• Aucun résultat trouvé

Figure  3:  ECs  Mechanotransduction.  The  shear  stress  on  the  ECs  is  sensed  on  the  luminal  surface  by   different  receptors  and  various  ion  channels  that  activate  downstream  effects.[32]  

 

1.3.3 Shear  stress  models  

In  order  to  study  the  effect  of  shear  stress  on  ECs  different  in  vivo,  ex  vivo  and  in   vitro   models   have   been   developed.  In  vivo   mouse   models   can   be   used   for   their   naturally   flow   disturbed   regions   such   as   curved   and   branched   arterial   regions,   however   this   will   give   at   best   “comparative   results”   between   different   arterial   regions  but  will  not  “provide  causative  insight”  onto  the  relation  between  shear   stress  and  the  expression  of  certain  genes  [69].  In  consequence,  surgical  models   have  been  used  to  investigate  shear  stress  effects  on  the  ECs,  like  arteriovenous   fistulas,  constrictive  perivascular  cuffs  and  partial  ligation  of  arteries.    

Arteriovenous   fistulas   originally   created   for   dialysis   patients   were   the   first   interventions   to   cause   acute   changes   in   shear   stress   [70].   The   blood   flow   is   increased  in  the  artery  from  where  the  fistula  is  created.  Here,  it  was  shown  that   the  artery  dilates  (increased  lumen)  in  such  a  manner  that  the  final  experienced   shear  stress  was  not  significantly  changed  compared  to  the  original  shear  stress  

[71].   The   mouse   aorto-­‐caval   fistula   has   been   used   as   a   model   for   human   arteriovenous  fistula  [72].    

The   constructive   perivascular   cuff   model   is   used   in   hyperlipidemic   animals   to   accelerate  atherogenesis.  (Figure  4)  Cheng  et  al.  showed  with  a  flow-­‐modifying   cuff  around  the  carotid  artery  of  Apolipoprotein  E-­‐deficient  mice  (ApoE-­‐/-­‐  mice)   that   local   changes   in   hemodynamic   conditions   initiate   atherosclerosis.  

Interestingly,  they  also  described  that  plaque  vulnerability  was  associated  with   low   unidirectional   (laminar)   shear   stress   rather   than   with   oscillatory   shear   stress.   Indeed,   the   regions   of   low   laminar   shear   stress   displayed   an   atherosclerotic   lesion   with   large   lipid   core,   many   macrophages,   low   collagen   content  and  few  VSMCs  [73,  74].    

 

Figure  4:  Constrictive  perivascular  cuff  model  [75].  A:  The  conical  shaped  cast  creates  three  regions   of  shear  stress:  a  low  laminar  shear  stress  (LLSS)  upstream  of  the  cast,  a  region  of  increasingly  high   laminar   shear   stress   (HLSS)   inside   the   cast,   and   a   region   with   oscillatory   shear   stress   (OSS)   downstream   of   the   cast.   B:   Wall   shear   stress   (WSS,   left)   and   oscillatory   shear   index   (OSI,   right)   determined  by  micro  computer  tomography  (μCT)  in  carotid  artery  after  9weeks  of  cast  placement.    

 

Several  partial  carotid  artery  ligation  models  exist  to  elicit  different  degrees  of   flow   alterations   and   arterial   remodeling   in   mice.   Ligation   of   three   of   the   four   caudal  branches  of  the  left  carotid  artery  (the  internal  carotid,  occipital  and  the   external   carotid)   after   the   branching   of   the   superior   thyroid   artery   induced   significantly   reduced   flow   but   also   flow   reversal   patterns   during   diastole   characteristic  for  areas  of  disturbed  flow  [76].  (Figure  5)    

 Figure  5:  Schematic  representation  of  partial  ligation  of  the  left  common  carotid  artery  (LCA).  Three   branches  of  the  LCA  (external  carotid  artery  (ECA),  internal  carotid  artery  (ICA),  and  occipital  artery   (OA)  are  ligated  leaving  the  superior  thyroid  artery  (STA)  open.  Adapted  from  [76]  .  

 

Ligation   was   shown   to   reduce   flow   in   the   surgically   ligated   artery   and   was   resulting   in   shear   stress-­‐dependent   vascular   remodeling   [77-­‐79].   Atheroma   develops   here   in   the   untouched   left   common   carotid   artery   (LCA)   that   is   not   manipulated  during  the  procedure  and  can  be  compared  with  the  right  common   carotid  artery  (RCA).  Furthermore,  surgery  did  not  affect  shear  rate  in  the  right   common   carotid   artery   [80,   81].   A   recent   study   showed   that   partial   carotid   ligation   in   combination   with   adeno-­‐associated-­‐virus-­‐8   (AAV8)-­‐mediated   overexpression  of  proprotein  convertase  subtilisin/kexin  type  9  (PCSK9)  (AAV8-­‐

PCSK9)   induced   within   3   weeks   hyperlipidemia   and   atherosclerosis   [82].  

Inhibitors   of   PCSK9   are   a   promising   new   class   of   cholesterol   lowering   drug  

because  of  their  interference  with  cholesterol  metabolism  by  the  means  of  LDL   receptor  recycling  in  hepatocytes  [83,  84].  PCSK9  is  involved  in  the  degradation   of   the   low   density   lipoprotein   receptor   (LDLR)   and   is   found   primarily   in   the   liver,  intestine,  and  kidney  [85].  Evidence  shows  that  PCSK9  binds  to  the  LDLR   and   redirect   the   LDLR   to   the   lysosome.   Decreasing   the   available   LDLRs   on   the   cell   surface   and   thus   resulting   in   increase   LDL   in   the   serum.   Indeed,   clinical   studies   using   monoclonal   antibodies   (alirocumab   and   evolocumab)   that   inhibit   PCSK9   showed   a   reduction   of   approximately   50%   in   blood   plasma   LDL   cholesterol  levels  [86-­‐88].  

In   transgenic   mice   the   overexpression   of   the   PCSK9   protein   leads   to   hypercholesterolemia   and   atherosclerosis   [89-­‐91].   Instead   of   using   transgenic   animals,   Bjorklund  et   al.   developed   a   gain   of   function   mutant   of   PCSK9   in   a   recombinant   AAV8.   One   injection   of   AAV8-­‐PCSK9   into   wild   type   C57BL6   mice   resulted   in   significant   hypercholesterolemia   and   atherosclerotic   plaque   formation  within  3  months.  Making  it  a  good  alternative  for  germline  knockout   ApoE   or   LDLR   mice   models   [92].   Finally,   ligation   of   the   left   external   carotid   artery   branch   in   another   model   was   shown   to   reduce   significantly   the   arterial   flow   through   the   left   common   carotid   artery   and   resulted   in   flow-­‐mediated   reduction   of   the   lumen   diameter   and   medial   wall   mass   followed   by   decreased   VSMC  proliferation  and  elastin  content  compared  with  the  right  common  carotid  

artery  [79,  93,  94].      

Tabel  1:  Advantages  and  disadvantages  of  in  vivo  shear  modifying  models  in  EC  physiology  

relationship   between   shear   stress   and   oxidative   stress   used  ex   vivo   porcine   carotid  arteries  exposed  to  LLSS  and  OSS.  Here,  they  showed  that  these  explants   reduced  nitric  oxide  synthase  3  (eNOS)  expression  in  low  and  oscillatory  shear   stress   regions   [103].   These  ex   vivo   shear   models   have   in   time   been   refined   to   study   the   effects   of   other   mechanical   forces   in   the   vascular   environment   in   addition  to  shear  stress.  Here,  parallel  to  the  shear  forces  circumferential  cyclic   stretch  can  be  controlled  in  addition  to  flow  dynamics  [104,  105].  The  reduction   of  arterial  compliance  was  shown  to  increase  the  risk  of  arterial  disease  through   the  interruption  of  the  eNOS  activation  pathway  and  increasing  vascular  levels  of   oxidative  stress  [105].  Together,  this  ex  vivo  model  makes  it  possible  to  dissect   complex   interactions   of   mechanical   stresses   in   the   vascular   environment   between  shear  and  cyclic  stretch  [105].    

The   pressure   myograph   can   be   used   to   measure   physiological   functions   and   properties  of  small  arteries,  veins  and  other  vessels  with  a  maximal  diameter  of   6mm   [106].   Here,   a   small   segment   of   a   vessel   is   mounted   onto   small   glass   cannula  where  they  can  be  pressurized  to  a  specific  transmural  pressure  [107,   108].   In   contrast   to   wire   myograph   where   the   constriction   and   dilation   of   the   vessel   is   measured   through   a   force   transducer   in   high   sensitivity   isometric   conditions,   the   pressure   myograph   uses   a   digital   video   edge-­‐detection   under   isobaric   conditions   [107,   109,   110].   Therefore,   the   natural   vessel   diameter   can   be  studied  at  a  wide  range  of  shear  stresses  and  pressures  applied  to  the  lumen   of   the   vessel   [111].   The   pressure   myograph   is   primarily   used   for   small   vessels   that  have  substantial  vasoreactivity  [112].      

Tabel  2:  Advantages  and  disadvantages  of  ex  vivo  models  in  EC  physiology  

cone  above  a  stationary  place  containing  ECs  cultured  on  cover  slips.  This  device   was  subsequently  modified  by  other  groups  to  integrate  an  optical  system,  which   allowed   the   direct   observation   of   EC   in   response   to   shear   stress   [118].   Next,   Blackman  et  al.  developed  a  shearing  device  based  on  the  cone-­‐and-­‐plate  using  a   micro-­‐stepper   motor   technology   to   independently   control   the   dynamics   and   steady   components   of   the   shear   stress   environment.   Furthermore,   this   system   was   also   fitted   with   a   fluorescence   microscope   [119].   Finally,   Tarbell   and   colleagues   introduced   the   parallel   disk   viscometer   [120].   (Figure   6C)   Here,   following  the  model  of  the  cone-­‐and-­‐plate  device  the  cone  was  replaced  by  a  disk   that  was  linked  to  a  drive  motor  to  produce  a  defined  shear  stress  on  the  ECs  and   used  to  assess  the  effect  of  shear  stress  [121,  122].  

 

Figure   6:   Shear   stress   devices:   A)   parallel-­‐plate   flow   chamber;   B)   cone-­‐and-­‐plate   viscometer;   C)   parallel  disk  viscometer;  D)  orbital  shaker;  E)  capillary  tube.  Adapted  from  [123]  

Parallel-­‐plate  flow  chamber  systems  have  been  used  to  analyze  changes  in  the  EC   metabolism   and   morphology   in   response   to   shear   stress   [124-­‐126].   Originally,   Frangos,   McIntire,   and   colleagues   developed   a   flow   chamber   consisting   of   a   polycarbonate   plate,   a   rectangular   silastic   gasket   and   a   glass   slide   with   the   EC   monolayer   [127,   128].   (Figure   7)   The   different   parts   of   the   device   were   held   together  by  a  vacuum  at  the  periphery  of  the  slide,  forming  a  channel.  At  the  time  

flow  was  applied  to  the  channel  by  a  hydrostatic  pressure  head  between  the  two   media  reservoirs  to  produce  steady  flow  or  via  cam-­‐driven  clamps  upstream  of   the  chamber  to  achieve  pulsatile  flow.    

Figure   7:   The   parallel   plate   flow   chamber.   Cover   slips   were   covered   with   confluent   ECs.   A   silastic   gasket   was   applied   to   separate   the   cover   slip   from   the   deck   of   the   flow   chamber.   Vacuum   was   applied  to  hold  the  device  together.  Adapted  from  [129]  

Several   modified   designs   have   been   used   to   date.   Firstly,   to   assess   the   EC   monolayer  permeability  the  flow  chamber  was  attached  to  a  circulating  luminal   loop  and  basal  non-­‐circulating  loop  [130].  Next,  using  a  flow  chamber  with  at  the   center   a   series   of   arrow   shaped   channels   allowed   for   variable   shear   stresses   within   the   same   flow   chamber.   Thus,   by   changing   the   geometry   of   the   center   channels  changes  in  shear  stress  were  introduced  without  altering  the  gap  width   or  overall  flow  rate  [131].  With  this  device  the  effect  of  shear  rates  on  platelet   adhesion  onto  immobilized  fibrinogen  and  von  Willebrand  factor  (vWF)  matrices   was   studied   [132].   The   sudden-­‐expansion   flow   chamber   and   the   backward-­‐

facing   step   flow   chamber   were   designed   to   mimic   the   spatial   and   temporal   gradients   in   shear   stress   that   overlap   in   atherosclerosis   prone   regions   [133,   134].  The  sudden-­‐expansion  flow  chamber  leads  to  a  flow  separation  due  to  the   asymmetric   expansion   of   the   flow   path.   Here,   the   fluid   flows   from   a   narrow   channel   directly   to   a   wider   channel.   At   the   location   of   the   step   the   flow   recirculates   with   the   direction   against   the   main   flow   to   finally   reattach   to   the  

main  unidirectional  parabolic  flow  [134].  Finally,  to  study  the  effect  of  upstroke   slopes  of  pulsatile  flow  (shear  stress  slew  rates)  the  inlet  and  outlet  of  a  parallel   plate  flow  device  was  connected  to  symmetrical  contractions  and  diffusers.  Here,   through  precisely  monitoring  and  controlling  the  frequency,  amplitude  and  time-­‐

average   shear   stress   of   pulsatile   flow   allowed   the   independent   study   of   slew