• Aucun résultat trouvé

Dur´ ee de l’´ epreuve : 3 heures.

N/A
N/A
Protected

Academic year: 2021

Partager "Dur´ ee de l’´ epreuve : 3 heures."

Copied!
9
0
0

Texte intégral

(1)

Universit´ es Paris 6, Paris 7, Paris 11, ´ Ecole Polytechnique & ´ Ecole Normale Sup´ erieure Master ICFP – Parcours de physique quantique : de l’atome au solide

Int´ egrale de chemin – Examen

Lundi 10 Juin 2013

Dur´ ee de l’´ epreuve : 3 heures.

Recommandations :

R´ edigez succintement et clairement votre r´ eponse.

Bar` eme indicatif :

Probl` eme 1 : 10 & Probl` eme 2 : 10

1 G´ en´ eralisation de la loi de l’arcsinus pour un pont brownien

Consid´ erons un mouvement brownien libre x(τ ) pour τ ∈ [0, t], d´ ecrit par la mesure de Wiener Dx(τ ) exp − 1

2 Z t

0

dx(τ ) dτ

2

. (1)

Nous supposons que le processus part de l’origine, x(0) = 0. Nous ´ etudions la distribution du temps pass´ e sur le demi axe positif

T [x(τ )]

def

= Z t

0

dτ θ(x(τ )) o` u θ (x) =

( 1 si x > 0

0 si x < 0 (2)

0.0 0.2 0.4 0.6 0.8 1.0

-30 -20 -10 0 10

Ԑt

x H Τ L

0.0 0.2 0.4 0.6 0.8 1.0

-10 0 10 20 30

Ԑt

x H Τ L

Figure 1 – A gauche : un processus de Wiener. ` ` A droite : un pont brownien.

Rappel : loi de l’arcsinus.– On rappelle que la distribution de la fonctionnelle T[x(τ )] pour un processus de Wiener, 1 est donn´ ee par la loi de l’arcsinus obtenue par Paul L´ evy :

P t

(L´evy)

(T ) = 1 π p

T (t − T) pour T ∈ [0, t] . (3)

1

Un processus de Wiener est un mouvement brownien issu de l’origine et sans contrainte (Fig. 1, gauche).

1

(2)

L’objectif du probl` eme est d’obtenir la loi ´ equivalente caract´ erisant la distribution de T[x(τ )]

sur les ponts browniens. 2 Pour cela on commence par s’int´ eresser ` a la fonction g´ en´ eratrice P b t (p) =

Z

dT e −pT P t (T ) = D

e −p T[x(τ)] E

ponts x(τ) (4)

o` u la moyenne est prise sur l’ensemble des ponts browniens, x(τ ) pour τ ∈ [0, t] avec x(0) = x(t) = 0.

1/ ´ Ecrire P b t (p) ` a l’aide de l’int´ egrale de chemin.

2/ Propagateurs.

a) D´ eduire que P b t (p) peut s’´ ecrire comme un rapport de deux propagateurs P b t (p) = h 0 | e −tH

p

|0 i

h 0 | e −tH

0

|0 i (5)

et donner l’expression des op´ erateurs H p et H 0 .

b) ` A quelle ´ equation aux d´ eriv´ ees partielles ob´ eit h x | e −tH

0

| 0 i ? Donner son expression.

3/ Fonction de Green.– On introduit la fonction de Green G(x; α)

def

=

Z ∞

0

dt e −αt h x | e −tH

p

|0 i = h x | 1 α + H p

| 0 i (6)

a) ` A quelle ´ equation diff´ erentielle ob´ eit G(x; α) ? b) R´ esoudre l’´ equation et montrer que G(0; α) =

√ 2 p

√ α + p − √ α

.

4/ La transformation de Laplace inverse permettant d’obtenir le propagateur h 0 | e −tH

p

| 0 i peut ˆ

etre effectu´ ee ` a l’aide de la formule Z ∞

0

dt e −at − e −bt t 3/2 = 2 √

π √ b − √

a

(7) D´ eduire l’expression de h 0 | e −tH

p

|0 i puis de P b t (p). V´ erifier votre r´ esultat en analysant la limite p → 0.

5/ Distribution.– Quel est le support de la distribution ? D´ eduire P t (T ) (` a partir de P b t (p), on peut obtenir la distribution quasiment sans calcul). Comparer ce r´ esultat ` a la loi de l’arcsinus et interpr´ eter la diff´ erence.

6/ Interpr´ eter ce r´ esultat dans le contexte d’un jeu de pile ou face.

2

Un pont brownien est un mouvement brownien conditionn´ e ` a revenir ` a son point de d´ epart (Fig. 1, droite).

2

(3)

2 Polym` ere dans un ´ ecoulement fluide

A. Pr´ eliminaires : propagateur d’une particule dans un potentiel lin´ eaire Dans la situation unidimensionnelle, on consid` ere une particule de masse m sur laquelle s’exerce une force constante F dirig´ ee dans le sens positif.

1/ ´ Ecrire le lagrangien L (x, x) et les ´ ˙ equations du mouvement.

2/ Quelle est la trajectoire classique telle que x(0) = x 0 et x(t) = x 1 ? 3/ Montrer que l’action classique est

S = m(x 1 − x 0 ) 2

2t + F t

2 (x 0 + x 1 ) − F 2 t 3

24m . (8)

4/ D´ eduire l’expression du propagateur semi-classique K(x 1 , t|x 0 , 0) =

s

− 1 2iπ~

2 S

∂x 1 ∂x 0

exp iS

~ (9)

Justifier que le calcul semi-classique donne ici le r´ esultat exact (d’o` u le signe

=

).

5/ Donner l’expression du propagateur euclidien (pour ~ = m = 1) K(x, −it|0, 0) =

Z x(t)=x x(0)=0

Dx(τ ) exp − Z t

0

"

1 2

dx(τ ) dτ

2

− F x(τ )

#

(10) B. Application : ADN dans un ´ ecoulement fluide

Une technique d’analyse de l’ADN consiste ` a placer la mol´ ecule, attach´ ee par une de ses extr´ emit´ es, dans un ´ ecoulement fluide (Fig. 2). ` A cause de la viscosit´ e du fluide, chaque mo- nom` ere subit une force F ~ = +C η b ~ v o` u η est le coefficient de viscosit´ e dynamique, b la taille d’un monom` ere et C un coefficient sans dimension. Dans le probl` eme, on n´ egligera la d´ ependance spatiale du champ de vitesse ~ v : on analysera les propri´ et´ es de la mol´ ecule en supposant que chaque monom` ere subit une force constante F ~ . La mol´ ecule d’ADN est accroch´ ee au point ~ r(0) = ~ 0. Elle est constitu´ ee de N monom` eres. On introduit β = 1/k B T .

V

OLUME

84, N

UMBER

20 P H Y S I C A L R E V I E W L E T T E R S 15 M

AY

2000

Dynamics of a Tethered Polymer in Shear Flow

Patrick S. Doyle,* Benoit Ladoux, and Jean-Louis Viovy

Physico-Chimie Curie, 26 rue d’Ulm, 75248 Paris Cedex 05, France

( Received 29 November 1999 )

The dynamics of a single polymer tethered to a solid surface in a shear flow was observed using fluorescently labeled DNA chains. Dramatic shear enhanced temporal fluctuations in the chain exten- sion were observed. The rate of these fluctuations initially decreased for increasing shear rate

g!

and increased above a critical

g. Simulations revealed that these anomalous dynamics arise from a continual!

recirculating motion of the chain or

cyclic dynamics. These dynamics arise from a coupling of the chain

velocity in the flow direction to thermally driven fluctuations of the chain in the shear gradient direction.

PACS numbers: 83.10.Nn, 83.20.Jp, 87.15.He, 87.17. – d

Observations of individual DNA chains by fluorescence videomicroscopy have recently provided unique and valu- able insights into polymer dynamics. For free chains in elongational flow, this technique revealed complex stretch- ing dynamics which are strongly dependent upon the ini- tial conformation [1,2]. The behavior of free molecules in shear flow was also studied by this technique, experimen- tally demonstrating the existence of a previously antici- pated tumbling motion [3–5]. Observation of individual DNA chains in the course of electrophoresis has played a key role in our understanding of this technique of central importance for biology [6]. The observation of individ- ual DNA molecules has provided polymer physics with a new paradigm, demonstrating that individual chains in an ensemble can behave very differently from each other and from the simplified mental representation of an average random coil developed and extensively used in the previ- ous decades. Tethered polymers are of central importance in a variety of applications such as colloidal stabilization, biocompatibility, lubrication, chromatography, and capil- lary electrophoresis [7]. In most cases these applications involve shearing of the tethered polymers. Despite this ubiquitous use, the nonequilibrium dynamics of sheared tethered polymers is poorly understood. Most theories [8] so far have relied on a string of blobs representation, which inherently assumes a quasiequilibrium force balance on the chain. Simulations and numerical calculations [9]

have focused mostly on average chain properties, neglect- ing dynamics. These previous studies have engrained a rather static average chain picture for a tethered polymer in shear flow.

Here we apply for the first time videomicroscopic ob- servation of individual DNA chains to the investigation of tethered polymers subject to a shear flow. We show that shearing a tethered chain gives rise to large temporal fluctu- ations in the chain extension. Simulations reveal that these fluctuations are due to a continual recirculating motion of the chain. These anomalous cyclic dynamics shed new light on this difficult and practically important problem.

DNA molecules with a contour length of 18 mm [10]

were attached by one end to the bottom of a rectangular mi- crochannel, submitted to shear flow and visualized in real

time using standard fluorescence microscopy techniques (Fig. 1). Images were transferred to a computer and the length of the molecules was determined [11]. The dimen- sionless flow strength is characterized by the Weissenberg number, Wi " ! gt, where t is the longest relaxation time of the polymer and g ! is the shear rate. We determine t by fitting to a single exponential the decay of the autocorre- lation function !x"t#x"t 1 T#$ at equilibrium (Wi " 0) (x is the chain extension, t is time, and T is the delay time) [12], yielding t " 0.40 6 0.04 s [13].

FIG. 1. Schematic of the experimental apparatus. A poly- dimethylsiloxane flow cell with channels of

500mm in width, 135mm in height, and4

cm in length was prepared on a cover- slip coated with streptavidin [R. Merkel

et al.,

Nature (London)

397, 50 (1999)] and placed in a Zeiss Axiovert 135 TV inverted

microscope equipped with a

3100

1.4 numerical aperture oil immersion objective. A solution of

l-Phage DNA molecules

(Pharmacia Biotech Products), biotinylated at one end and fluo- rescently labeled with YOYO-1 (Molecular Probes), was incu- bated in the cell until the desired surface density was achieved.

A Poiseuille flow profile was created using a microsyringe pump (kd Scientific). The height of the channel ensured a nearly uniform shear flow within the distance of one radius of gyration from the tethering surface. Stained DNA were excited with the 488 line of an argon-ion laser (Coherent) and visualized using a cooled intensified CCD camera (LHESA, Les Ulis, F ). The experiments were performed at

2463±

C in 0.5X TBE buffer (45 mM boric acid, 45 mM Tris[hydroxymethyl]aminomethane, 1.25 mM Ethylenediaminetetraacetic acid).

4%b-mercapto-

ethanol, 50

mg%ml glucose oxidase, 10mg%ml catalase, and

2 mg%ml glucose were added to the solution to minimize photobleaching.

V

OLUME

84, N

UMBER

20 P H Y S I C A L R E V I E W L E T T E R S 15 M

AY

2000 A time series of the configurations of a single molecule

is shown in Fig. 2 at four different flow strengths. At small and large Wi conformation fluctuations are modest, but at intermediate Wi the molecule undergoes large shape fluctuations. The stability of the flow was verified at all Wi using 1 mm latex beads (Molecular Probes). Furthermore, we have observed the dynamics of several molecules in the same field of view and found no correlation in their conformations. Thus these shear induced fluctuations are the intrinsic response of a tethered polymer to a shear flow.

A quantitative measure of the deformation and shape fluctuations of the chains was performed. The mean ex- tension increases rapidly as a function of Wi for Wi . 1 until Wi ! 20 (Fig. 3a). At this point the chain is ap- proximately 60% extended, and it continues to grow very slowly (reaching only 75% its contour length at Wi ! 80 and 83% at Wi ! 380). This behavior is in qualitative agreement with the stem-and-flower model [8], though experiments show a slower approach to full extension than predicted in the theory. The extension of a tethered polymer in shear lies between the shear and extensional deformation for free (untethered) polymers (Fig. 3a).

Upon shearing the standard deviation of the chain extension about the mean value (Fig. 3b) progressively in- creases up to a maximum value more than twice the value found at equilibrium when at Wi ! 5.1. When increasing the flow strength beyond Wi ! 5.1, these fluctuations decrease, but remain larger than equilibrium values. The rate of the fluctuations in chain extension was analyzed by calculating the autocorrelation function "x#t$x#t 1 T$%.

We found two distinct regimes. Up to Wi ! 0.88 the correlations decay slower than at equilibrium (Fig. 4a).

Increasing the flow strength beyond Wi ! 0.88 results in a reversal of the trend, with the rate of the fluctuations increasing (Fig. 4b). This reversal occurs at Wi ! O#1$.

At a scaling level, this corresponds to the regime where the chain begins to be significantly stretched.

To gain further insight into these nontrivial dynam- ics we performed Brownian dynamics simulations of a

FIG. 2. Time series (top to bottom) of the configurations of single DNA molecules at varying flow strengths. The horizontal scale bar in (a) is

5mm. In each series the images are separated

by an interval of

t: (a) equilibrium (Wi!0); (b) Wi!5.1;

(c) Wi

!14.5; (d) Wi!110.

bead-spring chain model with wormlike chain elasticity [14]. The lines in Figs. 3 and 4 display the results of these simulations. Strong qualitative and quantitative agreement between the simulations and experiments is found for all flow geometries. The simulations provide extra informa- tion, with regard to experiments, by allowing us to follow the chain in the x-y plane. The dynamics of the simu- lated polymers display a continuous recirculating motion or cyclic dynamics. An example of temporal fluctuations and an associated series of sample chain configurations are presented in Fig. 5. Typically, a chain starting in a configu- ration near the interface (c1) will experience a substantial fluctuation perpendicular to the surface driving it into a stronger flow (c2). The chain then stretches quickly to an extended state (c3) which will slowly rotate towards the interface. This drives the free end of the chain into a re- gion of slower flow (c4) leading to a retraction (c5), until the chain experiences another substantial fluctuation per- pendicular that reinitializes the cycle. The power spectrum of the simulated chain extensions shows no distinct peak which suggests a broad distribution of cycling times.

Extending a tethered chain in an homogeneous plug flow (where there is no velocity gradient) leads to more simple dynamics. Stretching the molecule stiffens the restoring

FIG. 3. (a) Mean fractional extension (visual length divided by contour length) versus Wi. The lines are from simulations and the symbols are experimental data. Experimental averages at each Wi were taken over at least five molecules with time av- erages of

40

s for each molecule. The data for free elongational and free shear flow are from Smith

et al.

[3]. (b) Standard devia- tion

s

of the temporal chain extension divided by chain contour length

L

versus Wi. The lines are the results of simulations and the symbols are experimental data.

4770

Figure 2 – Sch´ ema du dispositif exp´ erimental et image de la mol´ ecule d’ADN pour des vitesses d’´ ecoulement de plus en plus grandes [de (a) ` a (d)].

6/ Justifier que le poids statistique, i.e. la fonction de partition canonique, d’une chaˆıne id´ eale (monom` eres sans interaction) allant de ~ 0 ` a ~ r est

Z t (~ r | ~ 0) =

Z ~ r(t)=~ r

~ r(0)= ~ 0

D~ r(τ ) exp − Z t

0

"

1 2

d~ r(τ ) dτ

2

− β ~ F · ~ r(τ )

#

(11)

3

(4)

Rappeler la relation entre t, le nombre de monom` eres N et la taille d’un monom` ere b (` a un facteur sans dimension pr` es).

7/ En utilisant les r´ esultats de la partie A, donner l’expression de Z t (x|0) pour un polym` ere unidimensionnel.

En bonus : Donner ´ egalement l’expression de Z t (~ r | ~ 0) pour la situation tridimensionnelle pour F ~ = F ~ u x .

8/ D´ eduire la distance moyenne hx(t)i entre les deux extr´ emit´ es du polym` ere en fonction de la force F .

9/ Calculer les fluctuations Var(x(t)) = hx(t) 2 i − hx(t)i 2 .

V OLUME 84, N UMBER 20 P H Y S I C A L R E V I E W L E T T E R S 15 M AY 2000 A time series of the configurations of a single molecule

is shown in Fig. 2 at four different flow strengths. At small and large Wi conformation fluctuations are modest, but at intermediate Wi the molecule undergoes large shape fluctuations. The stability of the flow was verified at all Wi using 1 mm latex beads (Molecular Probes). Furthermore, we have observed the dynamics of several molecules in the same field of view and found no correlation in their conformations. Thus these shear induced fluctuations are the intrinsic response of a tethered polymer to a shear flow.

A quantitative measure of the deformation and shape fluctuations of the chains was performed. The mean ex- tension increases rapidly as a function of Wi for Wi . 1 until Wi ! 20 (Fig. 3a). At this point the chain is ap- proximately 60% extended, and it continues to grow very slowly (reaching only 75% its contour length at Wi ! 80 and 83% at Wi ! 380). This behavior is in qualitative agreement with the stem-and-flower model [8], though experiments show a slower approach to full extension than predicted in the theory. The extension of a tethered polymer in shear lies between the shear and extensional deformation for free (untethered) polymers (Fig. 3a).

Upon shearing the standard deviation of the chain extension about the mean value (Fig. 3b) progressively in- creases up to a maximum value more than twice the value found at equilibrium when at Wi ! 5.1. When increasing the flow strength beyond Wi ! 5.1, these fluctuations decrease, but remain larger than equilibrium values. The rate of the fluctuations in chain extension was analyzed by calculating the autocorrelation function " x # t $ x # t 1 T $%.

We found two distinct regimes. Up to Wi ! 0.88 the correlations decay slower than at equilibrium (Fig. 4a).

Increasing the flow strength beyond Wi ! 0.88 results in a reversal of the trend, with the rate of the fluctuations increasing (Fig. 4b). This reversal occurs at Wi ! O #1$.

At a scaling level, this corresponds to the regime where the chain begins to be significantly stretched.

To gain further insight into these nontrivial dynam- ics we performed Brownian dynamics simulations of a

FIG. 2. Time series (top to bottom) of the configurations of single DNA molecules at varying flow strengths. The horizontal scale bar in (a) is 5 mm. In each series the images are separated by an interval of t: (a) equilibrium (Wi ! 0); (b) Wi ! 5.1;

(c) Wi ! 14.5; (d) Wi ! 110.

bead-spring chain model with wormlike chain elasticity [14]. The lines in Figs. 3 and 4 display the results of these simulations. Strong qualitative and quantitative agreement between the simulations and experiments is found for all flow geometries. The simulations provide extra informa- tion, with regard to experiments, by allowing us to follow the chain in the x-y plane. The dynamics of the simu- lated polymers display a continuous recirculating motion or cyclic dynamics. An example of temporal fluctuations and an associated series of sample chain configurations are presented in Fig. 5. Typically, a chain starting in a configu- ration near the interface (c1) will experience a substantial fluctuation perpendicular to the surface driving it into a stronger flow (c2). The chain then stretches quickly to an extended state (c3) which will slowly rotate towards the interface. This drives the free end of the chain into a re- gion of slower flow (c4) leading to a retraction (c5), until the chain experiences another substantial fluctuation per- pendicular that reinitializes the cycle. The power spectrum of the simulated chain extensions shows no distinct peak which suggests a broad distribution of cycling times.

Extending a tethered chain in an homogeneous plug flow (where there is no velocity gradient) leads to more simple dynamics. Stretching the molecule stiffens the restoring

FIG. 3. (a) Mean fractional extension (visual length divided by contour length) versus Wi. The lines are from simulations and the symbols are experimental data. Experimental averages at each Wi were taken over at least five molecules with time av- erages of 40 s for each molecule. The data for free elongational and free shear flow are from Smith et al. [3]. (b) Standard devia- tion s of the temporal chain extension divided by chain contour length L versus Wi. The lines are the results of simulations and the symbols are experimental data.

4770

Figure 3 – Elongation moyenne de la mol´ ´ ecule d’ADN (en haut) et fluctuations (en bas) en fonction du nombre de Weissenberg Wi (proportionnel ` a la constante de cisaillement de l’´ ecoulement).

10/ Dans l’exp´ erience men´ ee ` a l’institut Curie (Figs. 2 et 3) l’´ elongation et les fluctuations sont mesur´ ees en fonction de Wi, le nombre de Weissenberg. On pourra simplement supposer ici que Wi ∝ v ∝ F . Quelle partie de la courbe les calculs permettent-ils de d´ ecrire ? Quelles sont les limitations de notre mod` ele ? Pouvez-vous expliquer qualitativement le comportement de l’´ elongation ∀ Wi ?

, Pour en savoir plus :

Les donn´ ees exp´ erimentales sont tir´ ees de : P. S. Doyle, B. Ladoux & J.-L. Viovy, Dynamics of a tethered polymer in shear flow, Phys. Rev. Lett. 84, 4769 (2000).

Remerciements ` a Martin Lenz (CR au CNRS, LPTMS, Orsay), ancien ´ el` eve ayant suivi le cours (pour la r´ ef´ erence).

Solutions disponibles sur la page du cours : rubrique

Enseignements

de http://lptms.u-psud.fr/christophe_texier/

4

(5)
(6)
(7)
(8)
(9)

Références

Documents relatifs

Force entropique.– Dans cette derni` ere partie, nous ´ etudions la situation o` u la grosse mol´ ecule de volume v b est en pr´ esence des N atomes (figure du milieu). En utilisant

Mod` ele avec interaction.– Dans le r´ egime proche de l’´ elongation maximale, le mod` ele sans interaction ne d´ ecrit pas correctement les r´ esultats exp´ erimentaux (cf..

In momentum space the Bose and Fermi distributions differ instead in a profound way. First, as a consequence of the semiclassical picture, the momentum distribution of the Fermi gas

Lisez attentivement l’´ enonc´ e et r´ edigez succinctement et clairement votre r´ eponse.. n’oubliez pas de

L3 PAPP/MEC Universit´ e Paris-Saclay Examen partiel de math´ ematiques.. Lundi 2

Lisez attentivement l’´ enonc´ e et r´ edigez succinctement et clairement votre r´ eponse. n’oubliez pas de

L3 PAPP Universit´ e Paris-Saclay Examen de math´ ematiques.. Vendredi 7

Universit´ es Paris 6, Paris 7, Paris 11, ´ Ecole Polytechnique &amp; ´ Ecole Normale Sup´ erieure Master CFP – Parcours de Physique Quantique : de l’atome au solide.. Int´ egrale