• Aucun résultat trouvé

Atheroprone  shear  stress

1.3.4 Shear  stress  response

1.3.4.2 Atheroprone  shear  stress

1.3.4.2 Atheroprone  shear  stress  

In   contrast   to   the   ECs   in   atheroprotective   regions,   ECs   in   atheroprone   regions   exposed   to   low   and/or   oscillatory   shear   stress   display   a   ‘cobblestone’  

morphology   [52].   Furthermore,   these   ECs   display   an   impaired   endothelial   barrier  function  and  higher  rates  of  cell  turnover,  cellular  senescence  and  show   increased   permeability   to   lipoproteins   [48,   52,   175].   Furthermore,   these   dysfunctional   ECs   have   increased   expression   of   adhesion   molecules   leading   to   the   adhesion   and   transmigration   of   monocytes   over   the   endothelial   barrier   to   the  intima  [53].  Another  important  aspect  is  the  chronic  endoplasmic  reticulum   (ER)  stress  that  causes  endothelial  apoptosis  [176].  Low  and/or  oscillatory  shear   stress  is  reducing  the  NO-­‐dependent  protection  against  atherosclerosis  through   reduction   of   eNOS   synthesis   [149].   Furthermore,   increased   reactive   oxygen   species   (ROS)   production   through   induced   nicotinamide   adenine   dinucleotide   phosphatase   (NADPH)   activity   increases   NO   degradation   and   further   activates   the  ECs  [177,  178].  Twist  related  protein-­‐1  (TWIST1)  is  preferentially  expressed   in   low   shear   stress   regions   of   adult   arteries.   TWIST1   was   found   to   promote   atherosclerosis   by   enhancing   EC   proliferation   and   inflammation   through   expression   of   VCAM-­‐1   and   ICAM-­‐1   inflammatory   adhesion   molecules   [179].   In   contrast  to  high  protective  shear,  low  shear  stress  increases  the  thrombogenicity  

through   reduced   expression   of   tissue   plasminogen   activator   and   prostacyclin   [180].    

Finally,  different  miRNAs  are  regulated  by  atheroprone  shear  stress.  Indeed,  the   miR17  and  miR92  cluster,  miR34a,  miR663  and  the  miR712-­‐205  family  have  all   been   found   to   be   up-­‐regulated   in   these   regions   and   to   promote   atherogenesis   [157,  181,  182].  Interestingly,  several  groups  of  shear  stress-­‐regulated  miRNAs   have   a   dual   role   in   atherogenesis.   miR-­‐21   expression   was   found   to   be   upregulated   in   HUVECs   after   exposition   to   unidirectional   shear   stress.   Here,   miR-­‐21  was  found  to  decrease  apoptosis  and  increase  eNOS  phosphorylation  and   NO  production  in  ECs  [183].  In  contrast,  another  study  reported  that  oscillatory   shear   stress-­‐induced   expression   of   miR-­‐21   may   inhibits   the   expression   of   peroxisome   proliferator-­‐activated   receptor-­‐alpha   (PPARα),   resulting   in   enhanced   expression   of   VCAM-­‐1   and   monocyte   chemotactic   protein-­‐1   (MCP-­‐1)   [184].   In   addition,   miR-­‐126-­‐carrying   endothelial   apoptotic   bodies   have   been   shown   to   be   atheroprotective   in   mice   through   promoting   a   C-­‐X-­‐C   motif   chemokine   12   (CXCL12)-­‐dependent   recruitment   of   progenitor   cells   to   the   endothelial   lining   [185].   In   contrast,   the   effects   of   miR-­‐126   on   VSMCs   includes   repression  of  genes  (e.g.  FOXO3,  BCL2,  and  IRS1)  known  to  hold  these  cells  in  the   atheroprotective   contractile   phenotype.[186]   Conferring   to   miR-­‐126   a   atheroprone   role   in   VSMCs   despite   its   atheroprotective   effects   on   endothelial   cells.  Finally,  miR-­‐155  is  increased  in  the  thoracic  aorta  exposed  to  laminar  shear   stress   compared   to   the   lower   curvature   of   the   aortic   arch   associated   with   oscillatory  and  low  shear  stress  [187].  Both  pro-­‐  and  anti-­‐atherosclerotic  effects   have   been   assigned   to   miR-­‐155   depending   on   the   context.   Increased   atherosclerosis   with   reduced   plaque   stability   was   present   in   LDLR-­‐/-­‐   mice  

harboring   a   bone   marrow   deficiency   of   miR-­‐155   [188].   Furthermore,   the   delivery   of   miR-­‐155  in   vivo   reduced   atherosclerotic   plaque   formation   through   targeting   MAP3K10   [189].   In   contrast,   miR-­‐155   expression   was   induced   in   atherosclerotic   plaques   and   pro-­‐inflammatory   macrophages   through   treatment   with   oxidized   LDL   and   IFN-­‐γ.   Here,   leukocyte-­‐specific   mIR-­‐155   deletion   decreased   the   number   of   lesional   macrophages   and   plaque   size   after   partial   carotid  ligation  in  ApoE-­‐/-­‐-­‐mice.  The  loss  of  miR-­‐155  reduced  expression  of  CC-­‐

chemokine   ligand   2   (CCL2)   that   enhances   the   recruitment   of   monocytes   to   atherosclerotic  lesions  [190].  Demonstrating  the  pro-­‐inflammatory  role  of  miR-­‐

155  in  macrophages.  

Together,   these   data   show   the   complexity   of   miRNAs   and   showing   their   versatility  depending  on  cellular  context  and  environment  [172].  In  addition  to   laminar   flow,   disturbed   flow   also   modulates   DNA   methylation   mainly   through   the   methyltransferase   activity   of   DNMT1   [52,   162,   165].   Thus,   disturbed   flow   increases  the  methylation  of  the  promotor  of  the  atheroprotective  transcription   factor   KLF4,   thereby   inhibiting   its   expression   [52,   191].   Finally,   NF-­‐κB   has   a   central   role   in   the   pro-­‐inflammatory   activation   of   the   endothelium   during   atherogenesis   and   in   function   of   shear   stress   [48,   52,   145,   192].   Many   stimuli   leading  to  endothelial  dysfunction  have  been  ascribed  to  NF-­‐κB  signaling  in  ECs   and  will  be  separately  discussed  in  the  next  paragraph.    

1.3.4.2.1 NF-­‐κB  

High  levels  of  NF-­‐κB  expression  are  typically  found  in  regions  of  low  shear  stress   and  regions  of  disturbed  flow  a  nuclear  localization  of  this  transcription  factor  is   generally   observed   [193-­‐196].   The   most   abundant   form   of   NF-­‐κB   in   the  

endothelium   is   the   RelA/p50   heterodimer   [194].   In   normal   physiological   conditions,   NF-­‐κB   is   sequestered   in   the   cytoplasm   through   the   binding   of   inhibitory  IκB.  Signaling  through  various  pathways  converge  on  the  IκB  kinase   (IKK)   complex   phosphorylating   IκB   and   leading   to   ubiquitination   and   proteasome-­‐dependent  degradation  IκB  [197,  198].  This  dissociation  of  IκB  from   NF-­‐κB   makes   it   possible   to   the   transcription   factor   to   translocate   freely   to   the   nucleus,  where  it  binds  to  transcription  factor  binding  sites  (TFBS)  initiating  the   transcription   of   various   genes   [198].   Many   effector   molecules   involved   in   endothelial   cell   dysfunction   are   under   the   control   of   NF-­‐κB.   Moreover,   other   flow-­‐sensitive  endothelial  genes  have  non-­‐canonical  NF-­‐κB  binding  sites  [53].    

In   response   to   atheroprone   shear   stress   different   NF-­‐κB-­‐dependent   adhesion   molecules  and  pro-­‐inflammatory  molecules  are  up-­‐regulated,  including  VCAM-­‐1,   ICAM-­‐1,   E-­‐selectin,   MCP-­‐1,   tissue   factor,   vWF,   plasminogen   activator   inhibitor   (PA-­‐1),  tumor  necrosis  factor  (TNF)-­‐α,  interleukin  (IL)-­‐1  and  interferon  (IFN)-­‐γ   [53,  180].  

Interestingly,  Cuhlmann  and  colleagues  proposed  a  possible  explanation  related   to   NF-­‐κB   for   the   spatial   distribution   of   the   atherosclerotic   lesions   in   the   vasculature.  Using  the  constructive  perivascular  cuff  model  they  showed  that  in   low   or   low/oscillatory   pro-­‐inflammatory   shear   stress   regions   transcription   factor   p65   (RelA)   was   up-­‐regulated   through   JNK1   and   the   downstream   transcription  factor  activating  transcription  factor  (ATF)-­‐2.  They  suggest  that  the   crosstalk  between  the  JNK  and  NF-­‐κB  pathways  may  explain  non-­‐uniform  spatial   distribution   of   the   atherosclerotic   lesions   [194].   In   addition,   although   the   expression  of  RelA  is  similar  in  low  and  low/oscillatory  shear  stress  regions  only   low/oscillatory   shear   stress   induced   nuclear   localization   of   RelA   and   up-­‐

regulation  of  VCAM-­‐1  expression  [194].  These  data  suggest  that  ECs  exposed  to   the   low/oscillatory   shear   environment   have   a   particular   pro-­‐inflammatory   phenotype   distinct   from   ECs   exposed   to   low   shear   stress   [194].   Interestingly,   Pfenniger  et   al.   showed   that   shear   stress   through   the   modulation   of   the   gap   junctional   protein   connexin37   forms   distinct   communication   compartments   in   arteries.   In   concordance   with   the   results   of   Cuhlmann   and   colleagues,   introducing  distinct  EC  compartments  that  segregate  atheroprone  regions  from   protected   regions   limiting   the   spread   of   pro-­‐inflammatory   mediators   to   neighboring  regions  [126].    

 

 

Figure   8:   Summary   of   atheroprotective   and   atheroprone   effects   of   laminar   and   disturbed   flow,   respectively,  on  EC  biology.  Adapted  from  [199]  

1.4 Connexins    

Connexins  are  transmembrane  proteins  that  are  expressed  in  almost  all  cells  of   the   body.   They   form   intercellular   channels,   called   gap   junction   channels,   facilitating   cell-­‐cell   communication   by   connecting   the   cytoplasm   of   two   neighboring   cells.   Gap   junction   channels   are   formed   when   two   opposed   connexons  (each  composed  of  6  connexins)  from  two  neighboring  cells  dock  in   the   extracellular   space   [200].   Furthermore,   connexons   may   under   specific   conditions   function   as   hemichannels   and   form   a   communicating   path   between  

the  cytoplasm  and  the  extracellular  space.  Twenty-­‐one  different  connexins  have   been   found   in   humans   and   20   in   mice   [201].   Connexins   consist   of   4   α-­‐helical   transmembrane   domains   and   2   extracellular   loops   (ELs)   that   are   rather   conserved  between  the  different  connexins.  In  addition,  a  cytoplasmic  loop  (CL),   a  C-­‐terminal  (CT)  and  N-­‐terminal  (NT)  tail  are  located  in  the  cytoplasm  (Figure   9).  

 

Figure   9:   From   connexin   to   gap   junction   channel.   Connexins   are   membrane-­‐spanning   proteins   composed   of   four   transmembrane   helices   (M1-­‐M4),   two   extracellular   loops   (EL1   and   EL2),   one   intracellular  loop  (CL)  and  one  N-­‐  and  C-­‐terminal  end  located  in  the  cytoplasm  (NH2  and  COOH).  Six   connexin  subunits  oligomerize  to  form  a  connexon.  Two  connexons  from  neighboring  cells  dock  to   form  a  gap  junction  channel.    

These   parts   are   unique   to   each   type   of   connexin   and   differ   in   length   and   composition   [202].   The   different   connexins   are   named   after   their   specific   molecular   weight.   Furthermore,   connexins   are   classified   in   5   subfamilies   according   to   their   sequence   homology   [203].   Gap   junction   channels   can   adopt   different   configurations.   First,   connexons   can   be   homomeric   when   the   six   connexins  forming  the  connexon  are  identical  or  they  are  heteromeric  when  two   or   more   different   connexins   are   forming   the   connexon.   Secondly,   gap   junction   channels  can  be  homotypic  if  both  connexons  are  formed  by  identical  connexins  

or   considered   heterotypic   if   they   are   formed   by   two   different   connexons.  

Additionally,  heteromeric  heterotypic  channels  are  formed  when  two  connexons   containing   each   multiple   different   connexins   dock   together   [204].   Due   to   the   versatility   in   the   composition   of   gap   junction   channels   it   is   not   surprising   that   they   differ   in   their   gating   properties,   unitary   conductance   and   permeability   to   ions  and  different  molecules.  In  general,  small  molecules  with  a  molecular  weight   below   1   kDa   like   adenosine   triphosphate   (ATP),   glutathione,   cyclic   adenosine   monophosphate   (cAMP),   cyclic   guanosine   monophosphqte   (cGMP)   and   inositol   triphosphate  (IP3)  are  passing  through  gap  junction  channels,  but  depending  on   the   structure   and   charge   of   the   metabolite   this   may   differ   considerably   for   channels   made   of   different   connexins   [205-­‐207].   Interestingly,   recent   evidence   shows   that   even   siRNA   and   miRNA   may   pass   through   gap   junction   channels   under   certain   conditions   [208].   Next   to   their   channel   function,   connexins   have   also  been  found  to  interact  with  other  proteins.  First,  regulation  of  gap  junctional   communication   can   be   modulated   by   the   interaction   with   associated   proteins,   such   as   protein   kinases   and   protein   phosphatases.   Secondly,   connexins   have   been  found  to  interact  with  structural  proteins  such  as  zona  occludens-­‐1  (ZO-­‐1)   and  microtubules  [209,  210].  Finally,  a  growing  number  of  connexin-­‐associated   proteins   have   broadened   the   range   of   connexin   roles   to   transcriptional   and   cytoskeletal  regulation  [210].