• Aucun résultat trouvé

0 x+ 1 = 0 ou x−2 = 0 ou x−1 = 0 x=−1 ou x= 2 ou x= 1 S ={−1

N/A
N/A
Protected

Academic year: 2022

Partager "0 x+ 1 = 0 ou x−2 = 0 ou x−1 = 0 x=−1 ou x= 2 ou x= 1 S ={−1 "

Copied!
3
0
0

Texte intégral

(1)

2.9 1) (x+ 1) (x2−4) = 3 (x−2) (x+ 1) (x+ 1) (x2−4)−3 (x−2) (x+ 1) = 0 (x+ 1) (x−2) (x+ 2)−3 (x−2) (x+ 1) = 0 (x+ 1) (x−2) (x+ 2)−3

= 0 (x+ 1) (x−2) (x−1) = 0

x+ 1 = 0 ou x−2 = 0 ou x−1 = 0 x=−1 ou x= 2 ou x= 1

S ={−1 ; 1 ; 2}

2) x3 +x2 = 4x+ 4 x3 +x2−4x−4 = 0 x2(x+ 1)−4 (x+ 1) = 0 (x+ 1) (x2−4) = 0 (x+ 1) (x−2) (x+ 2) = 0

x+ 1 = 0 ou x−2 = 0 ou x+ 2 = 0 x=−1 ou x= 2 ou x=−2

S ={−2 ;−1 ; 2}

3) x4 + 4 = 5x2 x4 −5x2+ 4 = 0 (x2−1) (x2−4) = 0

(x−1) (x+ 1) (x−2) (x+ 2) = 0

x−1 = 0 ou x+ 1 = 0 ou x−2 = 0 ou x+ 2 = 0 x= 1 ou x=−1 ou x= 2 ou x=−2

S ={−2 ;−1 ; 1 ; 2}

4) 9x2 −(2x+ 5)2 = 0 3x−(2x+ 5)

3x+ (2x+ 5)

= 0 (x−5) (5x+ 5) = 5 (x−5) (x+ 1) = 0 x−5 = 0 ou x+ 1 = 0

x= 5 ou x=−1 S ={−1 ; 5}

5) 2 (x2−9) =x+ 3 2 (x2−9)−(x+ 3) = 0 2 (x−3) (x+ 3)−(x+ 3) = 0

Algèbre : factorisation Corrigé 2.9

(2)

(x+ 3) 2 (x−3)−1

= 0 (x+ 3) (2x−7) = 0

x+ 3 = 0 ou 2x−7 = 0 x=−3 ou x= 72

S =

−3 ;72

6) x3 =x2 x3 −x2 = 0 x2(x−1) = 0

x= 0 ou x−1 = 0

x= 0 (solution double) ou x= 1 S ={0 ; 1}

7) x3 + 2x2−x−2 = 0 x2(x+ 2)−(x+ 2) = 0 (x+ 2) (x2−1) = 0 (x+ 2) (x−1) (x+ 1) = 0

x+ 2 = 0 ou x−1 = 0 ou x+ 1 = 0 x=−2 ou x= 1 ou x=−1

S ={−2 ;−1 ; 1}

8) x3 −3x2+ 3x−1 = 0 (x−1)3 = 0

x−1 = 0

x= 1 (solution triple) S ={1}

9) x5 −2x4 =x−2 x5 −2x4−x+ 2 = 0 x4(x−2)−(x−2) = 0 (x−2) (x4−1) = 0 (x−2) (x2−1) (x2+ 1)

(x−2) (x−1) (x+ 1) (x2+ 1) = 0

x−2 = 0 ou x−1 = 0 ou x+ 1 = 0 ou x2+ 1 = 0 x= 2 ou x= 1 ou x=−1

L’équationx2+ 1 = 0 n’a aucune solution réelle : pour toutx ∈R, on a x2 >0, c’est-à-dire x2+ 1>1>0.

S ={−1 ; 1 ; 2}

Algèbre : factorisation Corrigé 2.9

(3)

10) x3 −2x2−3x= 0 x(x2−2x−3) = 0 x(x−3) (x+ 1) = 0

x= 0 ou x−3 = 0 ou x+ 1 = 0 x= 0 ou x= 3 ou x=−1 S ={−1 ; 0 ; 3}

11) x8 + 9x4−10 = 0 (x4−1) (x4+ 10) = 0

(x2−1) (x2+ 1) (x4+ 10) = 0 (x−1) (x+ 1) (x2+ 1) (x4+ 10) = 0

x−1 = 0 ou x+ 1 = 0 ou x2+ 1 = 0 ou x4+ 10 = 0 x= 1 ou x=−1

L’équationx2+ 1 = 0 n’a aucune solution réelle : pour toutx ∈R, on a x2 >0, c’est-à-dire x2+ 1>1>0.

L’équationx4+ 10 = 0 n’a aucune solution réelle : pour toutx∈R, on a x4 = (x2)2 >0, c’est-à-direx4+ 10 >10>0.

S ={−1 ; 1}

12) 4x3 −4x2+x= 0 x(4x2−4x+ 1) = 0 x(2x−1)2 = 0

x= 0 ou 2x−1 = 0

x= 0 ou x= 12 (solution double) S =

0 ;12

Algèbre : factorisation Corrigé 2.9

Références

Documents relatifs

De l’ autre c oté de l’ évier s ont inc orporés deux (2) foyers électriques, semblables ou différents, de 1500 W de puissance chacun et de dimension de Ø145mm /Ø180mm

[r]

Cet exercice a été traité en cours comme application de la notion de suite adjacente.. On peut conclure par le théorème d'encadrement car p

Il s'agit de former une liste d'intervalles et de décrire le comportement de la suite lorsque x 0 est dans chacun des intervalles listés.. Former le tableau de variation de f µ

[r]

[r]

[r]

Compléter les pointillés de la définition ci-dessus en choisissant le mot qui convient parmi les deux propositions suivantes1.