• Aucun résultat trouvé

Role of Cx40 in the healthy and diseased vascular endothelium

N/A
N/A
Protected

Academic year: 2022

Partager "Role of Cx40 in the healthy and diseased vascular endothelium"

Copied!
192
0
0

Texte intégral

(1)

Thesis

Reference

Role of Cx40 in the healthy and diseased vascular endothelium

DENIS, Jean-François

Abstract

L'athérosclérose est une maladie chronique, progressive, immuno-inflammatoire et multifactorielle affectant des artères de moyenne ou grande taille dans des régions exposées à un flux sanguin faible oscillatoire. Ces propriétés particulières du flux sanguin induisent une signalisation intracellulaire spécifique accompagnée d'une expression distincte de gènes et provoquent des changements dans la morphologie des cellules endothéliales. La présence de jonctions gap composées de connexines entre les cellules endothéliales permet une communication directe par le passage d'ions et de petits métabolites. Trois connexines, Cx37, Cx40 et Cx43, sont exprimées dans les cellules endothéliales artérielles et forment chacune des canaux avec des perméabilités et des paramètres d'ouverture uniques. Des études sur des modèles murins ont révélé que les connexines jouent un rôle important dans la physiologie artérielle ainsi que dans l'initiation et la progression de l'athérosclérose. Cette thèse met l'accent sur la Cx40. Cette protéine est fortement exprimée dans les cellules endothéliales d'artères [...]

DENIS, Jean-François. Role of Cx40 in the healthy and diseased vascular endothelium. Thèse de doctorat : Univ. Genève, 2017, no. Sc. 5144

DOI : 10.13097/archive-ouverte/unige:101734

Available at:

http://archive-ouverte.unige.ch/unige:101734

Disclaimer: layout of this document may differ from the published version.

(2)

Professeur Jean-Claude Martinou

Section de Médecine fondamentale FACULTÉ DE MÉDECINE Département de Pathologie et Immunologie Professeur Brenda R. Kwak

Role of Cx40 in the Healthy and Diseased Vascular Endothelium

THÈSE

présentée à la Faculté des sciences de l’Université de Genève pour obtenir le grade de Docteur ès sciences, mention Biologie

par

Jean-François DENIS de

Bassenge (Belgique)

Thèse n° 5144 Genève

2017

(3)

DE GENÈVE

FACUTTÉ DES SCIENCES

DocroRAT Ès sctENcES, MENTIoN BtoloctE

Thèse de Monsieur Jean-François DENIS

intitulée

<Role of Cx40 in the Healthy and Diseased Vascular Endothelium>

La Faculté des sciences, sur le préavis de Madame B. R. KWAK, professeure ordinaire et directrice de thèse (Faculté

de

médecine, Département

de

pathologie

et

immunlogie), Monsieur

J.

MARTINOU, professeur ordinaire et codirecteur de thèse (Département de biologie cellulaire), Monsieur K.-H. KRAUSE, professeur ordinaire (Faculté de médecine, Département de pathologie et immunologie), Madame E. JONES, professeure (Centre for Molecular and Vascular Biology, Leuven, Belgium), Madame T. PETROVA, professeure (Department

of

Fundamental Oncology, University

of

Lausanne, Switzerland), autorise I'impression de la présente thèse, sans exprimer d'opinion sur les propositions qui y sont énoncées.

Genève, le 10 novembre2017

Thèse

-5144-

Le Doyen

N.B.

-

La thèse doit porter la déclaration précédente et remplir les conditions énumérées dans les "lnformations

(4)

 

                             

“We  make  our  world  significant  by  the  courage  of  our  questions  and  the   depth  of  our  answers”  

      (Carl  Sagan)

(5)

Résumé  

 

L'athérosclérose  est  une  maladie  chronique,  progressive,  immuno-­‐inflammatoire   et   multifactorielle   affectant   des   artères   de   moyenne   ou   grande   taille   dans   des   régions   exposées   à   un   flux   sanguin   faible   oscillatoire.   Ces   propriétés   particulières   du   flux   sanguin   induisent   une   signalisation   intracellulaire   spécifique  accompagnée  d’une  expression  distincte  de  gènes  et  provoquent  des   changements   dans   la   morphologie   des   cellules   endothéliales.   La   présence   de   jonctions  gap  composées  de  connexines  entre  les  cellules  endothéliales  permet   une  communication  directe  par  le  passage  d'ions  et  de  petits  métabolites.  Trois   connexines,   Cx37,   Cx40   et   Cx43,   sont   exprimées   dans   les   cellules   endothéliales   artérielles   et   forment   chacune   des   canaux   avec   des   perméabilités   et   des   paramètres  d’ouverture  uniques.  Des  études  sur  des  modèles  murins  ont  révélé   que  les  connexines  jouent  un  rôle  important  dans  la  physiologie  artérielle  ainsi   que   dans   l'initiation   et   la   progression   de   l'athérosclérose.   Cette   thèse   met   l’accent   sur   la   Cx40.  Cette   protéine   est   fortement   exprimée   dans   les   cellules   endothéliales   d'artères   saines   dans   des   régions   rectilignes   exposées   à   un   flux   sanguin   laminaire   élevé   et   atheroprotecteur,   mais   est   absente   dans   les   cellules   endothéliales  à  la  surface  de  plaques  d'athérosclérose.  Nous  avons  constaté  que   la   Cx40   est   différemment   exprimée   en   fonction   du   type   de   flux   sanguin.   Son   niveau  d'expression  est  élevé  dans  les  cellules  endothéliales  exposées  à  un  flux   sanguin   laminaire   élevé   sous   l’influence   de   la   régulation   positive   du   facteur   de   transcription   KLF4,   qui   se   lie   directement   à   (au   moins)   trois   éléments   CACCC   dans   le   promoteur   du   gène   de   la   Cx40.   En   outre,   l'absence   de   la   Cx40   amplifie   l'athérosclérose  induite  par  les  contraintes  de  cisaillement  du  flux  sanguin  dans  

(6)

un  modèle  murin.  Cela  s'explique  par  une  fonction  de  la  Cx40  indépendante  de  la   fonction   de   jonction   gap   et   importante   pour   le   développement   de   l’athérosclérose.   L'interaction   fonctionnelle   entre   IκBα   et   la   Cx40   réduit   la   réponse  inflammatoire  endothéliale  en  altérant  la  translocation  de  NFκB  dans  le   noyau.  De  plus,  le  séquençage  ARN  et  gene  set  enrichment  analysis  (GSEA)  ont   permis  d’identifier  le  cycle  cellulaire  comme  un  processus  régulé  par  la  Cx40  en   condition   de   flux   sanguin   laminaire   élevé.  La   diminution   de   l’expression   de   la   Cx40   par   interférence   d’ARN   sous   flux   sanguin   laminaire   élevé   a   augmenté   la   proportion   de   cellules   endothéliales   positives   aux   proliferating   cell   nuclear   antigen   (PCNA)   et   a   diminué   la   proportion   de   cellules   endothéliales   dans   la   phase   G0/G1   in   vitro.   Pour   finir,   différents   poissons-­‐zèbres   mutés   pour   les   orthologues   de   la   Cx40,   c'est-­‐à-­‐dire   Cx41.8t1/t1,   Cx41.8tq270/tq270   et   Cx41.8t1/t1Cx45.6-­‐/-­‐,  ont  été  utilisés  dans  le  laboratoire.  Ces  poissons-­‐zèbres  qui   sont  soit  déficients  pour  la  Cx41.8  (Cx41.8t1/t1),  soit  avec  une  activité  réduite  du   canal   (Cx41.8tq270/tq270)   ou   avec   une   absence   des   deux   orthologues   (Cx41.8t1/t1Cx45.6-­‐/-­‐),   ont   été   croisés   avec   des   poissons   exprimant   l'eGFP   dans   l'endothélium   (flk1:   eGFP)   et   les   protocoles   de   génotypage   ont   été   optimalisés   dans  le  laboratoire.  Cela  ouvre  de  nouvelles  perspectives  pour  des  expériences   permettant   de   visualiser   les   premières   étapes   de   l'athérogenèse   ainsi   que   des   expériences  investiguant  le  rôle  de  la  "Cx40"  endothéliale  dans  la  vasculogenèse   et  l’angiogenèse.  

(7)

Abstract  

Atherosclerosis   is   a   multifactorial   chronic   progressive   immuno-­‐inflammatory   disease  that  forms  at  regions  in  medium-­‐  to  large-­‐sized  arteries  that  are  exposed   to   low,   oscillatory   shear   stress.   Shear   stress   patterns   prime   endothelial   cells   (ECs)  to  specific  intracellular  signaling  inducing  distinct  gene  expression  and  cell   morphology.  Presence  of  gap  junction  channels  composed  of  connexins  between   ECs  allows  for  direct  communication  by  enabling  the  passage  of  ions  and  small   metabolites.  Three  connexins  are  expressed  in  arterial  ECs,  i.e.  Cx37,  Cx40  and   Cx43,  forming  each  channels  with  unique  permeabilities  and  gating  properties.  

Studies  on  mouse  models  have  revealed  that  connexins  play  an  important  role  in   arterial  physiology  and  in  the  initiation  and  progression  of  atherosclerosis.  This   thesis  focuses  on  Cx40.  This  protein  is  highly  expressed  in  ECs  in  straight  parts  of   healthy   arteries   exposed   to   atheroprotective   high   laminar   shear   stress   (HLSS),   but  is  lost  in  ECs  overlying  atherosclerotic  plaques.  We  found  that  Cx40  is  a  shear   stress   response   gene.   Its   expression   level   is   enhanced   in   ECs   exposed   to   HLSS   through  the  upregulation  of  the  transcription  factor  KLF4,  which  directly  binds   to  (at  least)  three  CACCC  elements  in  the  Cx40  promoter.  Furthermore,  absence   of  endothelial  Cx40  exacerbates  shear  stress-­‐induced  atherosclerosis  in  a  mouse   model.   This   is   explained   by   a   novel   channel-­‐independent   function   of   Cx40   relevant   for   atherosclerosis;   the   functional   interaction   of   IκBα-­‐Cx40   reduces   endothelial   activation   by   impairing   NFκB   translocation   to   the   nucleus   thus   reducing  inflammatory  responses.  In  addition,  RNAseq  and  gene  set  enrichment   analysis  identified  cell  cycle  progression  as  an  important  down-­‐stream  target  of   Cx40   under   HLSS.   Downregulation   of   Cx40   by   an   siRNA   approach   under   HLSS  

(8)

increased   the   proportion   of   proliferating   cell   nuclear   antigen   (PCNA)-­‐positive   ECs   and   decreased   the   proportion   of   ECs   in   the   G0/G1   phase  in   vitro.   Finally,   zebrafish   models   mutated   for   Cx40   orthologues,   i.e.   absence   of   Cx41.8   (Cx41.8t1/t1),   reduced   channel   function   of   Cx41.8   (Cx41.8tq270/tq270)  and   with   absence   of   the   2   orthologues   (Cx41.8t1/t1Cx45.6-­‐/-­‐),   were   introduced   in   the   laboratory.   Cross-­‐breeding   with   a   zebrafish   model   expressing   eGFP   in   the   endothelium  (flk1:eGFP)  was  performed  and  genotyping  protocols  have  been  set   up.  This  opens  new  perspectives  for  experiments  visualizing  the  earliest  steps  in   atherogenesis  as  well  as  experiments  examining  the  role  of  endothelial  “Cx40”  in   vasculogenesis/angiogenesis.  

   

(9)

Table  of  contents  

Résumé  ...  3  

Abstract  ...  5  

Table  of  contents  ...  7  

Abbreviations  ...  9  

1   Introduction  ...  14  

1.1   General  introduction  ...  14  

1.2   Atherosclerosis  ...  14  

1.3   Blood  Flow  and  EC  biology  ...  18  

1.3.1   Shear  Stress  ...  18  

1.3.2   Shear  stress  sensors/mechanotransduction  ...  20  

1.3.3   Shear  stress  models  ...  22  

1.3.4   Shear  stress  response  ...  32  

1.3.4.1   Atheroprotective  shear  stress  ...  32  

1.3.4.1.1   KLFs  ...  35  

1.3.4.2   Atheroprone  shear  stress  ...  36  

1.3.4.2.1   NF-­‐κB  ...  38  

1.4   Connexins  ...  40  

1.4.1   Connexins  in  the  vasculature  ...  42  

1.4.2   Connexins  affect  atherosclerosis  ...  46  

1.4.2.1   Cx37  ...  46  

1.4.2.2   Cx40  ...  47  

1.4.2.3   Cx43  ...  48  

1.4.3   Genetic  variations  in  vascular  connexins  may  affect  atherosclerosis  ....      ...  50  

1.4.4   Connexin  regulation  in  endothelial  cells  ...  54  

1.4.5   Connexin  expression  and  shear  stress  ...  55  

1.4.5.1   Cx43  ...  56  

1.4.5.2   Cx37  ...  57  

1.4.5.3   Cx40  ...  58  

1.5   Research  objectives  ...  59  

1.6   Bibliography  ...  61  

2   Connexin40  controls  endothelial  activation  by  dampening  NFκB  activation  83   3   Connexin40  contributes  to  the  inhibition  of  endothelial  cell  proliferation  in   arterial  regions  exposed  to  high  laminar  flow  ...  99  

Abstract  ...  100  

3.1   Introduction  ...  101  

3.2   Material  and  methods  ...  104  

3.3   Results  ...  112  

3.3.1   In  vitro  Flow  induction  of  Cx40  and  KLF4  ...  112  

3.3.2   KLF4  regulates  laminar  flow-­‐dependent  Cx40  expression  ...  113  

3.3.3   Direct  interaction  of  KLF4  with  the  Cx40  promoter  region  ...  113  

3.3.4   Cx40-­‐dependent  shear  stress-­‐induced  differential  gene  expression  ...      ...  115  

3.3.5   Cx40  and  cell  cycle  control.  ...  117  

3.4   Discussion  ...  118  

3.5   References  ...  124  

(10)

3.6   Tables  ...  128  

3.7   Figure  legends  ...  135  

3.8   Figures  ...  138  

4   Cx40  orthologues  are  present  in  zebrafish  endothelial  cells.  ...  143  

Abstract  ...  144  

4.1   Introduction  ...  145  

4.2   Material  and  methods  ...  147  

4.3   Results  ...  152  

4.3.1   Cx41.8  and  Cx45.6  are  expressed  in  ECs  of  zebrafish  ...  152  

4.3.2   Genotyping  of  Cx41.8tq270/tq270,  Cx41.8t1/t1  and  Cx41.8t1/t1Cx45.6-­‐/-­‐   zebrafish.  ...  153  

4.4   Concluding  remarks  ...  154  

4.5   References  ...  157  

4.6   Tables  ...  159  

4.7   Figure  legends  ...  161  

4.8   Figures  ...  163  

5   General  discussion  ...  166  

5.1   Cx40  expression  and  shear  stress  ...  167  

5.2   GJIC-­‐independent  functions  of  Cx40  ...  171  

5.3   Pathways  regulated  by  Cx40  ...  174  

5.4   A  new  model  to  investigate  the  role  of  Cx40  in  endothelial  physiology  177   5.5   Bibliography  ...  180  

6   Acknowledgements  ...  185  

(11)

Abbreviations  

AAV8       adeno-­‐associated-­‐virus-­‐8   AF       atrial  fibrillation    

Akt       protein  kinase  B  

ApoE-­‐/-­‐     Apolipoprotein  E-­‐deficient     ASVD       Arteriosclerotic  vascular  disease     ATF       activating  transcription  factor    

AV       atrioventricular  

cAMP       cyclic  adenosine  monophosphate     CETP       cholesterylester  transfer  protein   cGMP       cyclic  guanosine  monophosphqte    

ChIP       chromatin  immunoprecipitation    

CL       cytoplasmic  loop     CT       C-­‐terminal    

CVDs       cardiovascular  diseases     CXCL12     C-­‐X-­‐C  motif  chemokine  12  

d       radial  distance  of  the  vessel  diameter    

D       vessel  diameter  

DAPI       4’,6-­‐diamidino-­‐2-­‐fenylindool     DMJ       dorsal  midline  junction  

DMNT1     DNA-­‐Methyltransferase  1    

DNA       deoxyribonucleic  acid  

dynes/cm2     dynes  per  square  centimeter    

E-­‐selectin     endothelial-­‐leukocyte  adhesion  molecule  

(12)

ECA       external  carotid  artery     ECs       endothelial  cells     ELs       extracellular  loops     eNOS       nitric  oxide  synthase  3    

ER       endoplasmic  reticulum  

ERK       extracellular  signal-­‐regulated  kinase     FACS       fluorescent-­‐activated  cell  sorting   FCS       fetal  calf  serum  

FDR       fold  discovery  rate  

GSEA       gene  set  enrichment  analysis   HCAECs     human  coronary  artery  ECs     HCD       high  cholesterol  diet  

HLSS       high  laminar  shear  stress     HUVECs     human  umbilical  vein  ECs     ICA       internal  carotid  artery    

ICAM-­‐1     intercellular  adhesion  molecule-­‐1    

IFN       interferon    

IFN-­‐γ         interferon  γ    

IKK       IκB  kinase  

IL       interleukin    

IP3       inositol  triphosphate  

JNK       c-­‐Jun  N-­‐terminal  kinase    

KLFs       Krüppel-­‐like  family  of  transcription  factors   LCA       left  common  carotid  artery    

LDA       lateral  dorsal  aorta  

(13)

LDL       low-­‐density  lipoprotein  LDL   LECs       lymphatic  endothelial  cells     LLSS       low  laminar  shear  stress    

LPS       lipopolysaccharide    

MAP       mitogen  activated  protein     MCP-­‐1       monocyte  chemotactic  protein-­‐1  

MKP-­‐1       mitogen-­‐activated  protein  kinase  phosphatase  1   N/m2       Newton  per  square  meter  

NADPH     nicotinamide  adenine  dinucleotide  phosphatase  

NES       normal  enrichment  score  

NF-­‐kB   nuclear  factor  kappa-­‐light-­‐chain-­‐enhancer  of  activated  B   cells  

NGS       normal  goat  serum  

NO       nitric  oxide  

Nrf2       nuclear  factor  erythroid  2  related  factor-­‐2   NT       N-­‐terminal    

OA       occipital  artery    

ODDD       oculodentodigital  dysplasia     OSI       oscillatory  shear  index   OSS       oscillatory  shear  stress     P2X4       P2X  purinoreceptor  4    

Pa       Pascal    

PA-­‐1       plasminogen  activator  inhibitor   PBS       phosphate  buffered  saline  

PBT       phoshate  buffered  tween  

(14)

PCNA       proliferating  cell  nuclear  antigen   PCSK9       protein  subtilisin  kexin  type  9    

PECAM-­‐1     platelet  endothelial  cell  adhesion  molecule-­‐1  

PFA       paraformaldehyde  

PFB       pectoral  fin  buds   PGI2       prostaglandin  2     PI3K       PI  3-­‐kinase  

PPARα       peroxisome  proliferator-­‐activated  receptor-­‐alpha  

PVDF       polyvinylideenfluoride  

Q,       flow  rate    

Re       Reynolds  number  

RelA       transcription  factor  p65    

RNA       ribonucleic  acid  

ROS       reactive  oxygen  species   RPKM       reads  per  kilobase  per  million  

RT       room  temperature  

SA       sinoatrial    

SDS-­‐PAGE     sodium  dodecyl  sulfate  polyacryl  gel  electrophoresis   SEM       standard  error  of  the  mean  

SHP-­‐2       protein-­‐tyronase  phosphatase  1D     SIDS       sudden  infant  death  syndrome     siRNA       short  interfering  RNA  

SIRT1       sirtuin-­‐1    

SNP       single  nucleotide  polymorphism  

SSC       saline-­‐sodium  citrate  

(15)

STA       superior  thyroid  artery     TF       transcription  factor    

TFBS       transcription  factor  binding  sites   TGF-­‐β       transforming  growth  factor    

TM       thrombomodulin    

TNF       tumor  necrosis  factor   TNF-­‐α       tumor  necrosis  factor  α  

TRPV       transient  receptor  potential  cation  channel   TWIST1     twist  related  protein-­‐1    

UTR       3’-­‐untranslated  region  

VCAM-­‐1     vascular  cell  adhesion  molecule-­‐1     VEGFR2     vascular  endothelial  growth  factor-­‐2   VSMCs       vascular  smooth  muscle  cells    

vWF       von  Willebrand  factor    

WISH       whole  mount  in  situ  hybridisation   WSS       Wall  shear  stress  

WT       wild  type  

ZO-­‐1       zona  occludens-­‐1   μ       fluid  viscosity    

μ       blood  viscosity  

ρ       density  of  blood  

τ       shear  stress

(16)

1.1 General  introduction  

Cardiovascular   diseases   (CVDs)   are   the   first   cause   of   death   worldwide   [1-­‐3].  

They   form   a   group   of   disorders   of   the   heart   and   blood   vessels   that   include:  

coronary   heart   disease,   cerebrovascular   disease   (stroke),   peripheral   artery   disease,  rheumatic  heart  disease,  congenital  heart  disease,  deep  vein  thrombosis   and  pulmonary  embolism  [4].  In  2012,  it  was  estimated  that  17.5  million  people   died  from  CVDs,  accounting  for  31%  of  all  deaths  worldwide.  Prediction  by  the   World   Health   Organization   (WHO)   for   2030   show   that   death   due   to   CVDs   will   rise  to  37%  of  which  approximately  75%  will  occur  in  low  and  middle  income   countries   [1].   In   line   with   this   data   the   WHO   launched   in   September   2016   the   initiative  “Global  Hearts”  to  beat  the  global  threat  of  CVD,  including  heart  attack   and  stroke,  illustrating  the  importance  of  this  threat  [5].  

The  underlying  cause  of  acute  events  like  heart  attack  and  stroke  is  the  blockade   of   an   artery   preventing   oxygen   rich   blood   to   reach   the   heart   or   brain   [6].   The   main   cause   of   such   a   blockade   is   the   rupture   of   an   atherosclerotic   plaque,   a   fibrous-­‐fatty  deposit  on  the  inner  wall  of  arteries  [7].  

1.2 Atherosclerosis  

Arteriosclerotic   vascular   disease   (ASVD)   or   atherosclerosis   is   a   multifactorial   chronic  progressive  inflammatory  disease  of  medium-­‐  to  large-­‐sized  arteries  [8].  

Risk   factors   for   atherosclerosis   such   as   hyperlipidemia,   diabetes   mellitus,   hypertension   and   cigarette   smoking   are   linked   to   damaged   endothelium   [9].  

(17)

accumulation   of   low-­‐density   lipoprotein   (LDL)   particles   in   the   sub-­‐endothelial   space  of  the  arteries.  Biochemical  processes  and  oxidative  modifications  lead  to   the   formation   of   oxidized   LDL   particles   that   aggregate   and   increase   LDL   infiltration  and  subsequently  trigger  an  innate  inflammatory  response  [10,  11].  

Up-­‐regulation   of   adhesion   molecules   (e.g.   vascular   cell   adhesion   molecule-­‐1   (VCAM-­‐1)  and  intercellular  adhesion  molecule-­‐1  (ICAM-­‐1))  and  the  secretion  of   chemokines   by   ECs   triggers   the   recruitment   of   monocytes,   lymphocytes   and   neutrophils  that  adhere  on  ECs  and  transmigrate  into  the  lesion  [6,  10,  12,  13].  

(Figure  1a)  Subsequently,  monocytes  differentiate  in  macrophages  and  oxidized   LDL  is  taken  up  by  these  macrophages  becoming  foam  cells  to  form  early  plaques   (fatty  streaks)  [14,  15].  (Figure  1b)  These  early  plaques  progress  to  more  mature   atherosclerotic  plaques  due  to  the  accumulation  of  additional  inflammatory  cells   and  extracellular  lipids  forming  a  core  region  [15].  This  core  region  consisting  of   apoptotic   cells,   necrotic   cells,   cholesterol   crystals   and   extracellular   debris,   known   as   the   necrotic   core   is   surrounded   by   a   collagen   matrix   and   vascular   smooth   muscle   cells   (VSMCs).   Indeed,   activated   VSMCs,   proliferate,   dedifferentiate   and   migrate   from   the   media   to   the   intima   due   to   the   release   of   chemokines   and   growth   factors   by   inflammatory   cells   in   the   plaque   [16-­‐19].  

Furthermore,   VSMCs   have   been   found   to   trans-­‐differentiate   into   macrophage-­‐

like  cells  increasing  the  role  of  VSMC  plasticity  in  atherogenesis  [18,  20-­‐22].  The   proliferation  of  VSMCs  in  atherosclerosis  is  mainly  reparative  (e.g.  formation  of   fibrous   cap).   Transforming   growth   factor   (TGF)-­‐β   promotes   collagen   synthesis   by   VSMCs   providing   mechanical   strength   to   the   fibrous   cap   [23].   In   contrast,   VSMC   senescence   and   death   promote   atherogenesis   and   multiple   features   of   plaque  instability  [24].    

(18)

As   years   pass   and   the   plaque   grows   it   becomes   more   complex.   Intraplaque   neovascularization   results   in   a   growing   network   of   micro-­‐vessels   inside   the   plaque   leading   to   increased   entry   of   inflammatory   cells   and   this   is   associated   with   increased   plaque   vulnerability   [25,   26].   Progression   and   growth   of   the   plaque  lead  to  reduction  of  the  vessel  lumen  with  subsequent  reduced  ability  to   augment   blood   flow   during   exercise   for   instance   [27].   (Figure   1c)   Finally,   atherosclerotic  plaques  can  rupture  and  the  following  thrombosis  are  the  main   cause  of  acute  coronary  syndromes  and  sudden  coronary  death  [28].  (Figure  1d)   Plaque   rupture   is   induced   by   a   complex   multifactorial   process   that   includes   inflammation   and   biomechanical   factors   [29,   30].   Intraplaque   lipid-­‐related   inflammation   leads   to   degradation   and   weakening   of   the   plaque   tissue.   On   the   other   hand,   collagen   synthesis   and   smooth   muscle   cell   proliferation   exert   stabilizing   and   reparative   effects.   The   interplay   between   these   two   biological   features  mostly  determines  the  vulnerability  of  the  plaque  [31].  Secondly,  if  the   local   wall   stress   due   to   the   blood   pressure   and   pulsatile   forces   exceeds   the   fracture   stress   of   the   fibrous   cap   the   plaque   may   break   and   expose   the   highly   thrombogenic  plaque  core  to  the  blood  [30,  32].  Usually,  the  plaque  ruptures  at   the  shoulder  to  the  cap,  a  plaque  site  exposed  to  maximal  biomechanical  stresses   [33,  34].  

(19)

 

Figure   1:   Different   stages   in   the   development   of   atherosclerotic   plaque.   a)   Dysfunction   and   activation   of   the   endothelium   under   pro-­‐inflammatory   conditions   lead   to   platelet   and   leukocyte   adhesion   and   increased   permeability   of   the   endothelium.   b)   Monocytes   in   the   intima   start   to   accumulate   lipids   becoming   macrophages   or   foam   cells,   which   make   up   fatty   streaks.   Continued   deposition  of  matrix  components,  mononuclear-­‐cell  influx  and  the  recruitment  of  VSMCs  give  rise  to   fibro-­‐proliferative   progression   of   the   plaque.   c)   Apoptosis   of   macrophages   and   other   plaque   cells   give  rise  to  the  necrotic  core.  Fibrous  cap  formation  consisting  of  matrix  and  a  VSMC  layer.  Possible   neovascularization   within   the   plaque   from   the   adventitia.   d)   Fibrous   cap   thinning   and   erosion   in   unstable  plaques  resulting  in  plaque  rupture  leading  to  arterial  occlusion  and  myocardial  infarction   of  stroke.[17]  

Atherosclerotic   plaques   are   categorized   in   function   to   their   vulnerability   to   rupture.   Stable   plaques   are   characterized   by   a   thick   fibrous   cap,   few   inflammatory   cells   and   are   rich   in   VSMCs   and   collagen   that   protects   against   disruption.   In   contrast,   vulnerable   plaques   are   characterized   by   an   active   inflammatory   state   (high   inflammatory   cell   content),   low   VSMC   content,   a   thin   fibrous  cap,  a  large  necrotic  core  and  sometimes  intra-­‐plaque  hemorrhage  [35-­‐

38].    

(20)

Mechanical   stimuli   have   been   shown   to   affect   EC   and   VSMC   phenotype   contributing  to  initialization  and  progression  of  the  atherosclerotic  disease  [32,   39].   Indeed,   ECs   have   been   found   to   sense   these   mechanical   signals   and   in   consequence   activate   intracellular   signaling   pathways   that   regulate   gene   expression  in  ECs  themselves,  sometimes  also  leading  to  secretion  of  factors  that   regulate  VSMCs  function  [40,  41].  In  the  next  paragraph,  plaque  localization  and   EC  phenotype  in  function  of  shear  stress  will  be  discussed.  

1.3 Blood  Flow  and  EC  biology    

ECs   regulate   vascular   permeability,   vascular   tone,   thrombosis   and   hemostasis   [42].  As  previously  described,  they  have  also  been  found  to  be  highly  implicated   in   the   onset   of   atherosclerotic   lesion   development.   Although   being   a   multifactorial   disease,   atherosclerotic   plaques   have   been   observed   in   specific   regions  of  the  vasculature.  ECs  are  subjected  to  hemodynamic  shear  stress,  the   frictional  force  that  the  flowing  blood  exerts  on  the  endothelium.  Interestingly,   atherosclerotic   plaques   have   typically   been   observed   in   curved   regions   and   at   bifurcations   of   the   arteries   exposed   to   disturbed   blood   flow.   Indeed,   these   predilection   regions   experience   repetitive   phases   of   flow   reversal   resulting   in   steep  multidirectional  temporal  and  spatial  gradients  of  wall  shear  stress  (WSS)   [43-­‐46].  

1.3.1 Shear  Stress  

Shear   stress   is   expressed   in   Newton   per   square   meter   (N/m2),   Pascal   (Pa)   or   dynes  per  square  centimeter  (dynes/cm2),  and  is  defined  by  the  parallel  stress   produced  by  the  movement  of  blood  compared  to  the  static  ECs  of  the  vessel  wall   [32].  Depending  on  their  anatomical  localization,  ECs  experience  different  levels  

(21)

of   shear   stress   and   shear   gradients   (pulsatile   and   directional   changes)   [44].   In   humans  shear  stress  values  in  straight  large  conduit  arteries  vary  between  5  and   20  dynes/cm2  (1dyne  =  0.1N/m2)  and  between  19  and  60  dynes/cm2  for  small   arterioles   [47-­‐49].   If   we   consider   blood   as   a   Newtonian   fluid   and   the   vessel   diameter  of  large  conduit  arteries  relatively  constant,  the  profile  of  blood  flow  in   straight   parts   of   arteries   is   assumed   to   be   parabolic   and   shear   stress   laminar.  

Shear   stress   can   in   this   condition   be   determined   with   the   Haagen-­‐Poisseuille   equation  τ=4μQ/πd3    (shear  stress  (τ),  flow  rate  (Q),  fluid  viscosity  (μ)  and  radial   distance  of  the  vessel  diameter  (d))  [44,  48,  50].  WSS  in  straight  parts  of  arteries   can  thus  be  determined  by  calculating  the  gradient   of  local  blood  flow  velocity   close  to  the  vessel  wall  multiplied  by  the  blood  viscosity  [51].  In  bending  arterial   segments   or   at   bifurcations,   physical   laws   determine   that   blood   flow   velocities   are   spatially   distributed   (due   to   a   balance   of   pressure,   centrifugal   and   viscous   forces)   such   that   skewed   and   asymmetric   velocity   profiles   can   be   observed   at   these   locations.   In   addition,   the   direction   and   the   velocity   of   blood   flow   in   arteries   vary   throughout   the   cardiac   cycle.   As   a   result,   arterial   locations   that   experience  low  blood  flow  fluctuating  in  direction  with  both  forward  and  reverse   velocities   during   the   cardiac   cycle   are   considered   as   “disturbed   shear   stress   regions”  or  as  “exposed  to  low,  oscillatory  shear  stress”  (atheroprone  flow)  [44,   48,  50].  (Figure  2)  In  contrast,  unbranched  and  straight  parts  of  arteries  that  are   exposed   to   high   unidirectional   laminar   shear   stress   (atheroprotective   flow)   do   not  develop  atherosclerotic  lesions  [52,  53].  (Figure  2)  

(22)

 

Figure   2:   Atherosclerotic   plaques   develop   preferentially   in   areas   (Atherosclerosis-­‐susceptible   region)   at   arterial   bifurcations   exposed   to   atheroprone   flow.   In   contrast,   ECs   exposed   to   high   unidirectional   laminar   shear   stress   (atheroprotective   flow)   are   athero-­‐resistant   (Atherosclerosis-­‐

resistant  region).  Adapted  from  [52]  

These  findings  point  to  both  the  magnitude  and  the  direction  of  shear  stress  that   ECs   experience   and   these   cells   adjust   their   phenotype   in   consequence.   Various   mechanoreceptors   have   been   identified   on   the   surface   of   ECs,   which   convert   mechanical  signals  into  a  chemical  response  inside  the  cell.  

 

1.3.2 Shear  stress  sensors/mechanotransduction  

ECs   have   been   found   to   act   as   shear   stress   sensors   through   mechanotransduction.  I.e.  they  transform  the  physical  stress  of  the  exerted  shear   stress   into   intracellular   biochemical   signals   to   change   cell   function,   cell   morphology   and   gene   expression.   The   signal   transduction   in   ECs   has   been   proposed   to   follow   several   sequential   steps   [44,   54].   Firstly,   physical   deformation   of   the   cell   surface;   secondly,   intracellular   stress   transmission;  

(23)

feedback   signaling   [44].   Although   the   exact   mechanism   by   which   signal   transduction   occurs   and   which   mechanotransducers   can   sense   which   type   of   shear   stress   in   ECs   is   not   yet   fully   understood,   several   mechanosensing   and   mechanotransduction   systems   have   been   put   forward   [52,   55].   The   first   shear   stress   sensing   mechanism   has   been   described   in   1988.   Olesen   and   colleagues   described  a  K+-­‐channel  acting  as  shear  stress  sensor  [56].  Since  then,  other  ion   channels   like   transient   receptor   potential   cation   channel   (TRPV)   [57],   P2X   purinoreceptor  4  (P2X4)  [58]  and  Piezo1  [59]  have  been  linked  to  shear  stress   sensing   [60].   In   addition,   membrane-­‐bound   molecules   like   Integrins   [61],   the   junctional   complex   of   platelet   endothelial   cell   adhesion   molecule-­‐1(PECAM-­‐1),   vascular   endothelial   (VE)-­‐cadherin   and   vascular   endothelial   growth   factor-­‐2   (VEGFR2)  [62,  63],  the  tyrosine  receptors  Tie1  and  Tie2  [64],  G  protein-­‐coupled   S1P1  [65]  and  the  transmembrane  heparin  sulfate  proteoglycan  syndecan  4  [66]  

have  been  proposed  to  be  implicated  in  mechanosensing.  Last  but  not  least,  the   glycocalyx   and   specific   membrane   microdomains   such   as   primary   cilia   and   calveolae  have  been  described  as  mechanosensor  [44,  54,  55,  67,  68].  (Figure  3)   At  this  moment,  it  is  not  yet  fully  understood  which  mechanosensor  is  used  for   laminar   and   oscillatory   shear   stress,   for   instance,   and   whether   these   mechanotransduction   systems   can   act   individually   or   act   synergistically,   this   way  amplifying  each  other.    

(24)

 

Figure  3:  ECs  Mechanotransduction.  The  shear  stress  on  the  ECs  is  sensed  on  the  luminal  surface  by   different  receptors  and  various  ion  channels  that  activate  downstream  effects.[32]  

 

1.3.3 Shear  stress  models  

In  order  to  study  the  effect  of  shear  stress  on  ECs  different  in  vivo,  ex  vivo  and  in   vitro   models   have   been   developed.  In  vivo   mouse   models   can   be   used   for   their   naturally   flow   disturbed   regions   such   as   curved   and   branched   arterial   regions,   however   this   will   give   at   best   “comparative   results”   between   different   arterial   regions  but  will  not  “provide  causative  insight”  onto  the  relation  between  shear   stress  and  the  expression  of  certain  genes  [69].  In  consequence,  surgical  models   have  been  used  to  investigate  shear  stress  effects  on  the  ECs,  like  arteriovenous   fistulas,  constrictive  perivascular  cuffs  and  partial  ligation  of  arteries.    

Arteriovenous   fistulas   originally   created   for   dialysis   patients   were   the   first   interventions   to   cause   acute   changes   in   shear   stress   [70].   The   blood   flow   is   increased  in  the  artery  from  where  the  fistula  is  created.  Here,  it  was  shown  that   the  artery  dilates  (increased  lumen)  in  such  a  manner  that  the  final  experienced   shear  stress  was  not  significantly  changed  compared  to  the  original  shear  stress  

(25)

[71].   The   mouse   aorto-­‐caval   fistula   has   been   used   as   a   model   for   human   arteriovenous  fistula  [72].    

The   constructive   perivascular   cuff   model   is   used   in   hyperlipidemic   animals   to   accelerate  atherogenesis.  (Figure  4)  Cheng  et  al.  showed  with  a  flow-­‐modifying   cuff  around  the  carotid  artery  of  Apolipoprotein  E-­‐deficient  mice  (ApoE-­‐/-­‐  mice)   that   local   changes   in   hemodynamic   conditions   initiate   atherosclerosis.  

Interestingly,  they  also  described  that  plaque  vulnerability  was  associated  with   low   unidirectional   (laminar)   shear   stress   rather   than   with   oscillatory   shear   stress.   Indeed,   the   regions   of   low   laminar   shear   stress   displayed   an   atherosclerotic   lesion   with   large   lipid   core,   many   macrophages,   low   collagen   content  and  few  VSMCs  [73,  74].    

 

Figure  4:  Constrictive  perivascular  cuff  model  [75].  A:  The  conical  shaped  cast  creates  three  regions   of  shear  stress:  a  low  laminar  shear  stress  (LLSS)  upstream  of  the  cast,  a  region  of  increasingly  high   laminar   shear   stress   (HLSS)   inside   the   cast,   and   a   region   with   oscillatory   shear   stress   (OSS)   downstream   of   the   cast.   B:   Wall   shear   stress   (WSS,   left)   and   oscillatory   shear   index   (OSI,   right)   determined  by  micro  computer  tomography  (μCT)  in  carotid  artery  after  9weeks  of  cast  placement.    

 

(26)

Several  partial  carotid  artery  ligation  models  exist  to  elicit  different  degrees  of   flow   alterations   and   arterial   remodeling   in   mice.   Ligation   of   three   of   the   four   caudal  branches  of  the  left  carotid  artery  (the  internal  carotid,  occipital  and  the   external   carotid)   after   the   branching   of   the   superior   thyroid   artery   induced   significantly   reduced   flow   but   also   flow   reversal   patterns   during   diastole   characteristic  for  areas  of  disturbed  flow  [76].  (Figure  5)    

 Figure  5:  Schematic  representation  of  partial  ligation  of  the  left  common  carotid  artery  (LCA).  Three   branches  of  the  LCA  (external  carotid  artery  (ECA),  internal  carotid  artery  (ICA),  and  occipital  artery   (OA)  are  ligated  leaving  the  superior  thyroid  artery  (STA)  open.  Adapted  from  [76]  .  

 

Ligation   was   shown   to   reduce   flow   in   the   surgically   ligated   artery   and   was   resulting   in   shear   stress-­‐dependent   vascular   remodeling   [77-­‐79].   Atheroma   develops   here   in   the   untouched   left   common   carotid   artery   (LCA)   that   is   not   manipulated  during  the  procedure  and  can  be  compared  with  the  right  common   carotid  artery  (RCA).  Furthermore,  surgery  did  not  affect  shear  rate  in  the  right   common   carotid   artery   [80,   81].   A   recent   study   showed   that   partial   carotid   ligation   in   combination   with   adeno-­‐associated-­‐virus-­‐8   (AAV8)-­‐mediated   overexpression  of  proprotein  convertase  subtilisin/kexin  type  9  (PCSK9)  (AAV8-­‐

PCSK9)   induced   within   3   weeks   hyperlipidemia   and   atherosclerosis   [82].  

Inhibitors   of   PCSK9   are   a   promising   new   class   of   cholesterol   lowering   drug  

(27)

because  of  their  interference  with  cholesterol  metabolism  by  the  means  of  LDL   receptor  recycling  in  hepatocytes  [83,  84].  PCSK9  is  involved  in  the  degradation   of   the   low   density   lipoprotein   receptor   (LDLR)   and   is   found   primarily   in   the   liver,  intestine,  and  kidney  [85].  Evidence  shows  that  PCSK9  binds  to  the  LDLR   and   redirect   the   LDLR   to   the   lysosome.   Decreasing   the   available   LDLRs   on   the   cell   surface   and   thus   resulting   in   increase   LDL   in   the   serum.   Indeed,   clinical   studies   using   monoclonal   antibodies   (alirocumab   and   evolocumab)   that   inhibit   PCSK9   showed   a   reduction   of   approximately   50%   in   blood   plasma   LDL   cholesterol  levels  [86-­‐88].  

In   transgenic   mice   the   overexpression   of   the   PCSK9   protein   leads   to   hypercholesterolemia   and   atherosclerosis   [89-­‐91].   Instead   of   using   transgenic   animals,   Bjorklund  et   al.   developed   a   gain   of   function   mutant   of   PCSK9   in   a   recombinant   AAV8.   One   injection   of   AAV8-­‐PCSK9   into   wild   type   C57BL6   mice   resulted   in   significant   hypercholesterolemia   and   atherosclerotic   plaque   formation  within  3  months.  Making  it  a  good  alternative  for  germline  knockout   ApoE   or   LDLR   mice   models   [92].   Finally,   ligation   of   the   left   external   carotid   artery   branch   in   another   model   was   shown   to   reduce   significantly   the   arterial   flow   through   the   left   common   carotid   artery   and   resulted   in   flow-­‐mediated   reduction   of   the   lumen   diameter   and   medial   wall   mass   followed   by   decreased   VSMC  proliferation  and  elastin  content  compared  with  the  right  common  carotid  

artery  [79,  93,  94].      

(28)

Tabel  1:  Advantages  and  disadvantages  of  in  vivo  shear  modifying  models  in  EC  physiology  

IN  VIVO  MODEL   ADVANTAGES   DISADVENTAGE  

Naturally  flow  

disturbed  areas   • Real  chronic  in  vivo  

situation   • Chronic  model  

• Small  sample  area  

• Mice  do  not  develop   spontaneous  

atherosclerotic   lesions[95]  

• “comparative”  not  

“causative”  results   Arterio-­‐venous  

fistulas   • Flow-­‐induced  arterial  

remodeling    

• Extensive  tearing  and   fragmentation  of  the   internal  elastic  lamina   [96]  

• Venous  stenosis[97]  

• Surgical  intervention   Constrictive  

perivascular  cuff   • Distinct  flow  patterns   in  neighboring  regions  

• Fast  atherosclerotic   plaque  formation[74,   98]    

• Direct  manipulation  of   the  vessel  

• Small  sample  area  

• Loss  of  circumferential   cyclic  stretch  region   within  the  cast.  

• Surgical  intervention   Partial  ligation  

technique  of  3   branches  of  the  LCA  

• Large  portion  of  the   carotid  artery  affected  

• No  direct  manipulation   of  the  vessel    

• Large  sample  area  

• Fast  atherosclerotic   plaque  formation[76,   82,  99]  

• Surgical  intervention  

• Multiple  sutures    

Partial  ligation   technique  of  left   external  carotid   artery  branch  

• Fast  vascular  

remodeling  [79,  94]  

• Reduced  blood  flow  to   levels  of    internal   carotid  artery  [100]  

• One  suture    

• Surgical  intervention  

 

Secondly,  ex  vivo  models  using  entire  vessels,  where  ECs  are  surrounded  by  their   native   cell-­‐cell   and   cell-­‐matrix   interactions   can   be   used.   Thus,   entire   vessel   segments  are  cannulated  and  connected  to  a  perfusion  unit  where  flow  patterns  

(29)

relationship   between   shear   stress   and   oxidative   stress   used  ex   vivo   porcine   carotid  arteries  exposed  to  LLSS  and  OSS.  Here,  they  showed  that  these  explants   reduced  nitric  oxide  synthase  3  (eNOS)  expression  in  low  and  oscillatory  shear   stress   regions   [103].   These  ex   vivo   shear   models   have   in   time   been   refined   to   study   the   effects   of   other   mechanical   forces   in   the   vascular   environment   in   addition  to  shear  stress.  Here,  parallel  to  the  shear  forces  circumferential  cyclic   stretch  can  be  controlled  in  addition  to  flow  dynamics  [104,  105].  The  reduction   of  arterial  compliance  was  shown  to  increase  the  risk  of  arterial  disease  through   the  interruption  of  the  eNOS  activation  pathway  and  increasing  vascular  levels  of   oxidative  stress  [105].  Together,  this  ex  vivo  model  makes  it  possible  to  dissect   complex   interactions   of   mechanical   stresses   in   the   vascular   environment   between  shear  and  cyclic  stretch  [105].    

The   pressure   myograph   can   be   used   to   measure   physiological   functions   and   properties  of  small  arteries,  veins  and  other  vessels  with  a  maximal  diameter  of   6mm   [106].   Here,   a   small   segment   of   a   vessel   is   mounted   onto   small   glass   cannula  where  they  can  be  pressurized  to  a  specific  transmural  pressure  [107,   108].   In   contrast   to   wire   myograph   where   the   constriction   and   dilation   of   the   vessel   is   measured   through   a   force   transducer   in   high   sensitivity   isometric   conditions,   the   pressure   myograph   uses   a   digital   video   edge-­‐detection   under   isobaric   conditions   [107,   109,   110].   Therefore,   the   natural   vessel   diameter   can   be  studied  at  a  wide  range  of  shear  stresses  and  pressures  applied  to  the  lumen   of   the   vessel   [111].   The   pressure   myograph   is   primarily   used   for   small   vessels   that  have  substantial  vasoreactivity  [112].      

(30)

Tabel  2:  Advantages  and  disadvantages  of  ex  vivo  models  in  EC  physiology  

EX  VIVO  MODEL   ADVANTAGES   DISADVENTAGE  

Vessel  cannulation  &  

Pressure  myograph   • Control  of  shear  and   pressure  

• Inside  and  outside  of   the  vessel  are  

separated  

• Record  outer  and   luminal  diameter  of   vessel  

• Analysis  of  sample  after   primary  experiment  

• Record  cross  sectional   area,  wall  thickness   and  media-­‐lumen  ratio  

• Native  tissue   environment  

• Possible  occlusion  of   the  vessel  

• Quantity  of  animals  to   be  used  (lower  

sensitivity  of  pressure   myograph)  

 

Finally,  in   vitro   models   have   been   developed   using   isolated   cells   or   cell   lines   under   different   flow   conditions.   Maybe   the   easiest   and   cheapest   method   to   subject  ECs  to  shear  stress  is  the  orbital  shaker  method.  (Figure  6D)  ECs  cultured   in   petri-­‐dishes   are   placed   on   an   orbital   shaker   platform   inside   a   cell   culture   incubator.   Computational   fluid   dynamics   showed   that   when   using   a   defined   experimental   setup   (radius   of   orbital   shaker   and   rotation   rate)   a   good   approximation  of  shear  stress  values  could  be  achieved.  It  was  shown  that  in  the   center  of  the  plate  a  low  shear  stress  with  rapid  variations  in  direction  could  be   found  and  in  the  periphery  high  shear  stress  with  uniform  direction  was  present   [113,  114].  This  method  makes  it  possible  to  harvest  relatively  high  amount  of   cells  in  specific  regions  by  using  a  standardized  template  to  identify  high  and  low   shear  stress  regions  [115].  

The   cone-­‐and-­‐plate   viscometer   was   the   first   well-­‐characterized  in   vitro   shear   stress  device  introduced  by  Forbes  Dewey,  Peter  Davies  and  Michael  Gimbrone   [116,  117].  (Figure  6B)  Here,  the  shear  stress  is  created  through  the  rotation  of  a  

(31)

cone  above  a  stationary  place  containing  ECs  cultured  on  cover  slips.  This  device   was  subsequently  modified  by  other  groups  to  integrate  an  optical  system,  which   allowed   the   direct   observation   of   EC   in   response   to   shear   stress   [118].   Next,   Blackman  et  al.  developed  a  shearing  device  based  on  the  cone-­‐and-­‐plate  using  a   micro-­‐stepper   motor   technology   to   independently   control   the   dynamics   and   steady   components   of   the   shear   stress   environment.   Furthermore,   this   system   was   also   fitted   with   a   fluorescence   microscope   [119].   Finally,   Tarbell   and   colleagues   introduced   the   parallel   disk   viscometer   [120].   (Figure   6C)   Here,   following  the  model  of  the  cone-­‐and-­‐plate  device  the  cone  was  replaced  by  a  disk   that  was  linked  to  a  drive  motor  to  produce  a  defined  shear  stress  on  the  ECs  and   used  to  assess  the  effect  of  shear  stress  [121,  122].  

 

Figure   6:   Shear   stress   devices:   A)   parallel-­‐plate   flow   chamber;   B)   cone-­‐and-­‐plate   viscometer;   C)   parallel  disk  viscometer;  D)  orbital  shaker;  E)  capillary  tube.  Adapted  from  [123]  

Parallel-­‐plate  flow  chamber  systems  have  been  used  to  analyze  changes  in  the  EC   metabolism   and   morphology   in   response   to   shear   stress   [124-­‐126].   Originally,   Frangos,   McIntire,   and   colleagues   developed   a   flow   chamber   consisting   of   a   polycarbonate   plate,   a   rectangular   silastic   gasket   and   a   glass   slide   with   the   EC   monolayer   [127,   128].   (Figure   7)   The   different   parts   of   the   device   were   held   together  by  a  vacuum  at  the  periphery  of  the  slide,  forming  a  channel.  At  the  time  

(32)

flow  was  applied  to  the  channel  by  a  hydrostatic  pressure  head  between  the  two   media  reservoirs  to  produce  steady  flow  or  via  cam-­‐driven  clamps  upstream  of   the  chamber  to  achieve  pulsatile  flow.    

Figure   7:   The   parallel   plate   flow   chamber.   Cover   slips   were   covered   with   confluent   ECs.   A   silastic   gasket   was   applied   to   separate   the   cover   slip   from   the   deck   of   the   flow   chamber.   Vacuum   was   applied  to  hold  the  device  together.  Adapted  from  [129]  

Several   modified   designs   have   been   used   to   date.   Firstly,   to   assess   the   EC   monolayer  permeability  the  flow  chamber  was  attached  to  a  circulating  luminal   loop  and  basal  non-­‐circulating  loop  [130].  Next,  using  a  flow  chamber  with  at  the   center   a   series   of   arrow   shaped   channels   allowed   for   variable   shear   stresses   within   the   same   flow   chamber.   Thus,   by   changing   the   geometry   of   the   center   channels  changes  in  shear  stress  were  introduced  without  altering  the  gap  width   or  overall  flow  rate  [131].  With  this  device  the  effect  of  shear  rates  on  platelet   adhesion  onto  immobilized  fibrinogen  and  von  Willebrand  factor  (vWF)  matrices   was   studied   [132].   The   sudden-­‐expansion   flow   chamber   and   the   backward-­‐

facing   step   flow   chamber   were   designed   to   mimic   the   spatial   and   temporal   gradients   in   shear   stress   that   overlap   in   atherosclerosis   prone   regions   [133,   134].  The  sudden-­‐expansion  flow  chamber  leads  to  a  flow  separation  due  to  the   asymmetric   expansion   of   the   flow   path.   Here,   the   fluid   flows   from   a   narrow   channel   directly   to   a   wider   channel.   At   the   location   of   the   step   the   flow   recirculates   with   the   direction   against   the   main   flow   to   finally   reattach   to   the  

(33)

main  unidirectional  parabolic  flow  [134].  Finally,  to  study  the  effect  of  upstroke   slopes  of  pulsatile  flow  (shear  stress  slew  rates)  the  inlet  and  outlet  of  a  parallel   plate  flow  device  was  connected  to  symmetrical  contractions  and  diffusers.  Here,   through  precisely  monitoring  and  controlling  the  frequency,  amplitude  and  time-­‐

average   shear   stress   of   pulsatile   flow   allowed   the   independent   study   of   slew   rates  from  other  factors  [135].  

Finally,   to   study   the   effect   of   shear   stress   in   combination   with   circumferential   strain   driven   by   the   pulsating   wall   motion   ECs   were   cultured   inside   elastic,   silicon  rubber  capillary  tubes  applied  to  a  pulsatile  flow  loop.  (Figure  6E)  Here,   the   combined   effect   of   shear   stress   and   strain   were   used   to   study   the   EC   biological  responses  [136-­‐138].    

Tabel  3:  Advantages  and  disadvantages  of  in  vivo  shear  models  in  EC  physiology  

IN  VITRO  MODEL   ADVANTAGES   DISADVENTAGE  

Orbital  shaker   • Large  number  of  cells   affected  

• Conventional   laboratory  material  

• Standardized  templates   to  identify  high  and  low   shear  regions[115]  

• Shear  Gradient  from   center  to  outside[114]  

• Creation  of  secondary   flows  [139]  

Cone  &  plate  and   parallel  disk   viscometer  

• Re-­‐usable  

• Easy  to  clean  

• Better  for  disturbed   flow  conditions  [140]  

• Possible  creation  of   secondary  flows  [141]  

  Parallel  flow  

chambers   • Ideal  for  laminar  flow   experiments  [140]  

• Different  geometries   possible  

• Often  sealed  units  (e.g.  

dye  injections  not   possible)  

Silicon  elastic  tubes   • Simultaneously  shear  

and  strain  forces     • Difficult  homogeneous   seeding  of  cells  inside   the  tubes  

 

(34)

1.3.4 Shear  stress  response  

ECs  respond  to  changes  in  local  hemodynamic  stimuli  through  synthesizing  and   metabolizing   products   that   maintain   or   change   vascular   homeostasis   [52].  

Furthermore,   distinct   patterns   of   gene   expression   resulting   in   differentially   activated  mechanosensitive  signaling  pathways  have  been  identified  [142].  The   resulting   changes   in   EC   phenotype   to   a   dysfunctional   state   constitute   a   risk   factor   for   the   development   of   vascular   diseases   [52].   As   noted   before,   atherosclerosis  develops  in  a  non-­‐uniform  manner  in  atheroprone  areas.[43,  44,   143]   These   areas   are   predominantly   located   at   arterial   branch   points   and   bifurcations   or   in   curved   arteries.   Interestingly,   in   these   areas   the   flow   is   disturbed   and   changes   direction   through   the   cardiac   cycle   resulting   in   low   and/or  oscillatory  shear  stress  (atheroprone  flow)  [143].  Here,  the  ECs  display  a   highly   pro-­‐inflammatory,   pro-­‐thrombotic,   impaired   barrier   function   phenotype   that  promotes  a  pathological  outcome  [43,  52,  53].  In  contrary,  unbranched  and   straight  parts  of  arteries  that  are  subjected  to  uniform  high  laminar  shear  stress   develop  no  atherosclerotic  lesions  (atheroprotective  flow)  [143].  Indeed,  ECs  at   these  locations  have  a  high  expression  of  anti-­‐inflammatory  and  anti-­‐thrombotic   genes   [52,   53].   In   the   next   paragraph   intracellular   signals   assigned   to   atheroprotective  and  atheroprone  shear  stress  will  be  discussed.  

1.3.4.1 Atheroprotective  shear  stress  

ECs   exposed   to   unidirectional   high   laminar   shear   stress   display   an   elongated   morphology   with   an   alignment   in   the   direction   of   the   flow   [52]. Furthermore,   ECs   in   these   areas   have   been   shown   to   form   a   thick   glycocalyx   [144].   At   molecular   level   the   transcriptional   activation   of   the  eNOS   gene   is   one   of   key  

Références

Documents relatifs

Il ou elle possède les compétences scientifiques requises pour enseigner, au niveau universitaire (programmes d’études Bachelor et Master), l’histoire contemporaine générale

Les dossiers de candidature, munis des documents usuels, devront être adressés avant le 14 août 2015 sous forme électronique au Décanat de la Faculté des Lettres

En tout état de cause, il n’a pas été retrouvé de complications hémorragiques ni d’ETE au cours de la période de suivi de la première comme de la troisième phase,

ment des enclaves lutéiniques ; ce sont des cellules en période d’activité sécrétoire ; les vaisseaux sanguins sont très nombreux dans cette couche lutéinique ; ce sont

part, distingue chez le Mouton une psorospermose des muscles et une psorospermose du tissu conjonctif; il sépare les kystes les plus volumineux visibles à l'œil nu des

Its cellular origin demonstrated in the brain in microglia, although it is clear that other cell types also express TSPO and its presence in astrocytes and endothelial cells is now

Hindawi Publishing Corporation BioMed Research International Volume 2014, Article ID 810436, 2 pages http://dx.doi.org/10.1155/2014/810436... 2 BioMed

Dans notre étude chez les médecins généralistes, il n’y avait pas de différence significative de réalisation du dépistage du cancer colo-rectal selon les recommandations