• Aucun résultat trouvé

Connexins  affect  atherosclerosis

The  3  main  connexins  expressed  in  arteries  are  Cx37,  Cx40  and  Cx43,  and  their   expression  patterns  vary  with  disease  states.  From  studies  on  knockout  mice,  it   has   become   the   past   2   decades   increasingly   clear   that   these   proteins   play   a   crucial   role   in   vascular   physiology   and   disease.   In   this   paragraph,   I   will   summarize  atherosclerosis  studies  involving  connexin  knockout  mice.    

1.4.2.1 Cx37  

As  previously  described,  Cx37  is  lost  in  ECs  in  areas  prone  to  atherosclerosis  and   on   ECs   overlaying   atherosclerotic   plaques.   Indeed,   Cx37-­‐/-­‐ApoE-­‐/-­‐   mice   showed   enhanced   atherosclerotic   lesion   development   in   the   thoracic-­‐abdominal   aorta   and  in  the  aortic  sinus  [244].  Adoptive  transfer  studies  revealed  that  the  deletion   of   Cx37   in   monocytes/macrophages   increased   the   amount   of   these   cells   in   the   plaques.   This   was   due   to   an   effect   on   monocyte   adhesion   rather   than   the   migratory   properties   of   the   monocytes  per   se.   In   fact,   it   appeared   that   Cx37   regulates   the   ATP-­‐dependent   monocyte   adhesion.   Finally,   ATP   release   and   cell   adhesion   was   different   in   a   monocytic   cell   line   transfected   with   different   polymorphic   isoforms   of   the   connexin   (Cx37-­‐319S   or   Cx37-­‐319P),   leading   to   a   possible  explanation  for  the  differential  risk  of  myocardial  infarction  associated   with   these   polymorphisms   [244].   Using   the   afore-­‐mentioned   shear   stress   modifying  cast  model,  it  appeared  that  the  extent  of  atherosclerosis  in  oscillatory   regions   of   Cx37-­‐/-­‐ApoE-­‐/-­‐   mice   was   increased   and   that   the   stable   plaque   phenotype  normally  occurring  in  these  regions  was  abrogated  [75].  Finally,  using   a  phage  display  approach  Pfenniger  and  colleagues  showed  that  Cx37  is  a  direct   binding  partner  of  eNOS.  Binding  of  the  two  proteins  did  not  only  modulate  Cx37  

channel   function   but   also   eNOS   enzyme   activity,   suggesting   that   endothelial   expression  of  the  protein  may  also  affect  early  atherogenesis  [261].    

Thrombus   formation   after   plaque   rupture   may   lead   to   myocardial   infarction   [262].   Interestingly,   Angelillo-­‐Scherrer  et   al.  showed   that   platelets   expressing   Cx37   form   functional   gap   junction   channels   during   platelet   aggregation.  

Moreover,   this   Cx37-­‐mediated   direct   intercellular   communication   between   platelets  was  limiting  the  thrombus  propensity  [239].  

In   conclusion,   Cx37   has   multiple   functions   in   various   cells   that   are   related   to   atherosclerotic  plaque  formation  and  the  complications  of  this  disease.    

1.4.2.2 Cx40  

Similar   to   Cx37-­‐deficient   mice,   Cx40-­‐deficient   mice   showed   affected   eNOS   function  and  a  decreased  endothelium-­‐dependent  vasorelaxation  [263].  Further   investigations   revealed   however   that   this   effect   was   likely   due   to   the   concomitant   down-­‐regulation   of   Cx37   expression   observed   in   Cx40-­‐deficient   mice  [264].  Moreover,  these  mice  showed  decreased  activity  and  expression  of   CD73  and  increased  VCAM-­‐1  expression  in  ECs  [217].  CD73  in  ECs  is  known  to   up-­‐regulate   anti-­‐adhesion   signals   via   adenosine   production   [265].   In   line   with   these   data,   mice   with   EC-­‐specific   deletion   of   Cx40   in   ECs   developed   larger   atherosclerotic  lesions  than  control  mice  after  5  or  10  weeks  of  high  cholesterol   diet.   Strikingly,   even   without   high   cholesterol   diet   these   mice   developed   spontaneously   atherosclerotic   plaques   in   the   aortic   sinuses,   demonstrating   the   importance  of  this  protein  in  the  initiation  of  the  disease  [217].  Using  siRNA  or   antisense  to  decrease  Cx40  in  vitro  in  ECs,  the  expression  and  activity  of  CD73   was   decreased   and   adhesion   of   neutrophils   and   monocytes   increased.  

Additionally,   using   an   adenosine   receptor   agonist   reversed   this   effect.  

Altogether,   these   results   pointed   in   the   direction   that   Cx40   gap   junctional   communication   propagates   adenosine-­‐evoked   anti-­‐inflammatory   signals   between  ECs  [217].    

As   for   Cx37,   Cx40   is   expressed   in   platelets   [240].   Vaiyapuri   et   al.   showed   that   inhibition  of  Cx40  in  human  platelets  or  its  deletion  in  mice  reduced  the  platelet   fibrinogen   binding,   aggregation,   clot   retraction   and   granule   secretion.   They   concluded   that   Cx40,   in   an   independent   manner   from   Cx37,   is   involved   in   the   regulation  of  platelet  function  thus  contributing  to  haemostasis  and  thrombosis   [240].    

In   conclusion,   endothelial   Cx40   protects   against   atherosclerotic   plaque   formation  and  platelet  Cx40  fine-­‐tunes  platelet  aggregation  and  clot  retraction.  

However,   the   regulation   of   endothelial   Cx40   expression,   potential   protein   partners  for  Cx40  as  well  as  its  role  in  the  progression  of  atherosclerosis  remain   to  be  investigated.  

1.4.2.3 Cx43  

As   Cx43   is   widely   expressed   in   many   atheroma-­‐associated   cell   types,   targeting   Cx43   in   atherosclerosis   may   have   a   multitude   effects,   both   beneficial   and   detrimental.  Importantly,  Cx43  gap  junctional  communication  between  ECs  may   be   rather   specifically   inhibited  in  vivo   by   mimetic   peptides   and   this   decreased   the  adhesion  of  neutrophils  cells  in  a  model  of  lung  inflammation.[216]  Although   it   remains   controversial   whether   neutrophils   express   Cx43   in   all   conditions,   it   has   been   shown   that   neutrophil   adhesion   is   decreased   when   these   leukocytes  

were   obtained   from   Cx43+/-­‐   mice   or   from   mice   with   a   cell-­‐specific   deletion   of   Cx43  [243].  

Studies  performed  on  LDLR-­‐/-­‐  mice  with  reduced  levels  of  Cx43  (Cx43+/-­‐)  on  high   cholesterol  diet  showed  a  50%  reduction  in  atherosclerotic  plaque  formation  in   thoracic-­‐abdominal  aortas  and  in  aortic  sinuses  compared  to  the  control  LDLR-­‐/-­‐  

mice.   Furthermore,   the   plaques   contained   less   inflammatory   cells   and   had   a   thicker   fibrous   cap   with   more   collagen   and   VSMCs,   typical   for   a   stable   plaque   phenotype.  In  addition,  treatment  of  LDLR-­‐/-­‐  -­‐mice  with  Pravastatin  (statins  are   lipid  lowering  drugs  well  known  to  reduce  the  cardiovascular  risk  (reviewed  in:  

[266]   and   [267])   increased   Cx43   expression,   which   was   associated   with   decreased  the  amount  of  inflammatory  cells  and  increased  the  thickness  of  the   fibrous  cap  compared  to  control  mice  [268].  Atherosclerosis  studies  on  Cx43+/-­‐  

mice  with  a  ubiquitous  reduction  of  Cx43  are  hard  to  interpret  due  to  expression   of   this   protein   in   ECs,   VSMCs,   macrophages,   T   cells,   B   cells   and   possibly   neutrophils.   Tie2-­‐Cre+Cx43fl/flApoE-­‐/-­‐   mice   were   first   supposed   to   have   endothelial-­‐specific   deletion   of   Cx43   but   it   was   later   shown   that   the   Cre-­‐

recombinase   was   also   active   in   monocytes.   These   mice   showed   reduced   atherosclerotic   plaque   development   with   reduced   lipid   content   and   calcium   deposition   compared   to   control   mice,   illustrating   a   crucial   role   for   endothelial   and   monocytic   Cx43   in   atherogenesis   [269].   Subsequently,   Morel   et   al.  

reconstituted   LDLR-­‐/-­‐  mice   with   Cx43+/+,   Cx43+/-­‐   or   Cx43-­‐/-­‐   hematopoietic   fetal   liver   cells   to   examine   specifically   the   role   of   Cx43   in   immune   cells.   Here,   the   progression  of  atherosclerosis  and  the  amount  of  neutrophils  was  lower  in  aortic   roots  in  Cx43+/-­‐  but  not  in  Cx43-­‐/-­‐  compared  to  the  control  Cx43+/+  mice.  Such  a   critical   role   for   the   exact   amount   of   Cx43   has   been   described   previously   for  

VSMCs   in   the   context   of   restenosis   [270,   271]   and   for   neural   crest   cell   during   heart   development   [272-­‐274].   Interestingly,   no   difference   in   terms   of   polarization   (M1/M2)   was   found   between   Cx43+/+,   Cx43+/-­‐   or   Cx43-­‐/-­‐  

macrophages   but   detailed   microarray   analysis   revealed   modified   gene   expression   for   the   chemokines   Ccl2,   Ccl3,   and   Cxcl12   and   the   complement   component   C3a.   This   brought   the   authors   to   the   tempting   conclusion   that   the   levels   of   Cx43   expression   in   macrophages   determines   their   chemo-­‐attractant   secretion  [246].    

Finally,  given  the  important  role  of  VSMCs  in  plaque  stability  it  is  surprising  that   the  mechanism  regulating  Cx43  expression  in  these  cells  is  not  fully  understood.  

Blackburn   and   colleagues   performed   the   first   study   shedding   light   on   this   mechanism.  They  showed  that  the  transcription  factor  NF-­‐κB  was  involved  in  the   regulation  of  Cx43  and  that  the  phosphorylation  state  of  Cx43  was  important  for   VSMC  proliferation  [275].  Interestingly,  Rama  and  colleagues  added  to  that,  that   transforming   growth   factor   beta   (TGF-­‐β)-­‐treated   human   aortic   SMCs   increased   their  Cx43  expression  level  which  correlated  with  an  increased  synthetic  activity.  

Altogether,   this   leads   to   the   conclusion   that   Cx43   levels   and   phosphorylation   states   in   VSMCs   may   be   important   for   the   stability   of   atherosclerotic   lesions   [276,  277].    

In  conclusion,  the  different  data  from  various  research  groups  are  pointing  in  the   direction  that  Cx37  and  Cx40  are  atheroprotective  and  that  Cx43  is  atheroprone   in  ECs  of  large  arteries.