• Aucun résultat trouvé

Connexin40 controls endothelial activation by dampening NFκB activation

GRANT SUPPORT

4.4. Concluding  remarks

Compared  to  mice,  the  optical  transparency  of  zebrafish  embryos  and  larvae,  the   availability   of   effective   tools   for   genetic   manipulation,   the   relatively   small   generation   time,   large   clutch   size   at   every   crossing   and   easy   access   to   all   developmental  stages  make  zebrafish  an  ideal  tool  for  investigating  endothelium   dysfunction  and  early  atherogenesis.    

Connexins   include   20   members   in   mice   and   21   in   humans   [25].   In   zebrafish,   around  36  different  connexins  are  predicted  to  exist  [18].  This  gene  number  may   be  due  to  a  genome  duplication  event  in  fish  evolution  [26].  With  respect  to  the   subject   of   my   thesis,   two   zebrafish   connexins,   Cx41.8   (gja5b   gene)   and   Cx45.6   (gja5a   gene),   have   been   identified   as   orthologues   of   mammalian   Cx40   [18].  

Cx41.8  was  found  to  be  involved  in  the  stripe  pattern  formation  in  zebrafish  [19,   27].  Indeed,  mutations  inside  the  Cx41.8  gene  (known  as  leopard),  leot1,  leotq270   and   leotw28   have   been   associated   with   spot   pattern   in   zebrafish   [19].   Cx45.6   mRNA   is   primarily   expressed   in   zebrafish   adult   heart,   and   low   levels   were  

specifically   detected   in   ECs   from   adult   zebrafish   (Figure   1B-­‐C).   Furthermore,   using  WISH  we  were  able  to  detect  Cx41.8  mRNA  in  the  heart  of  48hpf  zebrafish   larvae.   In   addition,   Cx45.6   mRNA   was   detected   using   WISH   in   the   major   vasculature  of  zebrafish  larvae  confirming  the  data  of  Christies  et  al.  [20].    

 

All   genotyping   and   maintenance   of   the   zebrafish   lines   are   now   routinely   performed   in   the   lab.   This   opens   new   perspectives   for   future   investigations   of   the   role   of   Cx40   in   atherogenesis   using   the   zebrafish   model.   To   further   investigate   the   role   of   Cx40   orthologues   in   zebrafish   ECs   we   will   use   the   leot1,   leotq270  and  leot1  Cx45.6-­‐/-­‐  mutants.  It  was  originally  expected  that  the  leot1  and   leotq270   would   have   the   same   phenotype   [19].   In   fact,   the   leotq270   appeared   to   have   a   more   severe   phenotype   in   terms   of   spotted   skin   pattern.   The   authors   postulated  that  this  more  severe  phenotype  could  be  explained  by  the  formation   of  heterotypic  gap  junction  channels  composed  of  Cx43,  Cx45.6  and  Cx41.8tq270   [19].  Indeed,  Cx26  and  Cx32  have  been  found  to  form  heterohexamer  connexons   with   different   signaling   molecule   selectivity   compared   to   homohexamer   connexons   of   Cx26   or   Cx32   [28].   In   addition,   it   was   found   that   the   voltage   sensitivity  of  Cx41.8  was  similar  to  Cx45.6  [20].  This  suggests  a  similar  role  for   Cx45.6  in  zebrafish  spot  pattern  formation.  The  Cx41.8t1/t1  mutation  phenotype   might   be   less   severe   due   to   compensatory   mechanisms   of   other   connexins.   In   contrast,  the  mutation  Cx41.8tq270/tq270  where  the  connexin  is  expressed  but  with   decreased   channel   function   no   compensatory   mechanism   may   be   active,   resulting  in  a  more  severe  phenotype.  This  suggests  the  involvement  of  direct  or  

of   great   interest   concerning   further   experimentation   in   zebrafish   ECs   compartmentalization.  

Interestingly,  the  Cx41.8t1/t1  phenotype  was  rescued  by  introducing  the  rat  Cx40   [29],  indicating  that  the  functional  activities  of  Cx40  are  well  conserved  between   the   two   species.   Furthermore,   the   residues   E9   and   E13   located   in   the   amino   terminal  domain  of  the  rat  Cx40  that  are  conserved  in  the  zebrafish  Cx41.8  are   predicted   to   be   residues   that   are   sensitive   to   polyamine   and   affecting   channel   permeability  [29,  30].  Indeed,  when  mutating  the  rat  Cx40  polyamine  sensitive   residues  the  mutant  did  not  rescue  the  leopard  phenotype.  Knowing  that  the  N-­‐

terminal   sequence   of   the   connexins   related   to   Cx41.8   (Cx40)   is   well   conserved   between   species,   we   suggest   an   important   role   for   the   ExxxE   motif   in   the   functional   activity   of   connexins.   In   line,   this   mechanism   could   be   of   interest   in   the  physiology  of  ECs.  

1.   Getz   GS   and   Reardon   CA.   Animal   models   of   atherosclerosis.   Arterioscler  

Vascular  lipid  accumulation,  lipoprotein  oxidation,  and  macrophage  lipid  uptake   in  hypercholesterolemic  zebrafish.  Circ  Res.  2009;  104(8):952-­‐960.  

7.   Clifton  JD,  Lucumi  E,  Myers  MC,  Napper  A,  Hama  K,  Farber  SA,  Smith  AB,  

atherosclerosis  and  angiogenesis.  Transl  Res.  2014;  163(2):99-­‐108.   lineage-­‐specific  duplications  and  highly  supported  gene  classes.  Genomics.  2006;  

87(2):265-­‐274.   cardiovascular  connexin.  Am  J  Physiol  Heart  Circ  Physiol.  2004;  286(5):H1623-­‐

1632.   mutant  embryos.  Development.  1993;  119(4):1203-­‐1215.  

24.   Jin  SW,  Beis  D,  Mitchell  T,  Chen  JN  and  Stainier  DY.  Cellular  and  molecular   of  vertebrate  chromosomes.  Genome  Res.  2000;  10(12):1890-­‐1902.  

27.   Maderspacher  F  and  Nusslein-­‐Volhard  C.  Formation  of  the  adult  pigment  

Table  1:  Genotyping  primers  

Primer   Forward   Reverse  

Cx41.8  TQ   TGCTGCAAACATACGTCCTC   TTTGCAGAGTTCTGCTGGTG  

Cx41.8  T1   AGATCAGAGAAGGTGTAGAC   AGGTTAATTGGGCAAATTAGG  

Cx45.6   GGTGAGGAGTATGGGGGACT   AGGGTGTCGATACGAAGACG  

DyNAzyme  II  DNA  polymerase  (ThermoScientific)   0.62  

25mM  MgCl2    (Roche)   3  

Primer   Forward   Reverse  

Cx41.8   ACCGAGGTTGAATGCTCC   TGGTTTCAATCAGGCTCC  

Cx45.6   CTAAGCCTGCGCTTGTCTCT   GGCTCGGGTTCGAAGTGAAA  

Ef1α   GGTAGTATTTGCTGGTCTCG   GAGAAGTTCGAGAAGGAAGC  

 

Table  6:  In  situ  probe  primers  

Primer   Forward   Reverse  

Cx41.8   GATCCGCCTGGTCATGGAAG   AAGGCTTCCAGCTTCTTTTCCT  

Cx45.6   TGTTACGACCGAGCCTTTCC   AAGGTGAGGCACAGGAGTTG  

 

Figure   1:   Cx41.8   and   Cx45.6   are   expressed   in   zebrafish   endothelial   cells.  

(A)  Experimental   protocol   of   tail   eGFP+   ECs   sorting.   (B,   C)  Cx41.8   and   Cx45.6   expression   in   eGFP+   cells   was   assessed   by   qPCR.   (B)   Cx41.8   is   expressed   in   zebrafish  ECs.  (C)  Cx45.6  is  expressed  in  zebrafish  ECs.  

 

Figure   2:   Whole   mount   in   situ   hybridization   analysis:   embryonic   expression   of   Cx41.8   and   Cx45.6.   (A)   Agarose   gel   electrophoresis   of   transfected   MACH1   bacteria   containing   the   TOPO-­‐TA   vector   with   Cx41.8   and   Cx45.6   inserts.   (B)   DNA   sequence   blasting   of   wild   type   Cx41.8   and   Cx45.6   against   the   sequences   inserted   in   TOPO-­‐TA   vector.  (C)   Purified   Cx41.8   and   Cx45.6   WISH   probes.  (D,   E)  WISH   detection   of   Cx41.8   and   Cx45.6   in   48   hpf   zebrafish.  (D)  Cx41.8  mRNA  is  detected  in  the  heart.  (E)  Cx45.6  is  detected  in  the   heart,  lateral  dorsal  aorta  (LDA),  dorsal  midline  junction  (DMJ)  and  pectoral  fin   buds  (PFB).  Scale  bar  represents  100  µm  

 

Figure   3:   mutant   zebrafish   genotyping.   (A)  5   day   flk1:eGFP   zebrafish.   Scale   bar  represents  500  µm  (B)  Agarose  gel  electrophoresis  for  zebrafish  Cx45.6  (C)   BsrD10   restriction   digestion   of   Cx45.6   fragment.   The   Cx45.6-­‐/-­‐   fragment   is   not   digested  due  to  absence  of  BsrD10  restriction  site  (lane  1  &  2).  In  Cx45.6+/-­‐  only   one   DNA   strand   is   digested   resulting   in   2   bands   (lane   3,4   &5).   Cx45.6+/+  is   digested  due  to  presence  of  BsrD10  restriction  site  on  both  DNA  strands  (lane  6)   (D)  Genotyped  DNA  sequences  of  Cx41.8t1/t1  introducing  a  C>T  change  resulting   in   a   TGA   stop   codon   (E)   Genotyped   DNA   sequences   of   Cx41.8tq270/tq270  

(phenylalanine).  

The  focus  of  this  thesis  was  to  investigate  the  regulation  and  function  of  Cx40  in   healthy  and  diseased  vascular  endothelium.  The  3  main  connexins  expressed  in   the   arterial   ECs   are   Cx37,   Cx40   and   Cx43   and   the   expression   levels   and   distribution   pattern   varies   with   disease   state   [1].   From   studies   on   knockout   mice,  it  has  become  increasingly  clear  that  these  proteins  play  a  crucial  role  in   vascular  physiology  and  disease.  Indeed,  it  is  generally  accepted  that  Cx37  and   Cx40  are  atheroprotective  and  Cx43  is  atheroprone  in  ECs  of  large  arteries  [2].  

Cx37   affects   the   atherogenesis   through   an   ATP-­‐dependent   regulation   of   monocyte   adhesion   and   it   also   regulates   platelet   aggregation   [3].   Furthermore,   binding  of  eNOS  to  Cx37  modulates  not  only  its  channel  function  but  also  eNOS   enzyme  activity,  linking  Cx37  to  endothelial  physiology  [4].  Cx43  was  shown  to   affect   plaque   stability   through   VSMC   migration   and   proliferation   [5].  

Furthermore,   Cx43   expression   levels   in   macrophages   might   determine   their   secretion  of  chemo-­‐attractants  [6].  Finally,  Cx40  was  found  to  enhance  the  CD73-­‐

dependent   anti-­‐inflammatory   pathway   in   ECs   [7].   In   addition,   Cx40   in   human   platelets  was  linked  to  platelet  aggregation  and  clot  retraction  [8].    

The   expression   of   these   3   connexins   is   differently   regulated   in   ECs   by   arterial   shear   stress   patterns.   Cx43   is   highly   expressed   in   aortic   ECs   localized   downstream  of  ostia  of  branching  vessels,  at  bifurcations  and  in  curved  arteries   exposed   to   low   and/or   disturbed   blood   flow   [9].   In   contrast,   Cx37   is   highly   expressed   in   ECs   of   straight   regions   of   the   common   carotid   artery   exposed   to   HLSS   but   its   expression   is   lost   at   arterial   bifurcations   [10].   Although   various  

The  aim  of  this  thesis  was  to  investigate  the  shear  stress  dependent  regulation  of   endothelial  Cx40  expression  in  ECs,  identify  its  potential  protein  partners  within   the  context  of  atherosclerosis,  and  recognize  downstream  effects  of  the  induction   of  endothelial  Cx40  by  HLSS.  In  Chapter  1  we  describe  the  expression  pattern  of   Cx40   in   relation   to   shear   stress   and   its   gap   junction-­‐mediated   intracellular   communication   (GJIC)   independent   functions.   Chapter   2   focuses   on   the   shear   stress-­‐dependent   regulation   of   Cx40   and   downstream   consequences   of   HLSS-­‐

induces   Cx40   expression.   Finally,   Chapter   3   describes   the   set-­‐up   of   a   new   zebrafish  model,  which  might  be  of  help  to  investigate  the  role  of  Cx40  in  relation   to  early  atherogenesis.