska, I. Pasternak, R. Jakiela, and E. Dynowska. Ti-Al-N MAX phase, a candidate for ohmic contacts to n-GaN. Acta Physica Polonica A 114(5), 1061–1066 (2008).

[7] T. H. Scabarozy. Combinatorial investigation of nanolaminate ternary carbide thin

films. Thèse de Doctorat, Drexel University (2009).

[8] V. Dolique. Elaboration et caractérisation de films minces et revêtements de Ti2AlN.

Thèse de Doctorat, Université de Poitiers (2007).

[9] P. Eklund, M. Beckers, U. Jansson, H. Högberg, and L. Hultman. The

Mn+1AXn phases : Materials science and thin-film processing. Thin Solid Films 518(8),

[10] J. J Nickl, K. K Schweitzer, and P. Luxenberg. Gasphasenabscheidung im

system Ti-Si-C. Journal of the Less Common Metals 26(3), 335 – 353 (1972).

[11] T. Goto and T. Hirai. Chemically vapor deposited Ti3SiC2. Materials Research Bulletin 22(9), 1195 – 1201 (1987).

[12] C. Racault, F. Langlais, R. Naslain, and Y. Kihn. On the chemical vapour

deposition of Ti3SiC2 from TiCl4-SiCl4-CH4-H2 gas mixtures - Part II An experimental approach. Journal of Materials Science 29(15), 3941–3948 (1994).

[13] E. Pickering, W. J. Lackey, and S. Crain. CVD of Ti3SiC2. Chemical Vapor Deposition 6(6), 289–295 (2000).

[14] S. Jacques, H. Di-Murro, M.-P. Berthet, and H. Vincent. Pulsed reactive

chemical vapor deposition in the C-Ti-Si system from H2/TiCl4. Thin Solid Films 478(1- 2), 13–20 (2005).

[15] S. Jacques, H. Fakih, and J.-C. Viala. Reactive chemical vapor deposition of

Ti3SiC2 with and without pressure pulses : Effect on the ternary carbide texture. Thin

Solid Films 518(18), 5071–5077 (2010).

[16] H. Fakih, S. Jacques, M.-P. Berthet, F. Bosselet, O. Dezellus, and J.-C. Viala. The growth of Ti3SiC2 coatings onto SiC by reactive chemical vapor deposition

using H2 and TiCl4. Surface and Coatings Technology 201(6), 3748–3755 (2006).

[17] O. Wilhelmsson, J.-P. Palmquist, E. Lewin, J. Emmerlich, P. Eklund, P.O.Å. Persson, H. Högberg, S. Li, R. Ahuja, O. Eriksson, L. Hultman, and U. Jansson. Deposition and characterization of ternary thin films within the Ti-

Al-C system by DC magnetron sputtering. Journal of Crystal Growth 291(1), 290 – 300

(2006).

[18] O. Wilhelmsson, J.-P. Palmquist, T. Nyberg, and U. Jansson. Deposition of

Ti 2AlC and T i3AlC2 epitaxial films by magnetron sputtering. Applied Physics Letters 85(6), 1066–1068 (2004).

[19] P. Eklund, A. Murugaiah, J. Emmerlich, Zs. Czigàny, J. Frodelius, J.M. W. Barsoum, H. Högberg, and L. Hultman. Homoepitaxial growth of Ti-Si-C MAX-

phase thin films on bulk Ti3SiC2 substrates. Journal of Crystal Growth 304(1), 264–269

(2007).

[20] J. Emmerlich, H. Högberg, S. Sasvari, P. O. A. Persson, L. Hultman, J.-P. Palmquist, U. Jansson, J. M. Molina-Aldareguia, and Zs. Czigany. Growth of

Ti3SiC2 thin films by elemental target magnetron sputtering. Journal of Applied Physics

[21] P. Eklund, M. Beckers, J. Frodelius, H. Högberg, and L. Hultman. Magne-

tron sputtering of Ti3SiC2 thin films from a compound target. Journal of Vacuum Science

and Technology A : Vacuum, Surfaces and Films 25(5), 1381–1388 (2007).

[22] H. Högberg, L. Hultman, J. Emmerlich, T. Joelsson, P. Eklund, J. M. Molina-Aldareguia, J.-P. Palmquist, O. Wilhelmsson, and U. Jansson.

Growth and characterization of MAX-phase thin films. Surface and Coatings Techno-

logy 193(1-3), 6 – 10 (2005).

[23] M. Magnuson, M. Mattesini, O. Wilhelmsson, J. Emmerlich, J.-P. Palm- quist, S. Li, R. Ahuja, L. Hultman, O. Eriksson, and U. Jansson. Electronic

structure and chemical bonding in Ti4SiC3 investigated by soft x-ray emission spectroscopy and first-principles theory. Phys. Rev. B 74(20), 205102 Nov (2006).

[24] H. Högberg, P. Eklund, J. Emmerlich, J. Birch, and L. Hultman. Epitaxial

Ti2GeC, Ti3GeC2, and Ti4GeC3 MAX-phase thin films grown by magnetron sputtering.

Journal of Materials Research 20(4), 779–782 (2005).

[25] J. J. Li, L. F. Hu, F. Z. Li, M. S. Li, and Y. C. Zhou. Variation of microstructure

and composition of the Cr2AlC coating prepared by sputtering at 370 and 500 °C. Surface

and Coatings Technology 204(23), 3838 – 3845 (2010).

[26] R. Mertens, Z. Sun, D. Music, and J. M. Schneider. Effect of the composition

on the structure of Cr-Al-C investigated by combinatorial thin film synthesis and ab initio calculations. Advanced Engineering Materials 6(11), 903–907 (2004).

[27] J. M. Schneider, Z. M. Sun, R. Mertens, F. Uestel, and R. Ahuja. Ab initio

calculations and experimental determination of the structure of Cr2AlC. Solid State Com-

munications 130(7), 445 – 449 (2004).

[28] Q. M. Wang, A. Flores Renteria, O. Schroeter, R. Mykhaylonka, C. Leyens, W. Garkas, and M. to Baben. Fabrication and oxidation behavior

of Cr2AlC coating on Ti6242 alloy. Surface and Coatings Technology 204(15), 2343 –

2352 (2010).

[29] J. M. Schneider, R. Mertens, and D. Music. Structure of V2AlC studied by theory and experiment. Journal of Applied Physics 99(1), 1–4 (2006).

[30] D. P. Sigumonrong, J. Zhang, Y. C. Zhou, D. Music, J. Emmerlich, J. Mayer, and J. M. Schneider. Interfacial structure of V2AlC thin films deposited on -sapphire. Scripta Materialia 64(4), 347 – 350 (2011).

[31] D. P. Sigumonrong, J. Zhang, Y. C. Zhou, D. Music, and J. M. Schneider.

Synthesis and elastic properties of V2AlC thin films by magnetron sputtering from ele- mental targets. Journal of Physics D : Applied Physics 42(18), 185408 (2009).

[32] O. Wilhelmsson, P. Eklund, H. Högberg, L. Hultman, and U. Jansson.

Structural, electrical and mechanical characterization of magnetron-sputtered V-Ge-C thin films. Acta Materialia 56(11), 2563 – 2569 (2008).

[33] T. H. Scabarozi, J. Roche, A. Rosenfeld, S.H. Lim, L. Salamanca-Riba, G. Yong, I. Takeuchi, M. W. Barsoum, J. D. Hettinger, and S. E. Lofland.

Synthesis and characterization of Nb2AlC thin films. Thin Solid Films 517(9), 2920 –

2923 (2009).

[34] T. H. Scabarozi, C. Gennaoui, J. Roche, T. Flemming, K. Wittenberger, P. Hann, B. Adamson, A. Rosenfeld, M. W. Barsoum, J. D. Hettinger, and S. E. Lofland. Combinatorial investigation of (Ti1−xNbx)2AlC. Applied Physics Letters 95(10), 101907 (2009).

[35] C. Walter, C. Martinez, T. El-Raghy, and J.M. Schneider. Towards large area

MAX phase coatings on steel. Steel Research International 76(2-3), 225–228 (2005).

[36] J. Frodelius, P. Eklund, M. Beckers, P. O. Å. Persson, H. Högberg, and L. Hultman. Sputter deposition from a Ti2AlC target : Process characterization and

conditions for growth of Ti2AlC. Thin Solid Films 518(6), 1621 – 1626 (2010).

[37] C. Walter, D.P. Sigumonrong, T. El-Raghy, and J.M. Schneider. Towards

large area deposition of Cr2AlC on steel. Thin Solid Films 515(2), 389 – 393 (2006).

[38] J. M. Schneider, D. P. Sigumonrong, D. Music, C. Walter, J. Emmerlich, R. Iskandar, and J. Mayer. Elastic properties of Cr2AlC thin films probed by na-

noindentation and ab initio molecular dynamics. Scripta Materialia 57(12), 1137 – 1140

(2007).

[39] P. Eklund. Novel ceramic Ti-Si-C nanocomposite coatings for electrical contact appli-

cations. Surface Engineering 23(6), 406–411 (2007).

[40] P. J. Martin. Ion-based methods for optical thin film deposition. Journal of Materials Science 21, 1–25 (1986).

[41] O. Wilhelmsson, P. Eklund, F. Giulian, H. Högberg, L. Hultman, and U. Jansson. Intrusion-type deformation in epitaxial T i3SiC2 2/TiC0.67 nanolaminates. Applied Physics Letters 91(12) (2007).

[42] T. Joelsson, A. Flink, J. Birch, and L. Hultman. Deposition of single-crystal

Ti2AlN thin films by reactive magnetron sputtering from a 2Ti :Al compound target. Jour-

nal of Applied Physics 102(7), 074918 (2007).

[43] T. Joelsson, A. Horling, J. Birch, and L. Hultman. Single-crystal Ti2AlN thin films. Applied Physics Letters 86(11), 111913 (2005).

[44] M. Beckers, N. Schell, R. M. S. Martins, A. Mucklich, W. Möller, and L. Hultman. Nucleation and growth of Ti2AlN thin films deposited by reactive magnetron

sputtering onto MgO(111). Journal of Applied Physics 102(7), 074916 (2007).

[45] M. Beckers, N. Schell, R. M. S. Martins, A. Mucklich, W. Möller, and L. Hultman. Microstructure and nonbasal-plane growth of epitaxial Ti2AlN thin films. Journal of Applied Physics 99(3), 034902 (2006).

[46] P. O. Å. Persson, S. Kodambaka, I. Petrov, and L. Hultman. Epitaxial Ti2AlN(0 0 0 1) thin film deposition by dual-target reactive magnetron sputtering. Acta

Materialia 55(13), 4401–4407 (2007).

[47] M. Beckers, N. Schell, R. M. S. Martins, A. Mucklich, and W. Möller. The

influence of the growth rate on the preferred orientation of magnetron-sputtered Ti-Al-N thin films studied by in situ x-ray diffraction. Journal of Applied Physics 98(4), 044901

(2005).

[48] M. Beckers, N. Schell, R. M. S. Martins, A. Mucklich, and W. Möller.

Phase stability of epitaxially grown Ti2AlN thin films. Applied Physics Letters 89(7),

074101 (2006).

[49] J. Alami, P. Eklund, J. Emmerlich, O. Wilhelmsson, U. Jansson, H. Hög- berg, L. Hultman, and U. Helmersson. High-power impulse magnetron sputtering

of Ti-Si-C thin films from a Ti3SiC2 compound target. Thin Solid Films 515(4), 1731 –

1736 (2006).

[50] J. Rosen, L. Ryves, P. O. Å. Persson, and M. M. M. Bilek. Deposition of

epitaxial Ti2AlC thin films by pulsed cathodic arc. Journal of Applied Physics 101(5),

056101 (2007).

[51] M. C. Guenette, M. D. Tucker, M. Ionescu, M. M. M. Bilek, and D. R. McKenzie. Cathodic arc co-deposition of highly oriented hexagonal Ti and Ti2AlC MAX

phase thin films. Thin Solid Films 519(2), 766–769 (2010).

[52] A. R. Phani, J. E. Krzanowski, and J. J. Nainaparampil. Structural and mecha-

nical properties of TiC and Ti-Si-C films deposited by pulsed laser deposition. Journal of

Vacuum Science and Technology, Part A : Vacuum, Surfaces and Films 19(5), 2252–2258 (2001).

[53] J. J. Hu, J. E. Bultman, S. Patton, and J. S. Zabinskifr. Pulsed laser deposition

and properties of Mn+1AXn phase formulated Ti3SiC2 thin films. Tribology Letters 16(1-

2), 113–122 (2004).

[54] P. Eklund, J.-P. Palmquist, O. Wilhelmsson, U. Jansson, J. Emmerlich, H. Högberg, and L. Hultman. Comment on ‘Pulsed Laser Deposition and Properties

of Mn+1AXn Phase Formulated Ti3SiC2 Thin Films‘. Tribology Letters 17, 977–978

[55] J. J. Hu and J. S. Zabinski. Reply to the comment on "Pulsed laser deposition and

properties of Mn+1AXn phase formulated Ti3SiC2 thin films". Tribology Letters 17(4),

979–982 (2004).

[56] C. Lange, M. W. Barsoum, and P. Schaaf. Towards the synthesis of MAX-phase

functional coatings by pulsed laser deposition. Applied Surface Science 254(4), 1232–1235

(2007).

[57] M. W. Barsoum. Mn+1AXn phases : a new class of solids ; thermodynamically stable nanolaminates. Progress in Solid State Chemistry 28(1-4), 201–281 (2000).

[58] M. Beckers, F. Eriksson, J. Lauridsen, C. Baehtz, J. Jensen, and L. Hult- man. Formation of basal plane fiber-textured Ti2AlN films on amorphous substrates. Physica Status Solidi - Rapid Research Letters 4(5-6), 121–123 (2010).

[59] V. Dolique, M. Jaouen, T. Cabioc’h, F. Pailloux, Ph. Guérin, and V. Pé- losin. Formation of (Ti,Al)N/Ti2AlN multilayers after annealing of TiN/TiAl(N) mul-

tilayers deposited by ion beam sputtering. Journal of Applied Physics 103(8) (2008).

[60] J. Frodelius, M. Sonestedt, S. Björklund, J.-P. Palmquist, K. Stiller, H. Högberg, and L. Hultman. Ti2AlC coatings deposited by High Velocity Oxy-Fuel

spraying. Surface and Coatings Technology 202(24), 5976–5981 (2008).

[61] V. Pasumarthi, Y. Chen, S. R. Bakshi, and A. Agarwal. Reaction synthesis of

Ti3SiC2 phase in plasma sprayed coating. Journal of Alloys and Compounds 484(1-2),

113–117 (2009).

[62] M. W. Barsoum and R. Knight.

[63] P. Eklund, T. Joelsson, H. Ljungcrantz, O. Wilhelmsson, Zs. Czigàny, H. Högberg, and L. Hultman. Microstructure and electrical properties of Ti-Si-

C-Ag nanocomposite thin films. Surface and Coatings Technology 201(14), 6465–6469

(2007).

[64] Z. Sun, R. Ahuja, S. Li, and J. M. Schneider. Structure and bulk modulus of

M2AlC (M=Ti, V, and Cr). Applied Physics Letters 83(5), 899–901 (2003).

[65] R. E. Honig and D. A. Kramer. Vapor Pressure Data for the Solid and Liquid

Elements. RCA Review 30(2), 285–305 (1969).

[66] Y. Luo, Z. Zheng, X. Mei, and C. Xu. Growth mechanism of Ti3SiC2 single crystals by in-situ reaction of polycarbosilane and metal titanium with CaF2 additive. Journal of

Crystal Growth 310(14), 3372–3375 (2008).

[67] Q. Wu, C. Li, and H. Tang. Surface characterization and growth mechanism of

laminated T i3SiC2 crystals fabricated by hot isostatic pressing. Applied Surface Science 256(23), 6986–6990 (2010).

[68] Y.C. Zhou and Z. M. Sun. Microstructure and mechanism of damage tolerance for

T i3SiC2 bulk ceramics. Materials Research Innovations 2(6), 360–363 (1999).

[69] J.-C. Pivin. An overview of ion sputtering physics and practical implications. Journal of Materials Science 18, 1267–1290 (1983).

[70] I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene. Microstructural evolution

during film growth. Journal of Vacuum Science & Technology A : Vacuum, Surfaces, and

Films 21(5), S117–S128 (2003).

[71] J. C. Schuster, H. Nowotny, and C. Vaccaro. The ternary systems : CrAlC,

VAlC, and TiAlC and the behavior of H-phases (M2AlC). Journal of Solid State Chemistry

32(2), 213 – 219 (1980).

[72] G. Abadias. Stress and preferred orientation in nitride-based PVD coatings. Surface and Coatings Technology 202(11), 2223–2235 (2008).

[73] G. Abadias and P. Guérin. In situ stress evolution during magnetron sputtering of

transition metal nitride thin films. Applied Physics Letters 93(11) (2008).

[74] C. Höglund. Growth and phase stability studies of epitaxial Sc-Al-N and Ti-Al-N thin

films. Thèse de Doctorat, Linköping University (2010).

[75] D. B. Williams and C. B. Carter. Transmission Electron Microscopy - Spectrometry

IV. Plenum Press - New York (1996).

[76] W. Jeitschko, H. Nowotny, and F. Benesovsky. Kohlenstoffhaltige ternäre Ver-

bindungen (H-Phase). Monatshefte für Chemie 94(4), 672–676 (1963).

[77] V. D. Jovic, B. M. Jovic, S. Gupta, T. El-Raghy, and M. W. Barsoum.

Corrosion behavior of select MAX phases in NaOH, HCl and H2SO4. Corrosion Science 48(12), 4274 – 4282 (2006).

[78] Z. J. Lin, M. S. Li, J. Y. Wang, and Y. C. Zhou. High-temperature oxidation and

hot corrosion of Cr2AlC. Acta Materialia 55(18), 6182 – 6191 (2007).

[79] W. B. Tian, P. L. Wang, Y. M. Kan, and G. J. Zhang. Cr2AlC powders prepared by molten salt method. Journal of Alloys and Compounds 461(1-2), L5 – L10 (2008).

[80] Z. J. Lin, Y. C. Zhou, and M. S. Li. Synthesis, microstructure, and property of

Cr2AlC. Journal of Materials Science and Technology 23(6), 721–746 (2007).

[81] W. B. Tian, P. L. Wang, G. J. Zhang, Y. M. Kan, Y. X. Li, and D. S. Yan.

Synthesis and thermal and electrical properties of bulk Cr2AlC. Scripta Materialia 54(5),

[82] Z. J. Lin, Y. C. Zhou, M. S. Li, and J. Y. Wang. In-situ hot pressing/solid-liquid

reaction synthesis of bulk Cr2AlC. Zeitschrift fuer Metallkunde/Materials Research and

Advanced Techniques 96(3), 291–296 (2005).

[83] B. Manoun, R. P. Gulve, S. K. Saxena, S. Gupta, M. W. Barsoum, and C. S. Zha. Compression behavior of M2AlC (M = Ti, V, Cr, Nb, and Ta) phases to above 50

GPa. Phys. Rev. B 73(2), 024110 Jan (2006).

[84] W. B. Tian, Z. M. Sun, Y. L. Du, and H. Hashimoto. Mechanical properties of

pulse discharge sintered Cr2AlC at 25-1000◦C. Materials Letters 63(8), 670 – 672 (2009).

[85] W. B. Tian, K. Vanmeensel, P. L. Wang, G. J. Zhang, Y. Li, J. Vleugels, and O. Van der Biest. Synthesis and characterization of Cr2AlC ceramics prepared

by spark plasma sintering. Materials Letters 61(22), 4442–4445 (2007).

[86] C. S. Lue, J. Y. Lin, and B. X. Xie. NMR study of the ternary carbides M2AlC (M = Ti, V, Cr). Phys. Rev. B 73(3), 035125 Jan (2006).

[87] Q. M. Wang, R. Mykhaylonka, A. Flores Renteria, J. L. Zhang, C. Leyens, and K. H. Kim. Improving the high-temperature oxidation resistance of a [beta]-[gamma]

TiAl alloy by a Cr2AlC coating. Corrosion Science 52(11), 3793 – 3802 (2010).

[88] S. Amini, A. Zhou, S. Gupta, A. De Villier, P. Finkel, and M. W. Barsoum.

Synthesis and elastic and mechanical properties of Cr2GeC. Journal of Materials Research

23(8), 2157–2165 (2008).

[89] T. H. Scabarozi, S. Amini, O. Leaffer, A. Gangul, S. Gupta, W. Tambussi, S. Clippe, J. E. Spanier, M. W. Barsoum, J. D. Hettinger, and S. E. Lo- fland. Thermal expansion of select Mn+ 1AXn(M=early transition metal, A=A group

element, X=C or N) phases measured by high temperature x-ray diffraction and dilato- metry. Journal of Applied Physics 105(1) (2009).

[90] D. Jürgens, M. Uhrmacher, H. Hofsäss, J. Mestnik-Filho, and M. W. Bar- soum. Perturbed angular correlation studies of the MAX phases Ti2AlN and Cr2GeC

using ion implanted 111In as probe nuclei. Nuclear Instruments and Methods in Physics

Research Section B : Beam Interactions with Materials and Atoms 268(11-12), 2185 – 2188 (2010).

[91] A. Bouhemadou. Calculated structural, electronic and elastic properties of M2GeC (M=Ti, V, Cr, Zr, Nb, Mo, Hf, Ta and W). Applied Physics A : Materials Science

&amp ; Processing 96, 959–967 (2009).

[92] W. Zhou, L. Liu, and P. Wu. First-principles study of structural, thermodynamic,

elastic, and magnetic properties of CrM2GeC under pressure and temperature. Journal of

[93] M. K. Drulis, H. Drulis, A. E. Hackemer, O. Leaffer, J. Spanier, S. Amini, M. W. Barsoum, T. Guilbert, and T. El-Raghy. On the heat capacities of Ta2AlC,

Ti2SC, and Cr2GeC. Journal of Applied Physics 104(2), 023526 (2008).

[94] S. E. Lofland, J. D. Hettinger, K. Harrell, P. Finkel, S. Gupta, M. W. Barsoum, and G. Hug. Elastic and electronic properties of select M2AX phases. Ap- plied Physics Letters 84(4), 508–510 (2004).

[95] P. Eklund, M. Bugnet, V. Mauchamp, S. Dubois, C. Tromas, J. Jensen, L. Piraux, L. Gence, M. Jaouen, and T. Cabioc’h. Epitaxial growth and electrical

transport properties of Cr2GeC thin films. Phys. Rev. B 84, 075424 Aug (2011).

[96] J. Emmerlich, P. Eklund, D. Rittrich, H. Högberg, and L. Hultman. Elec-

trical resistivity of Tin+1ACn (A = Si, Ge, Sn, n = 1-3) thin films. Journal of Materials

Research 22(8), 2279–2287 (2007).

[97] Z. J. Lin, M. J. Zhuo, Y. C. Zhou, M. S. Li, and J. Y. Wang. Microstructural

characterization of layered ternary Ti2AlC. Acta Materialia 54(4), 1009–1015 (2006).

[98] Z. J. Lin, M. S. Li, and Y. C. Zhou. TEM investigations on layered ternary ceramics. Journal of Materials Science and Technology 23(2), 145–165 (2007).

[99] M. D. Tucker, P. O. Å. Persson, M. C. Guenette, J. Rosen, M. M. M. Bilek, and D. R. McKenzie. Substrate orientation effects on the nucleation and growth of the

Mn+1AXn phase T i2AlC. Journal of Applied Physics 109(1) (2011).

[100] J. D. Hettinger, S. E. Lofland, Finkel, T. Meehan, J. Palma, K. S. Harrell, S. Gupta, A. Ganguly, T. El-Raghy, and M. W. Barsoum. Electrical transport,

thermal transport, and elastic properties of M2AlC ( M = T i , Cr, Nb, and V). Phys. Rev. B 72(11), 115120 Sep (2005).

[101] Z. M. Sun, D. Music, R. Ahuja, and J. M. Schneider. Electronic origin of shearing

in M2AC (M = Ti,V,Cr,A = Al,Ga). Journal of Physics : Condensed Matter 17(46), 7169

(2005).

[102] T. H. Scabarozi, P. Eklund, J. Emmerlich, H. Högberg, T. Meehan, P. Fin- kel, M. W. Barsoum, J. D. Hettinger, L. Hultman, and S. E. Lofland. Weak

electronic anisotropy in the layered nanolaminate Ti2GeC. Solid State Communications

146(11-12), 498 – 501 (2008).

[103] M. Gerl and J.-P. Issy. Traité des matériaux . Physique des matériaux. PRESSES POLYTECHNIQUES ET UNIVERSITAIRES ROMANDES (1997).

[104] B. A. Sanborn, P. B. Allen, and D. A. Papaconstantopoulos. Empirical

electron-phonon coupling constants and anisotropic electrical resistivity in hcp metals.

[105] N. Haddad, E. Garcia-Caurel, L. Hultman, M. W. Barsoum, and G. Hug.

Dielectric properties of Ti2AlC and Ti2AlN MAX phases : the conductivity anisotropy.

Journal of Applied Physics 104(2), 023531 (2008).

[106] G. Hug, P. Eklund, and A. Orchowski. Orientation dependence of electron energy

loss spectra and dielectric functions of Ti3SiC2 and Ti3AlC2. Ultramicroscopy 110(8), 1054 – 1058 (2010).

[107] V. Mauchamp, G. Hug, M. Bugnet, T. Cabioc’h, and M. Jaouen. Anisotropy of

T i2AlN dielectric response investigated by ab initio calculations and electron energy-loss

spectroscopy. Phys. Rev. B 81(3), 035109 Jan (2010).

[108] J. Frodelius. Thick and thin Ti2AlC Coatings. Thèse de Doctorat, Linköping University

(2010).

[109] L. Farber, M. W. Barsoum, A. Zavaliangos, T. El-Raghy, and I. Levin.

Dislocations and stacking faults in Ti3SiC2. Journal of the American Ceramic Society 81(6), 1677–1681 (1998).

[110] N. F. Gao, Y. Miyamoto, and D. Zhan. Dense Ti3SiC2 prepared by reactive HIP.