• Aucun résultat trouvé

Connexin  expression  and  shear  stress

The  relation  between  the  location  of  atherosclerotic  plaques  in  the  vasculature   and  the  presence  of  low  and/or  oscillatory  wall  shear  stress  has  been  recognized   for   several   decades   [311].   It   is   increasingly   recognized   that   ECs   located   in  

athero-­‐susceptible   sites   have   specific   gene   expression   patterns  in   vivo,   which   may   be   reproduced   in   in   vitro  studies   [41,   312].   These   specific   expression   patterns   include   connexins.   Elegant   detailed   studies   by   Gabriels   and   Paul   onto   the  expression  and  distribution  of  vascular  connexins  in  rat  aorta  in  situ  revealed   that  Cx40  and  Cx37  were  present  in  nearly  all  ECs  of  the  thoracic  and  abdominal   aorta   at   cell-­‐cell   junctions.   In   contrast,   Cx43   was   undetectable   in   most   of   the   arterial  endothelium  but  was  specifically  localized  at  the  downstream  edge  of  the   ostia   of   branching   vessels   and   at   bifurcations   known   to   experience   disturbed   blood   flow   [214].   The   link   between   shear   stress   patterns   and   connexin   expression  was  further  strengthened  by  the  in  vivo  observation  of  Inai  et  al.  that   the   endothelium   on   the   upstream   and   downstream   surfaces   of   cardiac   valves   have   different   connexin   expression   patterns.   ECs   on   upstream   surfaces   were   found   to   have   70-­‐   to   200-­‐fold   higher   Cx43   levels   compared   to   downstream   surfaces.  However,  the  expression  of  Cx37  was  almost  equal  and  Cx40  was  not   detected   at   all   [313].   However,   the   exact   mechanisms   inducing   this   specific   expression   patterns   and   their   contribution   to   vascular   (patho)physiology   have   been  only  partially  resolved.  

1.4.5.1 Cx43  

Cowan   and   colleagues   performed   the   first  in   vitro   experiments   assessing   the   levels  of  Cx43  in  response  shear  stress.  They  subjected  cultured  ECs  to  a  laminar   shear  stress  of  15  dynes/cm2  resulting  in  an  4-­‐fold  increase  of  Cx43  mRNA  levels   after  1  hour,  which  remained  elevated  during  the  16  hour  experiment  [314].  In   vitro  experiments  using  a  parallel  plate  chamber  demonstrated  that  Cx43  mRNA   expression   levels   were   increased   6-­‐   to   8-­‐fold   after   5   hours   in   regions   of   flow  

disturbance   compared   to   no-­‐flow   and   remained   increased   after   16h.    

Interestingly,   ECs   exposed   to   30   hours   of   disturbed   flow   showed   reduced   dye   transfer   (lucifer   yellow)   compared   to   cells   exposed   to   undisturbed   flow.   They   concluded   that   shear   stress   gradients   in   regions   of   disturbed   flow   regulate   EC   intercellular   communication   through   both   the   functionality   and   the   expression   of   Cx43   [315].   Another   study   used   the   bEnd.3   endothelial   cell   line   (PymT-­‐

transformed  mouse  ECs)  grown  in  elastic  tubes  and  exposed  to  different  levels  of   hydrostatic   pressure,   shear   stress   and   circumferential   stretch   and   the   investigated  the  expression  of  Cx43.  They  showed  that  Cx43  was  sensitive  to  a   change   in   hemodynamic   environment   and   in   particular   to   OSS   and   circumferential   stretch   (4%   greater   diameter)   but   not   to   pressure   [137].  

Although  it  became  clear  that  Cx43  is  up-­‐regulated  in  ECs  exposed  to  disturbed   flow   no   clear   regulatory   mechanism   was   demonstrated.   Using   different   flow   profiles  and  a  specific  inhibitor  of  mitogen-­‐activated  protein  kinase  kinase  (PD-­‐

98059)   Bao  et  al.  demonstrated   that   the   temporal   gradients   in   shear   activates   ERK1  and  ERK2  and  induces  the  expression  of  c-­‐fos  and  Cx43  [316].  Altogether,   we   can   conclude   that   Cx43   is   up-­‐regulated   in   ECs   exposed   to   disturbed   flow   patterns   and   that   mitogen-­‐activated   proteins   kinase   pathways   are   possibly   involved  in  its  regulation  [305,  317,  318].  

1.4.5.2 Cx37  

It  has  been  shown  that  Cx37  is  highly  expressed  in  ECs  of  straight  regions  of  the   common   carotid   artery   and   virtually   absent   in   ECs   at   carotid   bifurcations   in   young  ApoE-­‐/-­‐  mice.  Accordingly,  the  carotid  bifurcation  regions  with  decreased   Cx37  expression  showed  almost  no  cell-­‐cell  communication  in  a  scrape  loading  

assay   with   propidium   iodide,   a   Cx37   permeable   dye   [126].   Using   shear   stress-­‐

modifying  vascular  casts  imposing  specific  flow  patterns  in  the  straight  parts  of   carotid  arteries  of  mice  it  was  shown  that  Cx37  was  down-­‐regulated  in  regions  of   low  laminar  and  oscillatory  shear  stress  but  conserved  in  regions  of  high  laminar   shear  stress,  unambiguously  demonstrating  that  Cx37  is  a  shear  stress  regulated   gene.  In  vitro  exposure  of  cultures  of  bEnd.3  cells,   HUVECs  or  human  coronary   artery  ECs  (HCAECs)  to  HLSS  also  induced  an  up-­‐regulation  of  Cx37  expression   [126,  319].  The  promoter  of  Cx37  contains  multiple  CACCC  elements,  which  are   binding   sites   for   KLF2   and   KLF4.   Indeed,   KLF2   silencing   in   EC   cultures   under   HLSS   decreased   the   expression   of   Cx37,   whereas   silencing   KLF4   did   not   affect   Cx37  expression.  Moreover,  binding  of  KLF2  to  the  KLF  consensus  binding  motifs   in   the   Cx37   promotor   was   demonstrated   by   chromatin   immunoprecipitation   (ChIP).   Thus,   through   KLF2   HLSS   modulates   the   expression   of   Cx37   in   the   endothelium,   thereby   contributing   to   the   formation   of   distinct   communication   compartments   in   arteries   [126].   The   responsiveness   of   endothelial   Cx37   expression   to   changes   in   hydrostatic   pressure   or   circumferential   stretch   are   currently  not  known.  

1.4.5.3 Cx40  

The  expression  of  Cx40  is  lost  in  ECs  overlying  the  atherosclerotic  lesion  [320].  

However,  preliminary  immunofluorescent  stainings  comparing  Cx40  expression   in   the   straight   part   and   the   bifurcation   region   of   the   mouse   carotid   artery   revealed   no   gross   differences   at   both   locations   [126,   280].   This   suggests   that   either  Cx40  expression  in  ECs  covering  the  atherosclerotic  lesion  is  regulated  by   factors   secreted   by   atheroma-­‐associated   cells   or   that   the   immunostaining  

methodology   is   not   sufficiently   sensitive   to   detect   small   changes   in   Cx40   expression  at  the  bifurcation.  

A  strong  expression  of  Cx40  was  observed  during  flow-­‐driven  collateral  arterial   network   formation   in   the   developing   chick   embryo   [321].   In   adult   life,   similar   increases   in   flow   drive   arteriogenesis   and   the   formation   of   collateral   arterial   networks  in  occlusive  peripheral  artery  disease  for  instance.  Interestingly,  mice   with   ubiquitous   genetic   deletion   of   Cx40   and   mice   with   endothelial-­‐specific   tamoxifen-­‐inducible   ablation   of   Cx40   showed   reduced   arteriogenesis   after   femoral   or   mesenteric   artery   occlusion   [321,   322].   In   HUVEC   cultures,   an   unidirectional   shear   stress   of   6-­‐10   dyne/cm2   caused   a   long-­‐term   induction   of   Cx40   protein   expression,   with   two   short-­‐term   mRNA   peaks   at   4   and   16   h,   indicating   the   dynamic   nature   of   the   adaptation   process   [323].   Furthermore,   experiments   inhibiting   PI   3-­‐kinase   (PI3K)   or   protein   kinase   B   (Akt)   revealed   a   reduced  expression  of  Cx40  with  PI3K  being  involved  in  basal  Cx40  expression   and   Akt   taking   part   in   the   shear   stress-­‐dependent   induction   of   Cx40   [323].  

Finally,   Yao   et   al.  showed   that   normal   laminar   shear   stress   (15   dyne/cm2)   inhibited  EC  proliferation  via  sirtuin-­‐1  (SIRT1)  and  Cx40  [324].  Although  these   limited   and   fragmented   data   suggest   a   potential   relation   between   shear   stress   patterns,   Cx40   expression   and   atherosclerosis,   no   direct   evidence   has   been   obtained  so  far.