• Aucun résultat trouvé

Cx40  and  cell  cycle  control

Connexin40 controls endothelial activation by dampening NFκB activation

GRANT SUPPORT

3.3.5 Cx40  and  cell  cycle  control

3.3.5 Cx40  and  cell  cycle  control.  

The   role   of   connexins   in   tumor   growth  in   vitro   and   in   vivo   has   long   been   recognized   [31].   Interestingly,   HLSS   maintains   ECs   in   a   quiescent   state   [1]. To   investigate   whether   EC   proliferation   under   HLSS   was   affected   by   the   Cx40   expression  level,  we  treated  bEnd.3  cells  with  siCx40  and  siNT  for  24  hours  and   subsequently   exposed   them   to   24   hours   of   HLSS.   A   50%   knock-­‐down   of   Cx40   mRNA  was  confirmed  (Figure  5B).  In  addition,  bEnd.3  cells  treated  with  siCx40   displayed   an   almost   doubled   proportion   of   Proliferating   Cell   Nuclear   Antigen   (PCNA)  positive  cells  (Figure  5C-­‐D),  indicating  an  increased  proliferation  rate.  In   agreement,   the   proportion   of   cells   in   the   resting   G0   or   G1   phase   appeared   decreased   by   9%   as   revealed   by   FACS-­‐based   cell   cycle   analysis   (Figure   5E).  

Together,  these  results  suggest  that  Cx40  regulation  by  HLSS  may  be  involved  in   the  maintenance  of  a  quiescent  endothelium.  

Using  in   vitro   and   a   large-­‐scale   functional   analysis,   we   show   here   that   Cx40   expression  is  regulated  by  shear  stress,  being  up-­‐regulated  by  athero-­‐protective   HLSS.  Furthermore,  we  found  that  Cx40  expression  is  directly  regulated  by  the   flow-­‐responsive   athero-­‐protective   transcription   factor   KLF4.   Finally,   using   RNAseq  and  GSEA  we  identified  cell  cycle  progression  as  a  downstream  target  of   Cx40   under   HLSS.   Taken   together,   we   conclude   that   KLF4   by   inducing   Cx40   expression   contributes   to   the   quiescent   non-­‐proliferative   state   of   the   arterial   endothelium  under  HLSS.    

 

KLF2  and  KLF4  have  been  identified  as  central  regulators  of  physiological  anti-­‐

inflammatory  responses  to  HLSS.  We  have  previously  shown  that  Cx40  and  Cx37   have   anti-­‐atherogenic   properties   and   are   highly   expressed   under   HLSS  in   vivo   and  in  vitro.   [17-­‐19,   32]   Furthermore,   the  KLF2   was   found   to   directly   bind   the   Cx37   promoter   and   to   induce   its   expression   under   HLSS   [17].   Remarkably,   reduction  of  KLF2  did  not  affect  the  expression  of  Cx40.  In  this  study,  KLF4  was   found   to   directly   bind   to   the   Cx40   promoter   and   was   shown   to   dynamically   regulate  its  expression  in  response  to  LSS.  Of  note,  KLF4  silencing  did  not  affect   the   expression   of   Cx37.   Thus,   two   important   endothelial   KLF’s   specifically   regulate  the  HLSS  response  of  the  two  main  endothelial  connexins,  i.e.  Cx37  or   Cx40.   This   specific   regulation   seems   reflected   in   the   responses   of   these   connexins  to  vascular  casting,  imposing  specific  shear  stresses  in  vivo.  Whereas   Cx37  was  down-­‐regulated  in  both  the  LLSS  and  OSS  regions  of  the  carotid  artery   1  week  after  casting,  Cx40  expression  was  only  altered  in  the  OSS  region  [17,  18].  

levels   of   shear   stress   (Figure   1),   this   suggest   that   the   threshold   for   KLF4   (and   thus   Cx40)   expression   might   be   lower   under   laminar   shear   stress   when   compared   to   the   threshold   of   KLF2   (and   Cx37)   induction.   The   reasons   for   this   apparent   differential   “set-­‐point”   of   KLF2   and   KLF4   induction   by   laminar   shear   stress   remain   to   be   investigated.   Of   interest   is   that   recent   ChIP-­‐on-­‐chip   experiments   revealed   that   KLF2,   KLF4   and   KLF5   regulate   each   other   [33].   In   addition,   it   was   found   that   these   KLFs   regulated   themselves   as   well,   thus   creating  a  complex  regulatory  loop  [33].    

Although  siKLF2  did  not  affect  the  Cx40  expression  [17],  other  members  of  the   KLF   family   may   affect   Cx40   expression.   Indeed,   several   members   of   the   KLF   family  have  are  known  to  display  redundant  and  complementary  functions  [33],   which  may  be  due  to  their  highly  similar  DNA-­‐binding  domains  [33].  It  can  thus   not  be  excluded  that  endothelial  KLF  proteins  with  similar  DNA-­‐binding  domains   could  possibly  bind  to  the  same  regulatory  element  in  the  Cx40  promoter  region.  

Analyzing   the   mouse   Cx40   promoter   with   MatInspector   (http://www.genomatix.de/)  identified  potential  KLF2,  KLF3  and  KLF12  binding   sites.   This   far,   KLF12   expression   has   not   been   described   for   the   endothelium,   however,   KLF3   expression   in   the   endothelium   is   known   to   be   shear   stress-­‐

sensitive,   i.e.   down-­‐regulated   by   OSS,   a   process   that   involves   the   methylation   status  of  cAMP  response  elements  in  its  promoter  [34].  Interestingly,  other  KLFs   (KLF1  and  KLF2)  have  been  shown  to  interact  in  common  with  cAMP  response   element-­‐binding  proteins  (CBP/P300),  and  binding  to  the  cofactor  is  required  for   transcription  of  reporter  (target)  genes  [9,  35].  Similarly,  one  might  hypothesize   that   KLF2   and   KLF4   may   interact   with   a   common   cofactor   (that   remains   to   be  

and  KLF4  are  absent,  the  target  gene  would  not  be  expressed.  Therefore,  it  might   be  interesting  to  investigate  silencing  of  both  KLFs  and  assess  the  effect  on  Cx37   and  Cx40  expression  under  HLSS.    

Finally,   epigenetic   mechanisms   regulating   EC   gene   expression   are   gaining   attention.   DNA   methylation   is   known   to   confer   persisting   changes   in   gene   expression   [36]   and   DNA   methylation   has   been   found   to   play   a   key   role   in   vascular   disease   development   and   maintaining   EC   homeostasis   [37-­‐39].  

Interestingly,   the   promoter   of   KLF4   has   been   found   to   be   hypermethylated   by   disturbed   blood   flow   [40].   Whether,   the   levels   of   promoter   methylation   might   explain  the  gradual  induction  of  KLF4  expression  by  LSS  in  vitro  remains  to  be   investigated.  

 

A   harmonized   interplay   between   extracellular,   intracellular   and   intercellular   signaling   is   essential   for   the   maintenance   of   tissue   homeostasis.   Alteration   of   endothelial  signaling  induced  by  OSS  plays  an  important  role  in  the  development   of   atherosclerotic   disease   [6,   41].   ECs   are   exposed   to   various   shear   stresses   in   the  vasculature  with  different  effects  on  EC  survival,  proliferation  and  migration   [42,  43].  Static  EC  cultures  have  higher  turnover  rates  than  ECs  that  are  exposed   to  laminar  shear  stress  [44].  In  line,  DNA  synthesis  in  HUVECs  was  inhibited  by   steady  laminar  shear  stress,  an  effect  that  was  associated  with  a  suppression  of   cell   cycle   transition   from   the   G1   phase   to   S   phase   [45].   Mechanistically,   shear   stress   increased   the   levels   of   cyclin-­‐dependent   kinase   inhibitor   1   (p21),   which   faded   after   withdrawal   of   shear   stress   concomitant   with   a   recovery   of   DNA  

laminar  shear  stress-­‐dependent  inhibition  of  EC  proliferation,  it  remains  unclear   whether  other  molecular  players  in  cell  cycle  transition  may  be  involved  as  well.    

Small  metabolites  conveyed  through  gap  junctions  but  also  non  channel-­‐related   effector   functions   of   the   C-­‐terminal   domain   of   connexins   control   important   physiological   processes,   including   cell   proliferation   and   death   [18,   46-­‐53].  

Interestingly,  tissue  ischemia  induced  by  obstruction  of  a  large  irrigating  blood   vessel  induces  a  complex  cascade  of  vasodilatory,  remodeling  and  inflammatory   pathways   and   endothelial   connexins   may   play   a   role   in   the   growth   of   (new)   blood   vessels.   In   a   first   study,   the   group   of   Janis   Burt   elegantly   demonstrated   that  both  Cx37  and  Cx40  seem  to  regulate  post-­‐ischemic  limb  perfusion,  altering   the   severity   of   ischemic   insult   and   post-­‐ischemic   survival   [54].   Subsequently,   they  showed  in  Cx37-­‐/-­‐  animals  that  improved  recovery  of  the  ischemic  hindlimb   involved  enhanced  vasculogenesis,  resulting  in  increased  numbers  of  collaterals   in   the   hindlimb,   and   increased   angiogenesis   [55].   Moreover,   a   compromised   regulation   of   normal   tissue   perfusion   and   arteriogenesis   limited   recovery   of   ischemic   tissue   in   Cx40-­‐/-­‐   mice   [56].   Similarly,   targeting   endothelial   Cx40   inhibited   tumor   growth   by   reducing   angiogenesis   and   improving   vessel   perfusion  [57].  Although  Cx40  expression  levels  are  not  affected  in  Cx37  knock-­‐

out   mice   [32],   Cx37   expression   levels   are   severely   down-­‐regulated   in   Cx40-­‐

deficient   mice   [19,   58].   In   consequence,   the   above-­‐described   effects   in   Cx40-­‐

deficient  animals  may  have  been  caused,  or  at  least  supported,  by  the  reduction   in  endothelial  Cx37.  

In   this   study,   we   used   a   RNA   silencing   approach   to   down-­‐regulate   Cx40   expression   and   this   procedure   did   not   affect   the   expression   levels   of   Cx37   as  

approach   revealed   a   significant   up-­‐regulation   of   pathways   related   to   cell   cycle   control  in  ECs  with  knock-­‐down  of  Cx40  under  HLSS  (Table  11).  Moreover,  the   proliferation   rate   was   increased   in   ECs   treated   with   siCx40   (Figure   5C-­‐D).  

Furthermore,  we  showed  a  decrease  of  the  amount  in  ECs  in  the  G0/G1  resting   cell  cycle  phase  after  effective  knock-­‐down  of  Cx40  (Figure  5E).  Remarkably,  this   decrease  in  G0/G1  was  associated  by  an  increase  in  the  subG1  population  in  the   siCx40   cells,   which   might   point   to   an   increase   in   the   proportion   of   apoptotic   cells.   Interestingly,   increased   apoptosis   has   also   been   observed   in   regions   exposed   to   OSS   in   vivo   where   Cx40   is   absent   [59,   60].   Taken   together,   we   conclude   that   Cx40   regulates   EC   proliferation   via   effects   on   cell   cycle   control.  

Whether   the   regulation   of   EC   proliferation   depends   on   the   synchronization   of   endothelial  responses  via  gap  junctions  or  channel-­‐independent  effects  of  Cx40   remains  to  be  investigated.    

   

This  work  was  supported  by  grants  from  the  Swiss  National  Science  Foundation  

(310030_143343  and  310030_162579  to  B.R.  Kwak).    

1.   Kwak  BR,  Back  M,  Bochaton-­‐Piallat  ML,  Caligiuri  G,  Daemen  MJ,  Davies  PF,   Hoefer  IE,  Holvoet  P,  Jo  H,  Krams  R,  Lehoux  S,  Monaco  C,  Steffens  S,  Virmani  R,   Weber  C,  Wentzel  JJ,  et  al.  Biomechanical  factors  in  atherosclerosis:  mechanisms   and  clinical  implications.  Eur  Heart  J.  2014;  35(43):3013-­‐3020,  3020a-­‐3020d.  

2.   Davies   PF,   Civelek   M,   Fang   Y   and   Fleming   I.   The   atherosusceptible  

Atherosclerosis  at  arterial  bifurcations:  evidence  for  the  role  of  haemodynamics   and  geometry.  Thromb  Haemost.  2016;  115(3):484-­‐492.  

5.   Bryan   MT,   Duckles   H,   Feng   S,   Hsiao   ST,   Kim   HR,   Serbanovic-­‐Canic   J   and   Evans   PC.   Mechanoresponsive   networks   controlling   vascular   inflammation.  

Arterioscler  Thromb  Vasc  Biol.  2014;  34(10):2199-­‐2205.  

6.   Tabas  I,  Garcia-­‐Cardena  G  and  Owens  GK.  Recent  insights  into  the  cellular   biology  of  atherosclerosis.  J  Cell  Biol.  2015;  209(1):13-­‐22.  

7.   Nayak  L,  Lin  Z  and  Jain  MK.  "Go  with  the  flow":  how  Kruppel-­‐like  factor  2   regulates  the  vasoprotective  effects  of  shear  stress.  Antioxid  Redox  Signal.  2011;  

15(5):1449-­‐1461.  

8.   Boon   RA   and   Horrevoets   AJ.   Key   transcriptional   regulators   of   the   vasoprotective  effects  of  shear  stress.  Hamostaseologie.  2009;  29(1):39-­‐40,  41-­‐

33.  

9.   SenBanerjee   S,   Lin   Z,   Atkins   GB,   Greif   DM,   Rao   RM,   Kumar   A,   Feinberg   MW,   Chen   Z,   Simon   DI,   Luscinskas   FW,   Michel   TM,   Gimbrone   MA,   Jr.,   Garcia-­‐

Cardena  G  and  Jain  MK.  KLF2  Is  a  novel  transcriptional  regulator  of  endothelial   proinflammatory  activation.  J  Exp  Med.  2004;  199(10):1305-­‐1315.  

10.   Huang   TY,   Chu   TF,   Chen   HI   and   Jen   CJ.   Heterogeneity   of   [Ca(2+)](i)   signaling  in  intact  rat  aortic  endothelium.  FASEB  J.  2000;  14(5):797-­‐804.  

11.   Molica   F,   Meens   MJ,   Morel   S   and   Kwak   BR.   Mutations   in   cardiovascular   connexin  genes.  Biol  Cell.  2014;  106(9):269-­‐293.  

12.   Bai   D,   Yue   B   and   Aoyama   H.   Crucial   motifs   and   residues   in   the   extracellular  loops  influence  the  formation  and  specificity  of  connexin  docking.  

Biochim  Biophys  Acta.  2017.  

Cardiol.  2012;  53(2):299-­‐309.  

18.   Denis   J-­‐F,   Scheckenbach   L,   Pfenniger   A,   Meens   M,   Krams   R,   Miquerol   L,   Taffet   S,   Chanson   M,   Delmar   M   and   Kwak   B.   Connexin40   controls   endothelial   activation  by  dampening  NFkB  activation.  Oncotarget.  2017.  

19.   Chadjichristos  CE,  Scheckenbach  KE,  van  Veen  TA,  Richani  Sarieddine  MZ,   de  Wit  C,  Yang  Z,  Roth  I,  Bacchetta  M,  Viswambharan  H,  Foglia  B,  Dudez  T,  van   Kempen  MJ,  Coenjaerts  FE,  Miquerol  L,  Deutsch  U,  Jongsma  HJ,  et  al.  Endothelial-­‐

specific   deletion   of   connexin40   promotes   atherosclerosis   by   increasing   CD73-­‐

dependent  leukocyte  adhesion.  Circulation.  2010;  121(1):123-­‐131.  

20.   Vorderwulbecke  BJ,  Maroski  J,  Fiedorowicz  K,  Da  Silva-­‐Azevedo  L,  Marki   comparing  genomic  features.  Bioinformatics.  2010;  26(6):841-­‐842.  

24.   Robinson  MD,  McCarthy  DJ  and  Smyth  GK.  edgeR:  a  Bioconductor  package   for   differential   expression   analysis   of   digital   gene   expression   data.  

Bioinformatics.  2010;  26(1):139-­‐140.  

25.   Team   RDC.   (2008).   R:   A   Language   and   Environment   for   Statistical   Computing.  (Vienna,  Austria:  R  Foundation  for  Statistical  Computing).  

26.   Mootha   VK,   Lindgren   CM,   Eriksson   KF,   Subramanian   A,   Sihag   S,   Lehar   J,   Puigserver  P,  Carlsson  E,  Ridderstrale  M,  Laurila  E,  Houstis  N,  Daly  MJ,  Patterson   N,  Mesirov  JP,  Golub  TR,  Tamayo  P,  et  al.  PGC-­‐1alpha-­‐responsive  genes  involved   in  oxidative  phosphorylation  are  coordinately  downregulated  in  human  diabetes.  

Nat  Genet.  2003;  34(3):267-­‐273.  

27.   Subramanian   A,   Tamayo   P,   Mootha   VK,   Mukherjee   S,   Ebert   BL,   Gillette   MA,   Paulovich   A,   Pomeroy   SL,   Golub   TR,   Lander   ES   and   Mesirov   JP.   Gene   set   enrichment  analysis:  a  knowledge-­‐based  approach  for  interpreting  genome-­‐wide   expression  profiles.  Proc  Natl  Acad  Sci  U  S  A.  2005;  102(43):15545-­‐15550.  

Chanson   M,   Goodenough   DA   and   Kwak   BR.   Connexin37   protects   against   flow-­‐dependent  regulation  of  gene  expression.  Circ  Res.  2003;  93(2):155-­‐161.  

38.   Illi  B,  Scopece  A,  Nanni  S,  Farsetti  A,  Morgante  L,  Biglioli  P,  Capogrossi  MC   to  Flow  in  Vascular  Dysfunction  and  Atherosclerosis.  Circ  Res.  2016;  119(3):450-­‐

462.  

44.   Levesque   MJ,   Nerem   RM   and   Sprague   EA.   Vascular   endothelial   cell   proliferation  in  culture  and  the  influence  of  flow.  Biomaterials.  1990;  11(9):702-­‐

707.  

45.   Akimoto  S,  Mitsumata  M,  Sasaguri  T  and  Yoshida  Y.  Laminar  shear  stress   inhibits   vascular   endothelial   cell   proliferation   by   inducing   cyclin-­‐dependent   kinase  inhibitor  p21(Sdi1/Cip1/Waf1).  Circ  Res.  2000;  86(2):185-­‐190.  

necessary   for   growth   suppression   by   Cx37.   J   Cell   Sci.   2011;   124(Pt   14):2448-­‐ and  chemotherapy.  Biochim  Biophys  Acta.  2005;  1719(1-­‐2):146-­‐160.  

49.   Kardami  E,  Dang  X,  Iacobas  DA,  Nickel  BE,  Jeyaraman  M,  Srisakuldee  W,   Makazan   J,   Tanguy   S   and   Spray   DC.   The   role   of   connexins   in   controlling   cell   growth  and  gene  expression.  Prog  Biophys  Mol  Biol.  2007;  94(1-­‐2):245-­‐264.  

50.   Kapovic  M  and  Rukavina  D.  Kinetics  of  lymphoproliferative  responses  of   lymphocytes  harvested  from  the  uterine  draining  lymph  nodes  during  pregnancy   in  rats.  J  Reprod  Immunol.  1991;  20(1):93-­‐101.   endothelial  cells.  Arterioscler  Thromb  Vasc  Biol.  2010;  30(4):827-­‐834.  

54.   Fang   JS,   Angelov   SN,   Simon   AM   and   Burt   JM.   Cx40   is   required   for,   and   Nardelli-­‐Haefliger  D  and  Haefliger  JA.  Targeting  endothelial  connexin40  inhibits   tumor   growth   by   reducing   angiogenesis   and   improving   vessel   perfusion.   vascular  endothelium.  Hypertension.  2013;  61(3):615-­‐621.  

Table  1:  Primer  sequences  potentially  recognizing  KLF4  sites  in  the  Cx40  and  FSP1  promoter  region  

Gene  

promoter   Location  

to  TSS   Forward   Reverse  

  -­‐2477  bp   AGCTTCTTTGCAGTGCCATT     TGCCATGCTCTCTCCTTCTT    

-­‐2599  bp   CCATCTCACCAGCCCTAAAG   TGGGCACACTTCACAATGTT    

-­‐4196  bp   TCTCAACCAGCAGAAACGTG     ATGGCAACACGTGCAAGTAA  

FSP1   +700  bp   GCAGGCATTCGTGTTTGTAG   AAAAACCCCAGCTGCCTAAT  

 

ENSMUSG00000024210   Ip6k3   -­‐1.57   1.46E-­‐07   8.59E-­‐01  

Gene_id   Gene_name   logFC   PValue   logCPM  

ENSMUSG00000041193   Pla2g5   -­‐1.63   8.99E-­‐20   1.72  

ENSMUSG00000053626   Tll1   1.66   4.88E-­‐135   7.21  

Pathway_1065   Cell  adhesion  molecules  (CAMs)  

(Ref=mmusculus_KEGG)   1.67   9.71E-­‐03  

Pathway_1147   Morphine  addiction  (Ref=mmusculus_KEGG)   1.62   8.05E-­‐03   Pathway_948  

Pathway_1119   Renin  secretion  (Ref=mmusculus_KEGG)   1.55   2.81E-­‐02   Pathway_1196   Allograft  rejection  (Ref=mmusculus_KEGG)   1.53   4.13E-­‐02   Pathway_1046   Peroxisome  (Ref=mmusculus_KEGG)   1.51   3.53E-­‐02   Pathway_1041   Regulation  of  autophagy  

(Ref=mmusculus_KEGG)   1.51   3.56E-­‐02  

Pathway_1043   Lysosome  (Ref=mmusculus_KEGG)   1.46   1.14E-­‐02   Pathway_719   Calcium  Regulation  in  the  Cardiac  Cell  

(Ref=rnorvegicus)   1.42   3.93E-­‐02  

Pathway_1053   Vascular  smooth  muscle  contraction  

(Ref=mmusculus_KEGG)   1.39   4.49E-­‐02  

Table  9:  Down-­‐regulated  Pathways  siNT  HLSS  vs  siCx40  HLSS,  i.e.  enriched  in  siCx40  HLSS  

internal_ID   Pathway_name   NES   FDR  

Pathway_505   DNA  Replication  (Ref=mmusculus)   -­‐2.46   0.00   Pathway_775   DNA  Replication  (Ref=rnorvegicus)   -­‐2.38   0.00   Pathway_1009   DNA  replication  (Ref=mmusculus_KEGG)   -­‐2.33   0.00   Pathway_1016   Mismatch  repair  (Ref=mmusculus_KEGG)   -­‐2.15   0.00   Pathway_1004   RNA  transport  (Ref=mmusculus_KEGG)   -­‐2.08   0.00   Pathway_927   Pyrimidine  metabolism  

(Ref=mmusculus_KEGG)   -­‐2.03   0.00  

Pathway_1010   Spliceosome  (Ref=mmusculus_KEGG)   -­‐1.95   0.00   Pathway_1015   Nucleotide  excision  repair   Pathway_502   Retinol  metabolism  (Ref=mmusculus)   -­‐1.83   1.97E-­‐03   Pathway_1035   Cell  cycle  (Ref=mmusculus_KEGG)   -­‐1.80   0.00   Pathway_624   Homologous  recombination  (Ref=mmusculus)   -­‐1.77   6.36E-­‐03   Pathway_740   G1  to  S  cell  cycle  control  (Ref=rnorvegicus)   -­‐1.77   2.10E-­‐03   Pathway_1002   Ribosome  biogenesis  in  eukaryotes  

(Ref=mmusculus_KEGG)   -­‐1.75   0.00  

Pathway_779   Homologous  recombination  (Ref=rnorvegicus)   -­‐1.74   6.10E-­‐03   Pathway_535   Hypertrophy  Model  (Ref=mmusculus)   -­‐1.73   2.05E-­‐03   Pathway_720   Cell  cycle  (Ref=rnorvegicus)   -­‐1.73   1.94E-­‐03   Pathway_767   Hypertrophy  Model  (Ref=rnorvegicus)   -­‐1.72   1.24E-­‐02   Pathway_633   Nucleotide  Metabolism  (Ref=mmusculus)   -­‐1.70   1.60E-­‐02   Pathway_675   Retinol  metabolism  (Ref=rnorvegicus)   -­‐1.68   1.41E-­‐02   Pathway_1175   Colorectal  cancer  (Ref=mmusculus_KEGG)   -­‐1.64   8.28E-­‐03   Pathway_513   ErbB  signaling  pathway  (Ref=mmusculus)   -­‐1.60   2.37E-­‐02   Pathway_1003   Ribosome  (Ref=mmusculus_KEGG)   -­‐1.59   4.50E-­‐03   Pathway_727   TGF  Beta  Signaling  Pathway  (Ref=rnorvegicus)   -­‐1.58   1.71E-­‐02   Pathway_702   ErbB  signaling  pathway  (Ref=rnorvegicus)   -­‐1.58   1.81E-­‐02   Pathway_787   Adipogenesis  (Ref=rnorvegicus)   -­‐1.55   1.32E-­‐02   Pathway_713   Translation  Factors  (Ref=rnorvegicus)   -­‐1.55   2.03E-­‐02   Pathway_506   TGF  Beta  Signaling  Pathway  (Ref=mmusculus)   -­‐1.51   2.86E-­‐02   Pathway_736   Nucleotide  Metabolism  (Ref=rnorvegicus)   -­‐1.51   4.81E-­‐02   Pathway_975   One  carbon  pool  by  folate  

(Ref=mmusculus_KEGG)   -­‐1.51   4.89E-­‐02  

Pathway_937   Tyrosine  metabolism  (Ref=mmusculus_KEGG)   -­‐1.50   4.92E-­‐02   Pathway_574   Adipogenesis  genes  (Ref=mmusculus)   -­‐1.50   1.04E-­‐02   Pathway_689   Spinal  Cord  Injury  (Ref=rnorvegicus)   -­‐1.48   2.56E-­‐02   Pathway_995   Biosynthesis  of  antibiotics  

(Ref=mmusculus_KEGG)   -­‐1.48   4.31E-­‐03  

Pathway_1064   ECM-­‐receptor  interaction   -­‐1.47   3.87E-­‐02  

Pathway_1019   (Ref=mmusculus_KEGG)   -­‐1.46   2.72E-­‐02   Pathway_579   Translation  Factors  (Ref=mmusculus)   -­‐1.45   4.97E-­‐02   Pathway_1061  

Osteoclast  differentiation  

(Ref=mmusculus_KEGG)   -­‐1.44   2.08E-­‐02  

Pathway_1141   Parkinson's  disease  (Ref=mmusculus_KEGG)   -­‐1.43   3.63E-­‐02   Pathway_1123   Non-­‐alcoholic  fatty  liver  disease  (NAFLD)  

(Ref=mmusculus_KEGG)   -­‐1.40   1.03E-­‐02  

Pathway_461   Cytoplasmic  Ribosomal  Proteins  

(Ref=mmusculus)   -­‐1.39   3.22E-­‐02  

Pathway_756   mRNA  processing  (Ref=rnorvegicus)   -­‐1.39   3.48E-­‐02   Pathway_1166   HTLV-­‐I  infection  (Ref=mmusculus_KEGG)   -­‐1.39   4.18E-­‐03   Pathway_1085   TNF  signaling  pathway  (Ref=mmusculus_KEGG)   -­‐1.37   4.62E-­‐02   Pathway_1187   Small  cell  lung  cancer  (Ref=mmusculus_KEGG)   -­‐1.35   4.61E-­‐02   Pathway_1143   Huntington's  disease  (Ref=mmusculus_KEGG)   -­‐1.35   2.76E-­‐02    

Table  10:  CACCC  and  FSP1  Primer  sequences  ChIP  

Gene   promotor  

Location   to  TSS  

#   Forward   Reverse  

Cx40  

+78  bp   1   AACTCCAGGGAGGAGGAAAG   GGGTAGGGAGTCCCCTCATA  

+1229  bp   2   GGGGGTAGGGTGTCTTTCTC   CCTCCCACTTCTTCCTCCTC  

+1391  bp   3   TGGGCAGGAAGCATCTTAAC   TCTGGGAACAAAGGGTATCG  

+3031  bp   4   CGATACCCTTTGTTCCCAGA   GCCAGCTATGGGTTACAAGC  

-­‐108  bp   5   ACCAACTTGGGACTGTCAGG   AAGGAGGCTTTTTCCAGCTC    

-­‐1106  bp   6   GTGGAACAAGAGGCAGACCT     ATGCCAGCTGAGGAAGAGAA  

-­‐2477  bp   7   AGCTTCTTTGCAGTGCCATT     TGCCATGCTCTCTCCTTCTT    

-­‐2599  bp   8   CCATCTCACCAGCCCTAAAG   TGGGCACACTTCACAATGTT    

-­‐4196  bp   9   TCTCAACCAGCAGAAACGTG     ATGGCAACACGTGCAAGTAA  

-­‐7095  bp   10   AGGGCAGGAAAACCGTAGTT     GCCTCTTCTGGTTTTCTCCA  

FSP1   +700  bp   1   GCAGGCATTCGTGTTTGTAG   AAAAACCCCAGCTGCCTAAT  

   

Figure  1:  Expression  of  Cx40  is  regulated  by  shear  stress.  (A)  Representative   immunofluorescent  images  of  Cx40,  Cx37  and  Cx43  expression  (green)  in  highly   confluent   bEnd.3   cultures.   Cx40   and   Cx37   are   highly   expressed   but   Cx43   is   absent.  Nuclei  were  stained  with  DAPI  (blue)  (B)  Cx40  expression  in  bEnd.3  cells   exposed   to   STATIC,   LLSS   and   HLSS   conditions   for   24   hours   was   assessed   by   qPCR.  Cx40  is  highly  expressed  under  LLSS  and  HLSS.  N=3.  (C)  KLF4  expression   in  bEnd.3  cells  exposed  to  STATIC,  LLSS  and  HLSS  conditions  for  24  hours  was   assessed   by   qPCR.   KLF4   increases   gradually   under   increasing   shear   stress   conditions.   N=3.   (D)   Representative   immunofluorescent   images   of   Cx40   expression   (green)   in   bEnd.3   cells   exposed   to   STATIC,   LLSS   and   HLSS   for   24   hours.   Shear   stress   gradually   induces   Cx40   expression.   Arrow   indicates   the   direction  of  the  flow.  Nuclei  were  stained  with  DAPI  (blue).  Scale  bar  represents   10µm.    

 

Figure  2:  In  vitro  silencing  of  KLF4  reduces  Cx40  expression.  (A)  KLF4  and   (B)   Cx40   expression   in   highly   confluent   bEnd.3   cells   exposed   to   NT   siRNA   or   KLF4   siRNA   was   assessed   by   qPCR.   N=3.   KLF4   siRNA   effectively   reduces   KLF4   and   Cx40   expression   in   static   cultures   (C)   Experimental   protocol   of   KLF4   silencing  in  bEnd.3  cells  under  HLSS.  (D,  E,  F,  G,  H)  qPCR  for  Cx40,  KLF4,  Cx37,   KLF2   and   Cx43   expression,   respectively,   in   bEnd.3   cells   transfected   with   KLF4   siRNA   or   NT   siRNA   and   subsequently   exposed   to   48  hours   of   HLSS.   Data   were   normalized  to  the  NT  siRNA  -­‐  static  condition.  N=6.  Effective  KLF4  silencing  (E)   impairs  flow-­‐dependent  induction  of  Cx40  (D),  but  not  of  Cx37  (F)  or  KLF2  (G).  

representation  of  the  promoter  region  of  Cx40  indicating  (in  bp)  the  position  of  3   KLF  CACCC-­‐consensus  binding  sites.  (B)  Representative  Western  blot  for  KLF4   and   Cx40   (top)   and   GAPDH   (loading   control,   bottom)   of   bEnd.3   cells   treated   (lane  2)  or  not  (lane  1)  with  5µM  simvastatin.  Exposure  to  simvastatin  increases   KLF4   and   Cx40   expression   in   ECs.   (C)  ChIP   of   histone   H3   interaction   with   the   RPL50  sequence  in  bEnd.3  cells  in  control  condition  (left)  or  after  treatment  with   5µM  simvastatin  (right)  compared  to  control  ChIP.  (D)  ChIP  of  KLF4  interaction   with   the   FSP1   promoter   in   bEnd.3   cells   in   control   condition   (left)   or   after   treatment  with  5µM  simvastatin  (right)  compared  to  control  ChIP.  (E,  F)  ChIP  of   KLF4   interactions   with   the   Cx40   promoter   in   bEnd.3   cells   in   control   condition   (E)  or  after  treatment  with  5µM  simvastatin  (F).  Analyzed  KLF4  binding  sites  are   indicated   in   bp.   Levels   of   DNA   are   normalized   to   input.   Results   of   a   representative  experiment  out  of  two  is  shown.    

 

Figure   4:   Cx40-­‐dependent   shear   stress   induced   differential   gene   expression.   (A)   Multi-­‐Dimensional   Scaling   (MDS)   plot   representing   the   similarity   of   the   samples.   Dots   in   same   color   represent   samples   of   each   condition.  (B,   C,   D,   F)  Vulcano   plots  showing   relationship   between   degree   of   gene  expression  change  [log2  of  fold-­‐change;  x-­‐axis]  and  statistical  significance  of   this   change   [-­‐log10  of   p-­‐value;   y-­‐axis].   Colored   dots   represent   differentially   expressed   genes   (cut-­‐off   p-­‐value<0,01)   with   fold   change   >2   that   are   down-­‐

regulated   (red)   or   up-­‐regulated   (blue).  (B,   C)   Differential   gene   expression   in   bEnd.3  cells  exposed  to  HLSS  (B)  and  OSS  (C)  after  treatment  with  siNT  or  Cx40  

HLSS   without   (D)   or   with   (F)   effective   Cx40   silencing.   (E,   G)   Pie   chart   representation   for   differentially   expressed   genes   organized   for   7   atherosclerosis-­‐related   processes.   (E)   Differential   expressed   genes   between   control  cells  exposed  to  OSS  and  HLSS.  (G)  Differential  expressed  genes  between   Cx40   siRNA   treated   cells   exposed   to   OSS   and   HLSS.   The   inflammation   genes   increased   by   12%   and   genes   involved   in   endothelial   permeability   disappeared   after  silencing  of  Cx40.  (H)  Venn  diagram  representing  gene  overlap  in  OSS  (as   compared  to  HLSS)  with  or  without  Cx40  silencing.  Highlighted  are  47  genes  that   are  commonly  down-­‐regulated  and  4  genes  that  are  commonly  up-­‐regulated.  

 

Figure  5:  Cx40  controls  EC  proliferation.  (A)  NES  vs.  FDR  representing  GSEA   differentially   expressed   pathways   in   bEnd.3   cells   exposed   to   HLSS   with   or   without   silencing   of   Cx40.   Colored   dots   represent   differentially   regulated   pathways  (FDR<0.05)  with  NES>1  that  are  down-­‐regulated  (red)  or  up-­‐regulated   (blue).   (B)   Cx40   expression   in   bEnd.3   cells   exposed   to   NT   or   Cx40   siRNA   assessed   by   qPCR   after   applying   24   hours   of   HLSS.   N=4.  (C)  Representative   immunofluorescent  images  of  PCNA  expression  (green)  in  bEnd.3  cells  exposed   to   HLSS   silenced   for   Cx40   (siCx40)   or   not   (siNT).   Silencing   of   Cx40   increases   PCNA  positive  cells.  Nuclei  were  stained  with  DAPI  (blue).  Scale  bar  represents   50  µm  (D)  Quantification   of   (C).   N=4.  (E)  Stained   DNA   content   with   Hoechst   33342   was   measured   by   flow   cytometry   and   Cell   cycle   distribution   (G0/G1,   S,   G2)  analyzed  by  FACS  after  Hoechst  staining  revealed  a  9%  decrease  of  cells  in   G0/G1  phase  after  effective  Cx40  silencing  (B).  N=4.  

 

 

Denis  JF1,  Linnerz  T1,  Watanabe  M2,  Bertrand  JY1,  Kwak  BR1,2    

1Department   of   Pathology   and   Immunology   and   2Department   of   Medical   Specializations  -­‐  Cardiology,  University  of  Geneva,  Geneva,  Switzerland    

2Graduate   School   of   Frontier   Biosciences,   Osaka   University,   1-­‐3   Yamadaoka,   Osaka  565-­‐0871,  Japan  

   

Keywords:  Cx41.8  –  Cx45.6  –  Cx40  –  zebrafish  –  endothelium      

Manuscript  contains:  3  Figures  and  6  tables    

 

Corresponding  author:  

Brenda  R.  Kwak,  PhD  

Department  of  Pathology  and  Immunology,   University  of  Geneva,  

CMU  -­‐  Rue  Michel-­‐Servet  1   1211  Geneva/Switzerland   Phone:  +41  22  379  57  37   Fax:    +41  22  379  57  40  

Email:  Brenda.KwakChanson@unige.ch    

Contribution of Jean-François Denis.

Figure 1: - RNA extraction, primer optimization and qPCR (B, C).

Figure 2: - Optimizations and whole-mount in situ hybridization (A, B, C, D, Figure 3: E). - Design of all primers, optimization, PCR, agarose gel

electrophoresis and sequencing analysis (A, B, C, D, E).

Experiments, redaction, layout, figures and tables, bibliography were performed under supervision of prof. Brenda R. Kwak. For experiments on zebrafish the advices and help of prof. Julien Bertrand and his group were greatly appreciated.

Zebrafish   and   human   share   a   high   similarity   in   their   lipid   and   lipoprotein   metabolism.   Indeed,   feeding   zebrafish   with   HCD   resulted   in   hypercholesterolemia,  robust  lipoprotein  oxidation  and  lipid  accumulation  in  the   vasculature.   In   addition,   two   zebrafish   connexins,   i.e.   Cx41.8   and   Cx45.6,   have   been  identified  as  orthologues  of  mammalian  Cx40.  Here,  we  were  able  to  detect   these   two   connexins   in   endothelial   cells   of   the   zebrafish   vasculature.  

Furthermore,   protocol   optimization   for   genotyping   and   maintenance   of   the   zebrafish   lines   mutated   for   Cx41.8   and   Cx45.6   are   now   routinely   performed   in   the  lab.  

     

Rodent  models  are  widely  used  to  uncover  causes  of  dyslipidemia  and  elucidate   mechanisms   of   diseases   linked   to   altered   lipid   metabolism   [1,   2].   Zebrafish   models   have   only   been   introduced   recently;   they   are   used   to   study  

Rodent  models  are  widely  used  to  uncover  causes  of  dyslipidemia  and  elucidate   mechanisms   of   diseases   linked   to   altered   lipid   metabolism   [1,   2].   Zebrafish   models   have   only   been   introduced   recently;   they   are   used   to   study