• Aucun résultat trouvé

u~v~-n~Vxl 1 Ux ~ + ~,~ + v~ + v~ (l) D+D= THE BOUNDARY CORRESPONDENCE UNDER QUASICON- FORMAL MAPPINGS

N/A
N/A
Protected

Academic year: 2022

Partager "u~v~-n~Vxl 1 Ux ~ + ~,~ + v~ + v~ (l) D+D= THE BOUNDARY CORRESPONDENCE UNDER QUASICON- FORMAL MAPPINGS"

Copied!
18
0
0

Texte intégral

(1)

T H E B O U N D A R Y C O R R E S P O N D E N C E U N D E R Q U A S I C O N - F O R M A L M A P P I N G S

BY

A . B E U R L I N G and L. AHLFORS in Princeton, N. .]. (A. B.) and Cambridge, Mass. (L. A.)

1. I n t r o d u c t i o n

t . 1 . T h e d i l a t a t i o n D > 1 of a d i f f e r e n t i a b l e t o p o l o g i c a l m a p p i n g / :

(x, y)--> (u,v)

be- t w e e n p l a n e regions is d e t e r m i n e d b y

1 Ux ~ + ~,~ + v~ + v~

2

(l)

D + D = [u~v~-n~Vxl

G e o m e t r i c a l l y , D r e p r e s e n t s t h e r a t i o b e t w e e n m a j o r a n d m i n o r axis of t h e i n f i n i t e s i m a l ellipse o b t a i n e d b y m a p p i n g a n i n f i n i t e s i m a l circle of c e n t e r (x, y). F r o m t h i s i n t e r p r e t a t i o n i t is e v i d e n t t h a t t h e d i l a t a t i o n is u n a f f e c t e d b y c o n f o r m a l m a p p i n g s of t h e planes. F u r t h e r - more, a m a p p i n g ] a n d its i n v e r s e /-1 h a v e t h e s a m e d i l a t a t i o n a t c o r r e s p o n d i n g p o i n t s . A m a p p i n g is s a i d to be

quasicon/ormal

if D is b o u n d e d . T h e least u p p e r b o u n d of D is r e f e r r e d t o as t h e

maximal dilatation.

1.2, I t is k n o w n t h a t a q u a s i e o n f o r m a l m a p p i n g of x 2 § y'~ < 1 o n t o u" + ' v 2 < 1 re- m a i n s c o n t i n u o u s on t h e b o u n d a r y . 1 H e n c e i t i n d u c e s a t o p o l o g i c a l c o r r e s p o n d e n c e 1)e- t w e e n t h e t w o circumferences. W e shall be c o n c e r n e d w i t h t h e p r o b l e m of c h ~ r a c t e r i z i n g t h i s c o r r e s p o n d e n c e b y s i m p l e n e c e s s a r y a n d sufficient c o n d i t i o n s . More g e n e r a l l y , we shall look for c o n d i t i o n s which are c o m p a t i b l e w i t h a m a p p i n g whose m a x i m a l d i l a t a t i o n does n o t e x c e e d a g i v e n n u m b e r K > 1.

I n view of t h e i n v a r i a n c e w i t h r e s p e c t to c o n f o r m a l m a p p f n g s we m a y r e p l a c e t h e d i s k b y t h e u p p e r h a l f - p l a n e s y > 0 a n d v > 0, a n d we m a y a s s u m e t h a t t h e -points a t c<~

1 L. AHLFORS, Oft q u a s i c o n f o r m a l m a p p i n g s . Jourt~al ,l'A~rdyse 3Iathem(itique, vol. 7 . l

(~ :~3/a4).

(2)

1 2 6 A . B E U R L I N G A:ND L. A H L F O R S

c o r r e s p o n d t() e a c h o t h e r u n d e r t h e m a p p i n g . I n t h e s e c i r c u m s t a n c e s t h e b o u n d a r y corre- s p o n d e n c e is d e t e r m i n e d b y a s t r i c t l y m o n o t o n e c o n t i n u o u s f u n c t i o n tt (x), in t h e sense t h a t t h e p o i n t (x,0) is m a p p e d on (,u (x),0). I t is sufficient t o consider t h e case of a n i n c r e a s i n g /~ (x).

t . 3 . T h e m a i n t h e o r e m t h a t will be p r o v e d in t h i s p a p e r is t h e following:

T H E O R E M 1. There exists a quasicon/ormal m a p p i n g o/ the hal/-planes with the boundary correspondence x - > # ( x ) i/ and only i/

1 / ~ ( x + t ) - ~ ( x )

- _< ~ ~o ( 2 )

o # (x) - /t (x - t) /or some constant Q > 1 a n d / o r all real x and t.

More precisely, i/ (2) is/ul/illed there exists a m a p p i n g whose dilatation does not exceed Q2. On the other hand, every m a p p i n g with the boundary correspondence a must have a m a x i m a l dilatation ~ 1 § A log o where A is a certain numerical constant ( = .2284).

C o n d i t i o n (2), which will be r e f e r r e d to as t h e ~-condition, i n d i c a t e s t h a t # ( x ) m u s t possess a d e g r e e of a p p r o x i m a t e s y m m e t r y w h e n x a p p r o a c h e s a n y v a l u e f r o m t i l e r i g h t a n d fronl t h e left. T h e ~ - c o n d i t i o n is n o t i n v a r i a n t wi~h r e s p e c t t o a r b i t r a r y l i n e a r t r a n s - f o r m a t i o n s , n o r does t h e i n v e r s e m a p p i n g s a t i s f y t h e s a m e o - c o n d i t i o n . H o w e v e r , t h e v e r y s i m p l e f o r m t h a t t h e c o n d i t i o n t a k e s w h e n t h e p o i n t s a t ' o o are s i n g l e d o u t is sufficient r e a s o n to give p r e f e r e n c e to t h e f o r m u l a t i o n t h a t we h a v e chosen.

1.4. I n S e c t i o n 2 we use T h e o r e m 1 to d e r i v e a d i f f e r e n t c h a r a c t e r i s t i c of quasicon- f o r m a l m a p p i n g s . I n S e c t i o n 3 t h e p r o b l e m is f u r t h e r a n a l y z e d , a n d in S e c t i o n 4 we p r o v e t h e e a s y p a r t of T h e o r e n l 1. S e c t i o n 5 d e a l s w i t h a class of e x p l i c i t m a p p i n g s a n d serves t o e x h i b i t l i m i t s b e y o n d w h i c h t h e e s t i m a t e s in T h e o r e m 1 c a n n o t be i m p r o v e d . T h e c o m p l e t e p r o o f of T h e o r e m 1 follows in S e c t i o n 6, a n d in a final s e c t i o n we give t h e a n s w e r t o an open q u e s t i o n c o n c e r n i n g a b s o l u t e c o n t i n u i t y .

The i n v e s t i g a t i o n r e q u i r e s r a t h e r e x t e n s i v e c o m p u t a t i o n s . I n o r d e r to f a c i l i t a t e t h e r e a d i n g m o s t of t h e s e c o m p u t a t i o n s a r e g i v e n in c o m p l e t e d e t a i l . A r e a d e r who is i n t e r e s t e d o n l y in t h e q u a l i t a t i v e a s p e c t s m a y o m i t t h e c o m p u t a t i o n s in S e c t i o n 4 a n d all of S e c t i o n 5.

2. Compact Families of Mappings

2.1. I n t h i s s e c t i o n we show t h a t t h e 9 - c o n d i t i o n can also be i n t e r p r e t e d as a com- p a c t n e s s c o n d i t i o n . This a n a l y s i s can be c a r r i e d o u t a l t e r n a t i v e l y for t r a n s f o r m a t i o n s of t h e u n i t circle or for t r a n s f o r m a t i o n s of t h e line which l e a v e t h e p o i n t a t c~ fixed. Since t h e t r a n s i t i o n is v e r y e a s y we shall o n l y t r e a t t h e case of tile line.

(3)

T H E B O U N D A R Y C O R R E S P O N D E N C E U N D E R Q U A S I C O N F O R M A L M A P P I ~ I G S 1 2 7

As before, # (x) shall d e n o t e a n i n c r e a s i n g f u n c t i o n which sets u p a 1-1 c o r r e s p o n d e n c e of t h e r e a l line w i t h itself. T h e l i n e a r t r a n s f o r m a t i o n s x-->ax + b, a > 0 will be d e n o t e d b y S, T. W e s a y t h a t a f a m i l y M of t r a n s f o r m a t i o n s # is closed u n d e r l i n e a r t r a n s f o r m a t i o n s if all c o m p o s e d m a p p i n g s S~t T a r e c o n t a i n e d in M t o g e t h e r w i t h / z .

W e shall also s a y t h a t a m a p p i n g is normalized if # ( 0 ) - 0 , ~ ( 1 ) = 1.

2.2. L e t u s consider t h e following c o m p a c t n e s s c o n d i t i o n :

(a) Every in/inite set o/ normalized mappings # E M contains a sequence {#n}T which converges to a strictly increasing limit/unction.

T h e following t h e o r e m holds:

T H E O R E M 2. The mappings # in a/amily M, which is c/osed under linear trans/orma- tions, satis/y a e-condition, the same/or all #, i/ and only i/condition (a) is [ul/illed.

2.3. S u p p o s e f i r s t t h a t t h e ~ - c o n d i t i o n is satisfied. I f # is n o r m a l i z e d we f i n d / ~ ( 2 - ~ + 1 ) = > ( 1 + ~ ) # ( 2 -~)

for a n y n, a n d since # ( 1 ) - 1 i t follows t h a t

~ (2 -~) =< (3)

for p o s i t i v e a n d n e g a t i v e i n t e g e r s n.

F o r a n y a t h e f u n c t i o n

/z (a + x) --/z (a)

~u (a + 1) --/z (a) is n o r m a l i z e d . B y (3) we h a v e c o n s e q u e n t l y

~ (a + x / - ~ (~/< (~ (a + ] / - ~ (all o-~i (4) as soon as 0 ~ x < 2 -~. On t h e o t h e r h a n d , if a is r e s t r i c t e d t o a f i n i t e i n t e r v a l , i n e q u a l i t y (3) w i t h n e g a t i v e n y i e l d s a b o u n d for ~ ( a + l) - # ( a ) . H e n c e (4) c o n s t i t u t e s a n cquicon- t i n u i t y c o n d i t i o n on a n y c o m p a c t set.

I t follows t h a t we c a n select a c o n v e r g e n t s e q u e n c e f r o m e v e r y i n f i n i t e set of n o r m a - lized m a p p i n g s . T h e l i m i t f u n c t i o n is n o r m a l i z e d a n d satisfies t h e ~-condition. F o r t h i s r e a s o n i t c a n n o t be c o n s t a n t on a n y i n t e r v a l . I n o t h e r words, c o n d i t i o n (a) is fulfilled.

2.~. Conversely, s u p p o s e t h a t (a) is fulfilled. W e set cr ~ inf # ( - 1), /3 - sup ~t ( - 1 ),

9 - 563802. Acta rnathematica. 96. I m p r i r a 4 le 22 o c t o b r e 1956.

(4)

128

where be ranges over all n o r m a l i z e d m a p p i n g s i n M. There exists a sequence of #~ E M such t h a t #~ ( - 1)-+j3. Since a s u b s e q u e n c e converges to a s t r i c t l y m o n o t o n e f u n c t i o n it follows t h a t / 3 < 0. T h e same r e a s o n i n g yields ~ > - oo.

Consider a n y # i n M. T h e m a p p i n g

Et (y + t x) - be (y) (x) be (y + t) - # (y)

< t t ( Y - - t ) - - be(Y) <_/3

~ = ~ + t ) - - # ( y )

1

~ # ( y + t ) - - # ( y ) < _ 1.

o r

:,. = # (y) - # (y - t) = fl Clearly, this implies t h e ~ - e o n d i t i o n for ~ = m a x - e , - 9

2.5. T h e o r e m s 1 a n d 2 yield t h e following:

COIr

A boundary mapping/~ can be extended to a quasicon/ormal mapping

o/the hal/planes i / a n d only i/ the /amily o/ all mappings She T satis/ies condition

(a).

I n s t e a d of r e l y i n g o n q u a n t i t a t i v e s t a t e m e n t s this criterion emphasizes a d i s t i n c t i v e q u a l i t a t i v e feature.

3. Quantities Related to Dilatation

3.1.. If / is a differentiable m a p p i n g of t h e h a l f - p l a n e on itself we shall d e n o t e its m a x i m a l d i l a t a t i o n b y K I. F o r a g i v e n b o u n d a r y correspondence ~t we set

K ( ~ ) = inf K r ,

where t h e i n f i m u m is w i t h respect to all m a p p i n g s / such t h a t / = # on t h e real axis.

T h e q u a n t i t y K (be) is i n t h e f o r e g r o u n d of our i n t e r e s t , b u t we shall also find it illu- m i n a t i n g to i n t r o d u c e some other q u a n t i t i e s of similar character.

3.2. A q u a s i c o n f o r m a l m a p p i n g with the m a x i m a l d i l a t a t i o n K has t h e following p r o p e r t y : if t h e r e a l - v a l u e d f u n c t i o n s U t a n d U2 are r e l a t e d b y U 1 (z) = U2 (/(z)), t h e n t h e Dirichlet i n t e g r a l s of U1 a n d U 2 over c o r r e s p o n d i n g d o m a i n s h a v e a r a t i o which lies be- t w e e n

1 / K

a n d K .

I n p a r t i c u l a r , we m a y confine t h e a t t e n t i o n to Dirichlet i n t e g r a l s over t h e whole half-plane. L e t u 1 a n d u2 be defined on t h e real axis a n d r e l a t e d b y u 1 (x) = u 2 (# (x)). W e choose U2 as t h e solution of D i r i c h l e t ' s p r o b l e m w i t h b o u n d a r y values u 2. T h e n t h e Dirich- let i n t e g r a l ~ (U~) is g i v e n e x p l i c i t l y b y I (u~) where

A. B E U R L I N G A N D L . A I t L F O R S

is n o r m a l i z e d a n d i n M . H e n c e

(5)

T H E : B O U N D A t ~ u C O R I ~ E S t ' O : N D E ~ C E U N D E R Q U A S I C O N F O I ~ M A L M A P P I N G S 129

; ; ( : )

1 u ( x ) - (y) 2

. . . . d x d y

x (~) 2 ~ x

o r - r

is the well-known Douglas functional.

B y use of the Dirichlet principle we find at once that l (u,) <= ~ ( v l ) <_ K ~ ( U~) = K I (u2).

Since the same reasoning can be applied to the inverse mapping we have also I(uz)<=

K I (ul).

This result leads us to introduce a quantity K 1 (#), defined as the least number K 1 such t h a t

I < I (u2)

K~ = I (ul) -< K1 (5)

for all pairs of corresponding functions Ul,U2. We have just shown t h a t

- K 1 (#) :~ K (t~).

The quantity KI(#) m a y be regarded as more explicit t h a n K(/~) inasmuch as its definition does not involve two-dimensional mappings.

3.3. I n the circular representation, let ~1,/~1 be a n y two disjoint arcs, and denote their images under the mapping # by ~2,/~2. The extremal distance between :r and ill, to be denoted by d (:% ill), is a function-theoretic quantity which in this simple case can be computed explicitly. I t is equal to 1/O(U1) , where U 1 is the harmonic function with values 0,1 on :r whose normal derivative vanishes on the complementary arcs.

The function U 1 minimizes the Dirichlet integral for the prescribed boundary values.

Therefore,

1

- min ~ ( U I ) - min I (ul) d (~1, ill)

for the class of all function u 1 which are 0 and 1 on ~1, ill. But it follows from (5) that min I ( u l ) <= K 1 rain I ( u 2 ) , and hence that d(a:, fie) Z K 1 d(0~l, ill)"

I n the present case there is s y m m e t r y between # and its inverse mapping, for the complementary arcs of :r have the extrema] distance 1/d(~l,/~). Hence the definition

d ( ~ , fl~)

K 0 (#) = sup d (:r ill) (6)

implies the double inequality

K 0 (#) = d (0~1, ~1) ~

1~~

(6)

]30 A . B E U R L I I ~ G A:ND L. A H L F O R S

W e have proved that

Ko(#) g K~ (/~) =< K ( # ) .

Of these three quantities K o is t h e m o s t explicit, for it is defined as t h e m a x i m u m of a function r a t h e r t h a n a functional.

3.4. F o r a given m a p p i n g / ~ of the real axis we denote b y ~ (#) the smallest value of Q such t h a t the Q-condition (2) is fulfilled. Our efforts will be directed t o w a r d s p r o v i n g inequalities of t h e f o r m

9 (e(#)) =< K 0 ( # ) ~ K (/~) =< ~ (#(#)).

H e r e we m a y let (I) a n d q? denote t h e best possible funetions of their kind. This a m o u n t s to setting

( I ) ( o ) - i n f K 0 ( / ~ ) for Q(,u)~ e q ? ( o ) - s u p K ( / ~ ) for e(#)--<~.

The necessity in T h e o r e m 1 will be p r o v e d if we show t h a t lira(I) (~) - c ~ , a n d the sufficiency follows u p o n showing t h a t qP (~) is finite. I t t u r n s o u t t h a t (I)(~) can be deter- mined explicitly, a l t h o u g h in t r a n s c e n d e n t a l form, a n d the t r a n s c e n d e n t a l expression leads to t h e e l e m e n t a r y m i n o r a n t m e n t i o n e d in t h e theorem. As for ~ ( # ) we prove a slightly b e t t e r inequality t h a n XF (~) ~ ~2, and for comparison we shall also derive a m i n o r a n t of q?.

4 . P r o o f o f t h e N e c e s s i t y

4.1. I n order to determine a m i n o r a n t of K0(/~), defined b y (6), we observe t h a t the extremal distance d (~1,/51) is i n v a r i a n t u n d e r linear transformations, a n d hence a function of the cross-ratio of t h e end points of ~1 a n d ill. If ~1 =

(tl,

t2), fil =

(t~, Q)

we set

= t 3 _ _ - t 2 : - - - t 4 -- t 3 t 2 - t 1 t4-- t I a n d obtain d(~l,/31) - P ( ~ ) , where P is a k n o w n function.

The n o t a t i o n is such t h a t P ( 0 ) - 0, P (c~) = c~. Also, since t h e c o m p l e m e n t a r y inter- vals (t2, t3), (Q, tl) lead to the reciprocal cr0ss-ratio, P ( ~ ) P ( 1 / ~ ) = 1 and P ( 1 ) = 1.

4.2. A m i n o r a n t for K 0(/l) is obtained b y restricting the choice of ~1,/31 to intervals of the form (x - t, x) a n d

(x § t,c~).

I n this case ). = l, while the corresponding intervals

:r determine

(x + t) - # (x)

# (x) - ~ (x - t)

(7)

T H E B O U N D A R Y C O R R E S P O N D E N C E U N D E R Q U A S I C O ~ F O R M A L M A P P I N G S 1 3 1

Since sup ~' = Q (/z) it follows b y (6) t h a t

Ko >-P(q).

4.3. On the other hand, let ~ > 1 be given. The u p p e r half-plane with vertices at - 1 , 0 , 1 , c ~ is eonformally a square, a n d t h e half-plane with vertices at - 1 1 0 , o , oo is a rectangle whose sides h a v e the ratio P (~). A n affine m a p p i n g of the square on the rectangle determines an extremal quasieonformM m a p p i n g of the half-plane with c o n s t a n t dilatation P(~). If t h e induced m a p p i n g of the real axis is d e n o t e d b y v we h a v e t h u s

K(v)

= P ( Q ) , while evidently ~ (v) ~ ~. The latter inequality implies K 0 (v) _~ P (~), a n d therefore K 0 (v) =

= K (v) = P (~). This proves:

The best lower bound r o/ Ko(#) is equal to P(~), the extremal distance between ( - 1,0) and (q, co).

4 . 4 . I t is worthwhile to determine e l e m e n t a r y estimates for P ( o ) . The exact expres- sion for P(~) reads

or 1

P(e)= VX(x-1)(x+e) Vx(1 x)(x+e)

1 0

On i n t r o d u c i n g the hypergeometrie function

I

F (t)= F (89 89 1, t) 1 f dx : ~ l l x ( l _ x i i l _ x t )

0

it is possible to write

F Q

P (e) =

A classical c o m p u t a t i o n (Carath6odory,

Funktionentheorie

I I , p. 169) yields 1 F ( 1 ~-2"

Here F [1/(~ + 1)] varies between F(O) = 1 a n d F ( 8 9 = 1.1803. Consequently we can write

P(O) - 1 =O(q) log O, where 0(~) increases f r o m 0 (1) = .2284 to 0 (o~) - 1 / ~ = .3183.

(8)

132 A . B E U R L I N G A ~ D L , A H L F O R S

5. A Class of Explicit Mappings

5.1. I n t h i s s e c t i o n we s t u d y a class of e x p l i c i t m a p p i n g s for w h i c h K ( # ) a n d ~ ( # ) c a n b e c o m p u t e d . T h e y a r e u s e d t o d e t e r m i n e a m i n o r a n t of ~F (if) (see 3.4 for t h e d e f i n i t i o n o f

~F).

F o r a n y g i v e n at > 0 we c o n s i d e r

# (x) = s g n x . ] x L ~. (7)

A c o r r e s p o n d i n g m a p p i n g is o b t a i n e d b y s e t t i n g ]/(z)l = I z ]~, a r g / (z) - a r g z. I n t e r m s of s = log z a n d a = log /(z) t h e m a p p i n g is affine,

a = a t R e s § I m s,

a n d we see a t o n c e t h a t t h e d i l a t a t i o n is c o n s t a n t l y e q u a l t o at if at >_ 1 a n d 1/at if at g 1.

I t f o l l o w s t h a t K (/~) __< m a x (at, 1/:r

5.2. I n o r d e r t o d e t e r m i n e K 0 ( # ) we c o n s i d e r t h e i n t e r v a l s ( - r, - i / r ) a n d ( l / r , r) f o r r > 1. T h e i r e x t r e m a l d i s t a n c e is g i v e n b y P ( 4 r 2 / ( r 2 - 1)2), a n d t h e i m a g e i n t e r v a l s h a v e t h e e x t r e m a l d i s t a n c e P ( 4 r2~/(r 2~ - 1 )2). F r o m t h e a s y m p t o t i c d e v e l o p m e n t P (t) ~ ~ / l o g ( 1 / t ) f o r s m a l l t w e o b t a i n

4 r 2 ~ ~ r - - > ~

P ~(r 2 - 1 ) 2 / ~ 2 l o g r

P - - - 2 ~ r - ~ ,

2 Vog r

a n d h e n c e t h e r a t i o t e n d s t o at. W e c o n c l u d e t h a t K 0 ( # ) > m a x ( a t , l / a t ) . T o g e t h e r w i t h K0(/x ) g K ( # ) g m a x (at, 1/at) i t f o l l o w s t h a t

K 0 (#) = K (#) = m a x (at, if:c).

5.3. B e c a u s e # (kx) = sgn k" I k [~ # (x), t h e r a t i o

# (x + t) - # (x) (x) - ~ (x - t) t a k e s t h e s a m e v a l u e s as

# ( l + t ) - I

] - ~ ( 1 -t)" (8)

W e m u s t t h e r e f o r e s t u d y t h e m a x i m u m of (8) in its d e p e n d e n c e on t h e p a r a m e t e r at. T h e c a s e s at > 1 a n d at g 1 will b e t r e a t e d s e p a r a t e l y .

(9)

THE BOUNDARY CORRESPONDENCE U N D E R QUASICOS/FORMAL MAPPINGS 1 3 3

5.4. S u p p o s e f i r s t t h a t ~ > 1 . F o r 0 < t < l (8) t a k e s t h e f o r m ( l + t ) ~ - 1

1 - (1 - t ) ~" (9)

A l o o k a t t h e g r a p h of x ~ shows t h a t [(1 + t) ~ - 1]It i n c r e a s e s a n d [1 - (1 - t)~]/t d e c r e a s e s w i t h i n c r e a s i n g t. H e n c e (9) is i n c r e a s i n g a n d a t t a i n s i t s m a x i m u m for t = 1, i t s m i n i m u m 1 f o r t = 0.

F o r t > 1 (8) b e c o m e s

( t + 1) ~ - 1 q (t) -

(t-1)~+1"

A s i m p l e c a l c u l a t i o n s h o w s t h a t q' (t) h a s t h e s a m e s i g n as p ( t ) = (t + 1) 1-~ + (t - l ) 1-cr -- 2.

B u t p (t) d e c r e a s e s f r o m o0 for t = 1 t o - 2 for t = c~. T h e r e f o r e q(t) h a s a s i n g l e m a x i m u m w h i c h is a t t a i n e d a t t h e r o o t t~ of t h e e q u a t i o n

(t Jr ] ) 1 - ~ A_ (t - l ) 1-~r = 2.

T h e v a l u e of t h e m a x i m u m e q u a l s

q ( t ~ ) = \ ~ ! = 2 ( t ~ + 1 ) ~ - 1 - 1. (10)

F r o m w h a t we h a v e s a i d i t follows also t h a t t h e v a l u e s of (8) a r e > 1 for t > 0, a n d h e n c e < 1 for t < 0. W e c o n c l u d e t h a t Q (it) = q (t~).

5 . 5 . A s ~ - + 1 i t is clear t h a t t~-+]/2. T o o b t a i n a n e l e m e n t a r y b o u n d for q(t~) w e o b s e r v e t h a t p ( V 2 ) > 0 for t h e s i m p l e r e a s o n t h a t (L/2 + 1) ~-~ a n d ( L / 2 - 1) ~-~ a r e reci- p r o c a l s . T h i s i m p l i e s t~ >V~2, a n d b y (10) we f i n d t h a t

Q (/~) = q(t~) < (]/2 + l ) 2(~-1).

W e k n o w t h a t K ( # ) = ~ a n d a r e t h u s a b l e t o c o n c l u d e t h a t

~F(~) > l + log~o . (11)

= 2 1 o g ( ~ + l )

5.6. F o r large v a l u e s of ~ t h e e s t i m a t e (11) c a n b e r e p l a c e d b y a m u c h b e t t e r o n e w h i c h we f i n d b y c h o o s i n g :~ = 1 / K < 1. T h e c o r r e s p o n d i n g v a l u e of Q (#) c a n b e c a l c u l a t e d i n t h e s a m e w a y as a b o v e , w i t h t h e d i f f e r e n c e t h a t (8) is n o w < 1 for p o s i t i v e t. A c c o r d i n g l y , we f i n d t h a t 9(/~) = 1 / q ( t ~ ) w h e r e q(t) a n d t~ h a v e t h e s a m e m e a n i n g as before.

(10)

134 A. B : E U R L I N G A N D L. A H L F O R S

This t i m e we are i n t e r e s t e d in small v a l u e s of ~, a n d it is easily seen t h a t t~ ~ 1 +~. log 2 for :r W e shall show in a m o m e n t t h a t p(1 + e log 2) > 0, p r o v i d e d t h a t

is s u f f i c i e n t l y small. Since p (t) is now i n c r e a s i n g t h i s implies t~ < 1 + ~ log 2.

B y use of (10) we o b t a i n

q (G) > 2 ('2 + ~ log 2 ) ~ - 1 - - 1 2 ~ 1 + ~ log 2

1 > 1

l + : ~ l o g 2 I + ~ l o g 2

5 log "2 1 + 2 log "2

On s u b s t i t u t i n g q(G) = 1/o a n d ~ -

1/K we

are led to t h e e s t i m a t e

> log 2

~ ( 0 . ) = ~ ( e 1) (12)

which is v a l i d for s u f f i c i e n t l y large e.

To p r o v e o u r c o n t e n t i o n t h a t p(1 + s l o g 2 ) > 0 we m a k e use of t h e i n e q u a l i t i e s e x ~ l ~ , x a n d ( 1 + x ) - ~ > l - ~ x . W e o b t a i n

( 2 + c ~ l o g 2 ) 1 - ~ = ( 2 + ~ t o g 2 ) 2 ~ 1 + . ~ l o g 2

"~ (2 + ~ log 2) ( 1 - ~ log 2) 1 - ~ l o g 2

> 2 - ~ l o g 2 - 0 c 2 ( 1 + log 2) l o g 2 a n d f u r t h e r

(e log 2 ) 1 e - - ~ log 2 (~ log 2) -~

> e log 2 (1 -- e log e -- ~ log log 2).

W h e n t h e s e i n e q u a l i t i e s are a d d e d we f i n d t h a t p(1 + ~ log 2) > 0 as soon as log 1 / ~ > 1 + log 2 + log log 2,

i.e. if ~ < - -1 9

= 2 e log 2 H e n c e t h e e s t i m a t e (12) is v a l i d for o > 4e + 1.

6. T h e S u f f i c i e n c y P r o o f

6.3. I t r e m a i n s to f i n d a n u p p e r b o u n d for K w h e n Q is given. To t h i s e n d we m u s t c o n s t r u c t e x p l i c i t q u a s i c o n f o r m a l m a p p i n g s w i t h a g i v e n b o u n d a r y c o r r e s p o n d e n c e #.

W e define a m a p p i n g

[(x, y) - u ( x , y)+ iv(x, y)

b y

(11)

T H E B O U N D A R Y C O R R E S P O N D E N C E U N D E R Q U A S I C O N F O R M A L M A P P I N G S 135

1 K x - t / t ( t ) d t = K ~ ( t ) ~ t ( x + y t ) d t I

i ,

;l ,x t, ; j

where t h e kernels K1, K2 are g i v e n as follows I ( l ( x ) = [ 89 for - l < x < l

for Ixl l '

W e observe

K,~ (x) = K 1 (x) ~ign x.

u e s # (x),

(13)

t h a t

/(x, y)

is d e f i n e d b y a l i n e a r o p e r a t i o n on t h e b o u n d a r y val-

/ X - - t

(K = K 1 +irK2).

which we shall use later to m a k e t h e d i l a t a t i o n as small

K1, K 2 t h e d e f i n i t i o n can be r e p h r a s e d as

[# (x § ty) +/~ (x - ty)] dt

(l.4) [# ( x + t y ) - / z ( x - t y ) ] dti

T h e c o n s t a n t r > 0 is a p a r a m e t e r as w e c a n .

W i t h o u t use of t h e n o t a t i o n s I u ( x , y ) = ~ .

0 1

v (x, y) = ~ . 0

6.2. T h e following properties are e v i d e n t : u a n d v are defined a n d c o n t i n u o u s in t h e closed h a l f - p l a n e y _> 0,v > 0 for y > 0, a n d u (x,0) =/~ (x), v (x,0) = 0. H e n c e / (z) has t h e r i g h t b o u n d a r y values.

As to t h e b e h a v i o r a t oo we see t h a t

u(x, y)--~

+ oo for x - >

t-c<)andu(x,

y ) - - > - o o for x--> - ce, u n i f o r m l y i n y . Similarly,

v(x, y)--~ + c<~

for y--> + co, a n d t h e convergence is u n i f o r m w h e n x is r e s t r i c t e d to a finite i n t e r v a l . W e conclude t h a t ] ( z ) ~ oo for z~cx~.

I t will be seen t h a t t h e J a c o b i a n of t h e m a p p i n g is always positive. I n view of this fact, a n d b y v i r t u e of t h e b o u n d a r y correspondence, it is a simple m a t t e r to show t h a t t h e m a p p i n g is a u t o m a t i c a l l y topological, a n d t h a t t h e image of t h e half-plane, y > 0 is t h e whole h a l f - p l a n e v > 0.

6.3. W e shall h a v e to d e t e r m i n e t h e p a r t i a l d e r i v a t i v e s of u a n d v a t a p o i n t

(xo, Yo),

Y0 > 0. I t is easy to p r o v e t h a t t h e d e r i v a t i v e s of a c o n v o l u t i o n of t h e form used in (13) are given b y

(12)

136 A . B E U R L I N G A N D L . A H L F O R S

~x

-~- K ( t ) # ( x + y t ) d t = y K ( t ) d # ( x + y t )

9 fK(t)~(x+yt)dt=~ tK(t)d~(x+yt).

~ Y . Y

C o n s e q u e n t l y , if we i n t r o d u c e t h e n o t a t i o n s

we o b t a i n

1 0

~:yo d#(Xo ~yot), t~=yo

0 1

/ / /

, . 1 . t d # ( x o + y o t ) , fl, . . ~ 1 t d # ( x ~ 1 7 6

YO 0 1

u z = ~ + ~ ,

u~=~'-fl'

v~ = r ( ( z - fl),

vy=r(:r247

(15)

On s u b s t i t u t i n g t h e s e v a l u e s in (1) we f i n d

1 ( ~ § 2 4 7 2 4 7 2 4 7 2)

D + D - 2 r ( :c fl ' § cc' fl ) (16)

I t is t o b e n o t e d t h a t a, fi, ~', fl' a r e all p o s i t i v e . T h i s s u b s t a n t i a t e s o u r c l a i m t h a t uxvy - uyvx = 2 r ( ~ fl' § ~r fl) > 0.

6.4. S i n c e ~ (t) =/~ (x 0 § Y0 t) s a t i s f i e s t h e s a m e e - c o n d i t i o n as/~ (t) we lose n o g e n e r a l i t y if we c h o o s e x 0 - 0, Yo = 1 i n (15). I n o t h e r w o r d s , i t a m o u n t s m e r e l y t o a c h a n g e of n o t a - t i o n if we r e p l a c e (15) b y

1 0

0 - - 1

1 0

0 - - 1

B y m e a n s of t h e e - c o n d i t i o n

1 # ( x + t ) - # ( x )

- < --<e (17)

e t t ( x ) - # ( x - t )

we o b t a i n a t o n c e : r :r (18)

(13)

T H E B O U N D A R Y " C O I : ~ K E S P O N D E N C E U N D E I r Q U A S I C O N F O R M A L M A P P I N G S 137 6.5. Corresponding estimates of ~'/:~ a n d

fl'/fl

are a little less obvious. W e prove in this respect:

LEMMA.

T]~e ratios ~'/~ and fi'/fi lie between

1/'(9 i l)

and ~/(~ -i-

1).

F o r the purpose of p r o v i n g t h e L e m m a we m a y assume t h a t # (0) = 0,/~ (1) -- 1. T h e n 1

r162

i -

f # d t ,

0

a n d we h a v e to prove t h a t

l

- - - - ~ # d t S ~ 9

(19)

~ o + 1 - ~ ~o§

L e t Co be t h e family of all # which are normalized b y #(0) = O, #(1) - 1 and satisfy (17) for points x - t, x, x + t contained in t h e interval (0,1). W e set

M (x) = sup /~ (x).

;~eCo

I t is clear t h a t M ( i ) ~ / ( ~ + 1). F u r t h e r m o r e , it follows from t h e definition of M (x) t h a t

M(x) <_ M( 89 0 <_ x < 89

M ( 8 9 1 8 9 O g x 2 8 9

Hence

M(x) + M ( 1- + x) ~ M(1) +

M ( 2 x )

1 1/2 I

a n d

f M ( x ) d x = f [ M ( x ) + M ( 8 9 M ( 1 ) + 8 9 fM(x)dx.

0 0 0

We conclude t h a t

1 1

# d t < M ( x ) d x g M ( 8 9 + 1

0 0

The left-hand inequality in (19) follows on replacing #(t) b y 1 - / t ( 1 - t ) . The same b o u n d s for fl'/fl are f o u n d when we replace # (t) b y - # ( - t).

6.6. W e simplify (16) b y writing ~ r fl'=~//~. T h e n

D-~ D - 2 r ( ~ + ~ )

~ ( 1 + ~ 2 ) + - ( 1 + ~ 2)

( l + r 2 ) + 2 ( 1 - ~ r ] ) ( 1 - r ~ ) ,

a n d t h e point (~, ~1) is restricted to t h e square

1

~ + 1 ~ , ~ 9

(14)

138 A . B : E U R L I N G A : N D L . A H L F O I ~ S

B e c a u s e of t h e s y m m e t r y we m a y s u p p o s e t h a t ~ > z]. U n d e r t h i s c o n d i t i o n our e x p r e s s i o n has its l a r g e s t v a l u e w h e n ~/fl a t t a i n s its m a x i m u m 9- H e n c e we f i n d t h a t

D + ]5 --< F (~, ~) 1 (20)

w h e r e F (~, ~) - a (~, ~1) ~- b ($, ~) r,

r

( e + l ) 2 ? ( 9 ~ - ~ ] ) 2 b(~, ~ 1 ) _ ( 9 - - 1 ) ' ~ (95 ~-~) 3

a (~, ~j) - '2 (~ + ~) ' 2 (~ + V) "

T h e f u n c t i o n s a (~, ~) a n d b (~, zt) a r e seen t o be c o n v e x (from below) for ~ + ~ > 0.

H e n c e t h e m a x i m u m of F ( $ , ~1) in t h e t r i a n g l e u n d e r c o n s i d e r a t i o n can o n l y be a t t a i n e d a t one of t h e v e r t i c e s

(1 1)( o 1)

9 + 1 ' ~ + 1 ' 9 ~ - - 1 ' e ~ - - 1 or 9 + 1 ' 9 + 1

W e d e n o t e t h e v a l u e s a t t h e s e p o i n t s b y F~, F 3, F a r e s p e c t i v e l y , a n d set F~ = ai/r + b~ r.

6.7. W e h a v e a l r e a d y p r o v e d t h a t t h e d i l a t a t i o n is b o u n d e d , for i t follows f r o m (20) t h a t

D + ] 5 < 1 m a x ( F 1 , F 3, F3).

I t r e m a i n s t o d e t e r m i n e a n e x p l i c i t b o u n d b y s u i t a b l e choice of r.

I n o r d e r t o t r e a t t h i s t e c h n i c a l q u e s t i o n we c o m p u t e ( 9 - 1 ) ( 0 2 + 3 9 §

a l - a 3 = 4 ( 9 + 1 ) bl _ b3 = ( 9 - 1) ( g a - 9 - 4)

4 (9 + 1) ~

( 9 - 1) ( 9 4 + 3 9 3 + 8 9 2 + 3 9 + 1)

a l - a a = 493 (9 + 1)

( 9 - 1) ( 9 5 - 9~ + 3 9 + 1) b 1 - b 3 =

4 93 (9 + 1) 3

I t is seen t h a t a 1 - - a 3 a n d b 1 - b a are b o t h > 0 for Q > 1, a n d h e n c e F1 > F 3 for all r.

C o n s e q u e n t l y , we n e e d o n l y c o m p a r e F~ a n d F 2.

The i n e q u a l i t y F x > F 2 h o l d s if

(al--a2) ~-(bl-b2)r2~O.

(15)

THE BOUNDARY CORRESPONDENCE U57DER QUASICONFORMAL MAPPINGS 1 3 9

T h e m i n i m u m of F 1 is a t t a i n e d for r = Val/bl, a n d we c o n c l u d e t h a t t h i s m i n i m u m is g r e a t e r t h a n t h e c o r r e s p o n d i n g v a l u e of F 2 if

(a, - %) b 1 § (b I b2) a I > 0.

A f t e r a l e n g t h y c o m p u t a t i o n one finds t h a t t h i s e x p r e s s i o n e q u a l s ( ~ - l )

~(~§247

8 (~ + 1)a a n d hence t h a t i t is i n d e e d p o s i t i v e .

A c c o r d i n g l y , we h a v e p r o v e d t h a t

§ l = 2 V a l b l ,

K

a n d h e n c e t h a t K _< }/a 1 b t ~ V'a~ b I - 1.

W e p r e f e r to r e p l a c e t h i s c o m p l i c a t e d r e s u l t b y t h e s i m p l e r i n e q u a l i t y K ~ o 2 a n n o u n c e d in t h e t h e o r e m . To o b t a i n it., it is sufficient to show t h a t

( ' ; 4 a l b t ~ ~2+~.2 9

E x p l i c i t l y , t h i s i n e q u a l i t y r e a d s

(~ - 1)(3~o 7 + ~6 -i- 895 + 1294 4 e - 4 ) > 0 , a n d i t is o b v i o u s l y s a t i s f i e d for all o > 1.

7. Absolute Continuity

7.1. I t has b e e n a n o p e n q u e s t i o n w h e t h e r t h e b o u n d a r y c o r r e s p o n d e n c e i n d u c e d b y a q u a s i c o n f o r m a l m a p p i n g is a l w a y s g i v e n b y a n a b s o l u t e l y c o n t i n u o u s f u n c t i o n fl- Our T h e o r e m 1 r e d u c e s t h i s q u e s t i o n t o one t h a t d e a l s o n l y w i t h m o n o t o n e f u n c t i o n s of a r e a l v a r i a b l e . The a n s w e r is in t h e n e g a t i v e , a n d e v e n t h e following s t r o n g e r s t a t e m e n t is true:

THEOREM 3. There exists a quasicon/ormal mapping o / t h e hall-plane on itsel/ whose boundary correspondence is given by a completely singular [unction ,u with ~ (tt) arbitrary close to 1.1

1 We wish to acknowledge that Mr. Errett Bishop has also constructed a function which satisfies a ~-condition without being absolutely continuous. The construction that we shall use is essentially different from his.

(16)

1 4 0 A. BEUI~LII~G A N D L . A H L F O R S

F r o m a f u n c t i o n - t h e o r e t i c v a n t a g e p o i n t t h e m o s t s t r i k i n g c o n s e q u e n c e of t h i s t h e o - r e m is t h a t t h e d i s t i n c t i o n b e t w e e n sets of z e r o a n d p o s i t i v e h a r m o n i c m e a s u r e is n o t p r e s e r v e d u n d e r q u a s i c o n f o r m a l m a p p i n g s .

7.2. L e t ~ > 1 b e g i v e n . W e c h o o s e a n i n c r e a s i n g s e q u e n c e of n u m b e r s o,,, 1 < o~ < ~, a n d a f i x e d n u m b e r ~, 0 < ~ < ( ~ i - 1)j'(~l § 1).

W e a r e g o i n g t o c o n s t r u c t a n i n f i n i t e s e q u e n c e of i n t e g e r s 0 < n I < n 2 < ... w i t h t h e p r o p e r t y t h a t t h e f u n c t i o n s ,u~(x), d e f i n e d b y

v

# , , ( x ) = 0 f ~l~I 1~ (1 + 2

cosn~x) dx,

s a t i s f y ~ (/&) _< o, a n d c o n v e r g e t o a s i n g u l a r f u n c t i o n # (X) w i t h ~ (#) _< ~.

To s i m p l i f y t h e n o t a t i o n we s h a l l use t h e s a m e s y m b o l s / ~ , ~ n d l~ for t h e c o r r e s p o n d - ing i n t e r v a l a n d s e t f u n c t i o n s . S i n c e

p,.~ ~ (x) = i (1 + 2 cos n,.: ~ x)/u,((x)

dx

o

< / ~ + 1 (oJ) ~ 1 +

we h a v e 1 - ) . = , u T ( 0 ) ) - :

for a n y i n t e r v a l ~o. F o r a n y p a i r of i n t e r v a l s co, co' we o b t a i n 1 - ) ~ < /~,, ~ 1 (co) #,, (~o) 1 + ) ~

1-~-),--tl~l(o./)~

:---/t, (~o') "-< 1 - ) ~ " (21)

7 . 3 . W e c a n c h o o s e a n a r b i t r a r y n 1 > 0, for i t is o b v i o u s t h a t Q (/q) < (1 + 2 ) / ( 1 - 2)

< O~. S u p p o s e t h a t n a , . . . , n , , h a v e b e e n d e t e r m i n e d . I f

i - 1 2~

t h e n f #~ (x) cos

n,.~lxdx=O.

0

F o r t h i s r e a s o n , a n d b y R i e m a n n - L e b e s g u e ' s L e m m a ,

3~

f ~ : (X) COS nv+i x d x - - > O o

w h e n n,,-1-->o0, u n i f o r m l y for all x. H e n c e #~+1 t e n d s u n i f o r m l y t o / ~ .

L e t ~o a n d o~' d e n o t e t w o n e i g h b o r i n g i n t e r v a l s (x - t, x) a n d (x, x § t) of l e n g t h t.

S i n c e #~ (x) is u n i f o r m l y c o n t i n u o u s we c a n f i n d ~1,, > 0 so t h a t

(17)

T H E B O U N D A R Y C O R R E S I ~ O N D E N C E U ] S T D E R Q U A S I C O N F O R M A L M A P P I N G S 141 l + ) t 1 _ < f f . ( ~ o ) < l - - 2

1 - ) . q,,+l ff~ (aY i = 1 + ) . ~.+1 w h e n e v e r t <~/~. T o g e t h e r w i t h (21) i t follows t h a t

1 ,u,+l(w)_<e.+l

q,+i

ff.+1(r

(22)

u n d e r t h e s a m e c o n d i t i o n on t.

B e c a u s e if,,+1 t e n d s u n i f o r m l y t o #~, a n d b e c a u s e ~(#~) =< ~ < ~+a, we can choose n,+l so t h a t (22) is also t r u e for t > ~/,. I n o t h e r words, we can choose n,,+l so t h a t ~ (ff~+l)

< ~+1. I n a d d i t i o n , we can a n d will m a k e sure t h a t

I if,,+1 (x) - if, (x) l < y2 1 .N,, (23)

for all x.

7.4. F o r v~>oo t h e sequence {#,~} converges u n i f o r m l y to a n o n - d e c r e a s i n g l i m i t f u n c t i o n p. I t is clear t h a t ff (0) = 0, ff (x + 2~) - / t

(x) +

2 z , a n d ~ (if) ~ ~. W e claim t h a t ,u is p u r e l y s i n g u l a r .

To see t h i s we w r i t e

oo

g ( x ) = log (1 + 2 cos x ) = ~ 7ke~'~,

oo

w h e r e

a n d oo.

-oo

if

Y 0 = ~

l o g ( l + 2 c o s x ) d x = - a < O

0

W e d e t e r m i n e q so t h a t

ikl>q

a eikx

T h e n g ( x ) < - 2 + ~ yk

1_-<.1 k I:.<q

a n d log ff~ (x) = ~ g (nj x) < - j=l 2- + ~ ~k e 'knJ ~ (241

l < l k l < q =

- va+qb,(x).

2

T h e F o u r i e r e x p a n s i o n of r c o n t a i n s a t m o s t 2 q,, d i f f e r e n t powers, a n d in each t e r m t h e coefficient is

(18)

142 A . B E U I ~ L I : N G A N D L . A t I L F O R S

'f

H e n c e ._~ . r

dx

"/5 '2 q~ S 2.

0

As a r e s u l t t h e s u b s e t of (0, 2 7~) on which r > a v / 4 is of m e a s u r e <

c/r,

where c is a c o n s t a n t t h a t d e p e n d s o n l y on 2. B e c a u s e of (24) t h i s set c o n t a i n s t h e set E , d e f i n e d b y t h e i n e q u a l i t y

a i1

~: (x) > e - 7 .

C o n s e q u e n t l y t h e m e a s u r e m(E,.) of t h e l a t t e r set t e n d s to 0, while on t h e o t h e r h a n d

# (E,.)-->2 ~.

W e m a k e use of t h e f a c t t h a t

#'~ (x)

is a t r i g o n o m e t r i c p o l y n o m i a l of d e g r e e _< N~ =

i,

: ~ . hi.

F o r t h i s r e a s o n E,., c o n s i d e r e d on t h e u n i t circle, consists of a t m o s t N,.

1

arcs. F r o m (23) we o b t a i n

]f~(x)-/,,.(x)l<l/(v-1)N,,,

a n d we conclude t h a t

i#(E~)--/i,,(E,.)l

< 1 / ( v - 1). H e n c e /.t(E~)-+2u, a n d since

m(E,,)--~O

it follows t h a t

/t

is p u r e l y s i n g u l a r on (0,2~), a n d c o n s e q u e n t l y on t h e whole real axis.

Références

Documents relatifs

Remarque : Ces résultats sont notamment utilisés en mécanique pour le travail exercé par une force lors d’un déplacement.. On dit que deux vecteurs

Dans chacun des cas suivants, calculer cos( AB , AC ) et déterminer la mesure principale en radians de l’angle ( AB , AC ).. On rappelle que les triangles formés par O et

[r]

perpendiculaire et dirigé vers le point O, le centre du rayon de courbure (cercle pointillé de rayon r).. 2) Référentiel et bilan des forces: Comment décrire le mouvement d´un objet

Justifier (sans calcul) son raisonnement. b) Dans le cas de ce train presque aussi long que la gare, cela imposerait une vitesse tellement faible lors de la traversée que ce

• pour vous entrainer, vous pouvez prouver le théorème : Toute suite convergente

[r]

Lorsque des r´ esultats du cours seront utilis´ es, ils devront clairement ˆ etre. ´