• Aucun résultat trouvé

In  summary,  the  development  of  atherosclerotic  plaques  in  arteries  is  influenced   by   the   type   of   blood   flow   in   the   vessel.   Using   a   mouse   model   that   imposes   a   specific   flow   pattern   in   carotid   arteries,   it   has   been   demonstrated   that   an  

oscillatory  shear  stress  promotes  the  formation  of  stable  plaques,  and  that  a  low   laminar  shear  stress  induces  the  formation  of  unstable  plaques.  In  contrast,  high   laminar   shear   stress   does   not   induce   atherosclerosis   as   it   up-­‐regulates   anti-­‐

inflammatory   genes   in   ECs.   The   Krüppel   like   transcription   factors   KLF2   and   KLF4   have   been   identified   as   central   regulators   of   physiological   (anti-­‐

inflammatory)   responses   to   HLSS.   Cx40   has   anti-­‐atherogenic   properties.  

Moreover,   these   proteins   are   highly   expressed   in   the   endothelium   of   healthy   arteries,  but  are  down-­‐regulated  in  the  ECs  overlying  atheromas.    

In  this  thesis,  I  will  aim  to  elucidate  relationship  between  different  shear  stress   conditions   and   the   regulation   of   endothelial   Cx40   within   the   context   of   atherosclerosis.    

More  specifically  I  will:  

-­‐ investigate   the   relation   between   OSS,   Cx40   expression   and   the   NF-­‐

κB/IκBα-­‐complex.  

-­‐ identify   the   transcription   factor   inducing   Cx40   expression   in   HLSS   conditions  

-­‐ identify  the  downstream  consequences  of  HLSS-­‐induced  Cx40  expression   -­‐ investigate   whether   the   zebrafish   (Danio   rerio)   Cx40   orthologues,   i.e.  

Cx41.8   and   Cx45.6,   are   expressed   in   the   endothelium   and   what   may   be   the   consequences   of   mutations   in   these   genes   to   vascular   (patho)physiology.    

 

1.   WHO.   (2013).   Global   Health   Estimates   (GHE)   2013:   Deaths   by   age,   sex   from  the  American  Heart  Association.  Circulation.  2014;  129(3):e28-­‐e292.  

4.   WHO.   (2016).   Cardiovascular   disease.  

(http://www.who.int/cardiovascular_diseases/en/.  

5.   WHO.  (2016).  Global  Hearts  Initiative.  WHO).  

6.   Weber   C   and   Noels   H.   Atherosclerosis:   current   pathogenesis   and   therapeutic  options.  Nat  Med.  2011;  17(11):1410-­‐1422.  

7.   Lusis  AJ.  Atherosclerosis.  Nature.  2000;  407(6801):233-­‐241.   of  cytokines  in  atherosclerosis.  Arterioscler  Thromb  Vasc  Biol.  2011;  31(5):969-­‐

979.   translating  the  biology  of  atherosclerosis.  Nature.  2011;  473(7347):317-­‐325.  

18.   Chaabane   C,   Coen   M   and   Bochaton-­‐Piallat   ML.   Smooth   muscle   cell   phenotypic  switch:  implications  for  foam  cell  formation.  Curr  Opin  Lipidol.  2014;  

25(5):374-­‐379.  

19.   Gomez   D   and   Owens   GK.   Smooth   muscle   cell   phenotypic   switching   in   atherosclerosis.  Cardiovasc  Res.  2012;  95(2):156-­‐164.  

20.   Feil   S,   Fehrenbacher   B,   Lukowski   R,   Essmann   F,   Schulze-­‐Osthoff   K,   Schaller   M   and   Feil   R.   Transdifferentiation   of   vascular   smooth   muscle   cells   to   macrophage-­‐like  cells  during  atherogenesis.  Circ  Res.  2014;  115(7):662-­‐667.  

21.   Rong   JX,   Shapiro   M,   Trogan   E   and   Fisher   EA.   Transdifferentiation   of   Atherosclerosis.  Circ  Res.  2016;  118(4):692-­‐702.  

25.   Van   der   Veken   B,   De   Meyer   GR   and   Martinet   W.   Intraplaque   neovascularization   as   a   novel   therapeutic   target   in   advanced   atherosclerosis.  

Expert  Opin  Ther  Targets.  2016;  20(10):1247-­‐1257.  

26.   Parma  L,  Baganha  F,  Quax  PHA  and  de  Vries  MR.  Plaque  angiogenesis  and   intraplaque  hemorrhage  in  atherosclerosis.  Eur  J  Pharmacol.  2017.  

27.   Sakakura   K,   Nakano   M,   Otsuka   F,   Ladich   E,   Kolodgie   FD   and   Virmani   R.   biomechanical  forces  in  the  natural  history  of  coronary  atherosclerosis.  Nat  Rev   Cardiol.  2016;  13(4):210-­‐220.   and  clinical  implications.  Eur  Heart  J.  2014;  35(43):3013-­‐3020,  3020a-­‐3020d.  

33.   Cheng  GC,  Loree  HM,  Kamm  RD,  Fishbein  MC  and  Lee  RT.  Distribution  of   circumferential  stress  in  ruptured  and  stable  atherosclerotic  lesions.  A  structural   analysis  with  histopathological  correlation.  Circulation.  1993;  87(4):1179-­‐1187.  

34.   Slager   CJ,   Wentzel   JJ,   Gijsen   FJ,   Schuurbiers   JC,   van   der   Wal   AC,   van   der   (ESC)  Working  Group  on  atherosclerosis  and  vascular  biology.  Thromb  Haemost.  

2011;  106(1):1-­‐19.  

42.   Klabunde  RE.  (2012).  Cardiovascular  physiology  concepts.  (Philadelphia,   PA:  Lippincott  Williams  &  Wilkins/Wolters  Kluwer).  

43.   Malek  AM,  Alper  SL  and  Izumo  S.  Hemodynamic  shear  stress  and  its  role   in  atherosclerosis.  JAMA.  1999;  282(21):2035-­‐2042.  

44.   Davies   PF.   Hemodynamic   shear   stress   and   the   endothelium   in   pathogenesis  of  atherosclerosis.  Lab  Invest.  2005;  85(1):9-­‐23.  

49.   Kroll  MH,  Hellums  JD,  McIntire  LV,  Schafer  AI  and  Moake  JL.  Platelets  and   shear  stress.  Blood.  1996;  88(5):1525-­‐1541.  

50.   Papaioannou   TG   and   Stefanadis   C.   Vascular   wall   shear   stress:   basic   principles  and  methods.  Hellenic  J  Cardiol.  2005;  46(1):9-­‐15.  

51.   Morbiducci  U,  Kok  AM,  Kwak  BR,  Stone  PH,  Steinman  DA  and  Wentzel  JJ.  

Atherosclerosis  at  arterial  bifurcations:  evidence  for  the  role  of  haemodynamics   and  geometry.  Thromb  Haemost.  2016;  115(3):484-­‐492.  

52.   Tabas  I,  Garcia-­‐Cardena  G  and  Owens  GK.  Recent  insights  into  the  cellular   biology  of  atherosclerosis.  J  Cell  Biol.  2015;  209(1):13-­‐22.  

53.   Gimbrone  MA,  Jr.  and  Garcia-­‐Cardena  G.  Endothelial  Cell  Dysfunction  and   the  Pathobiology  of  Atherosclerosis.  Circ  Res.  2016;  118(4):620-­‐636.  

54.   Davies  PF.  Flow-­‐mediated  endothelial  mechanotransduction.  Physiol  Rev.  

1995;  75(3):519-­‐560.   the  endothelial  cell  response  to  fluid  shear  stress.  Nature.  2005;  437(7057):426-­‐

431.   receptor-­‐1  signaling  sustains  vascular  development.  Dev  Cell.  2012;  23(3):600-­‐

610.  

66.   Baeyens   N,   Mulligan-­‐Kehoe   MJ,   Corti   F,   Simon   DD,   Ross   TD,   Rhodes   JM,   Wang   TZ,   Mejean   CO,   Simons   M,   Humphrey   J   and   Schwartz   MA.   Syndecan   4   is   required  for  endothelial  alignment  in  flow  and  atheroprotective  signaling.  Proc   Natl  Acad  Sci  U  S  A.  2014;  111(48):17308-­‐17313.  

67.   Ando   J   and   Yamamoto   K.   Flow   detection   and   calcium   signalling   in   vascular  endothelial  cells.  Cardiovasc  Res.  2013;  99(2):260-­‐268.  

68.   Van   der   Heiden   K,   Hierck   BP,   Krams   R,   de   Crom   R,   Cheng   C,   Baiker   M,   Pourquie   MJ,   Alkemade   FE,   DeRuiter   MC,   Gittenberger-­‐de   Groot   AC   and   Poelmann  RE.  Endothelial  primary  cilia  in  areas  of  disturbed  flow  are  at  the  base   of  atherosclerosis.  Atherosclerosis.  2008;  196(2):542-­‐550.  

69.   Zhang   J,   Burridge   KA   and   Friedman   MH.   In   vivo   differences   between   Physiol  Heart  Circ  Physiol.  2013;  305(12):H1718-­‐1725.  

73.   Cheng  C,  Tempel  D,  van  Haperen  R,  de  Boer  HC,  Segers  D,  Huisman  M,  van   leading  to  rapid  endothelial  dysfunction  and  atherosclerosis.  Am  J  Physiol  Heart   Circ  Physiol.  2009;  297(4):H1535-­‐1543.  

77.   Korshunov   VA   and   Berk   BC.   Flow-­‐induced   vascular   remodeling   in   the   mouse:  a  model  for  carotid  intima-­‐media  thickening.  Arterioscler  Thromb  Vasc   Biol.  2003;  23(12):2185-­‐2191.  

78.   Miyashiro  JK,  Poppa  V  and  Berk  BC.  Flow-­‐induced  vascular  remodeling  in   the  rat  carotid  artery  diminishes  with  age.  Circ  Res.  1997;  81(3):311-­‐319.  

79.   Rudic   RD,   Bucci   M,   Fulton   D,   Segal   SS   and   Sessa   WC.   Temporal   events   underlying  arterial  remodeling  after  chronic  flow  reduction  in  mice:  correlation   of  structural  changes  with  a  deficit  in  basal  nitric  oxide  synthesis.  Circ  Res.  2000;  

86(11):1160-­‐1166.  

80.   Shin  IJ,  Shon  SM,  Schellingerhout  D,  Park  JY,  Kim  JY,  Lee  SK,  Lee  DK,  Lee   HW,   Ahn   BC,   Kim   K,   Kwon   IC   and   Kim   DE.   Characterization   of   partial   ligation-­‐

induced  carotid  atherosclerosis  model  using  dual-­‐modality  molecular  imaging  in   ApoE  knock-­‐out  mice.  PLoS  One.  2013;  8(9):e73451.  

81.   Sullivan   CJ   and   Hoying   JB.   Flow-­‐dependent   remodeling   in   the   carotid   artery   of   fibroblast   growth   factor-­‐2   knockout   mice.   Arterioscler   Thromb   Vasc   Biol.  2002;  22(7):1100-­‐1105.  

82.   Kumar   S,   Kang   DW,   Rezvan   A   and   Jo   H.   Accelerated   atherosclerosis   hypercholesterolaemia.  Eur  Heart  J.  2015;  36(43):2996-­‐3003.  

87.   Raal  F,  Scott  R,  Somaratne  R,  Bridges  I,  Li  G,  Wasserman  SM  and  Stein  EA.  

Low-­‐density  lipoprotein  cholesterol-­‐lowering  effects  of  AMG  145,  a  monoclonal   antibody   to   proprotein   convertase   subtilisin/kexin   type   9   serine   protease   in   patients  with  heterozygous  familial  hypercholesterolemia:  the  Reduction  of  LDL-­‐

C   with   PCSK9   Inhibition   in   Heterozygous   Familial   Hypercholesterolemia   Disorder   (RUTHERFORD)   randomized   trial.   Circulation.   2012;   126(20):2408-­‐

2417.   hypercholesterolemia   by   single   adeno-­‐associated   virus-­‐mediated   gene   transfer   of  mutant  hPCSK9.  Arterioscler  Thromb  Vasc  Biol.  2015;  35(1):50-­‐59.  

91.   Tavori  H,  Giunzioni  I,  Predazzi  IM,  Plubell  D,  Shivinsky  A,  Miles  J,  Devay   RM,  Liang  H,  Rashid  S,  Linton  MF  and  Fazio  S.  Human  PCSK9  promotes  hepatic   lipogenesis   and   atherosclerosis   development   via   apoE-­‐   and   LDLR-­‐mediated   mechanisms.  Cardiovasc  Res.  2016;  110(2):268-­‐278.  

92.   Bjorklund   MM,   Hollensen   AK,   Hagensen   MK,   Dagnaes-­‐Hansen   F,  

dependent,   superoxide-­‐initiated   inflammation   is   necessary   for   flow-­‐mediated   inward  remodeling  of  conduit  arteries.  J  Exp  Med.  2008;  205(13):3159-­‐3171.  

94.   Rudic  RD,  Shesely  EG,  Maeda  N,  Smithies  O,  Segal  SS  and  Sessa  WC.  Direct   activation  by  dampening  NFkB  activation.  Oncotarget.  2017.  

99.   Nam  D,  Ni  CW,  Rezvan  A,  Suo  J,  Budzyn  K,  Llanos  A,  Harrison  DG,  Giddens  

Plaque-­‐prone  hemodynamics  impair  endothelial  function  in  pig  carotid  arteries.  

Am  J  Physiol  Heart  Circ  Physiol.  2006;  290(6):H2320-­‐2328.   model.  Cardiovasc  Pathol.  2010;  19(4):e91-­‐98.  

106.   DMT.  (2016).  Pressure  Myograph  Systems.  DMT).  

110.   Bridges  LE,  Williams  CL,  Pointer  MA  and  Awumey  EM.  Mesenteric  artery   contraction  and  relaxation  studies  using  automated  wire  myography.  J  Vis  Exp.  

2011;  (55).  

111.   Arribas   SM,   Daly   CJ   and   McGrath   IC.   Measurements   of   vascular   remodeling  by  confocal  microscopy.  Methods  Enzymol.  1999;  307:246-­‐273.  

112.   Lu  X  and  Kassab  GS.  Assessment  of  endothelial  function  of  large,  medium,  

dependent  pathway.  Arterioscler  Thromb  Vasc  Biol.  2014;  34(5):985-­‐995.  

115.   Mahmoud   MM,   Serbanovic-­‐Canic   J,   Feng   S,   Souilhol   C,   Xing   R,   Hsiao   S,   shear  stress.  Nature.  1984;  307(5952):648-­‐649.  

119.   Blackman  BR,  Barbee  KA  and  Thibault  LE.  In  vitro  cell  shearing  device  to   investigate   the   dynamic   response   of   cells   in   a   controlled   hydrodynamic   environment.  Ann  Biomed  Eng.  2000;  28(4):363-­‐372.  

120.   Sill  HW,  Chang  YS,  Artman  JR,  Frangos  JA,  Hollis  TM  and  Tarbell  JM.  Shear   stress  increases  hydraulic  conductivity  of  cultured  endothelial  monolayers.  Am  J   Physiol.  1995;  268(2  Pt  2):H535-­‐543.  

pathophysiological  basis  and  clinical  perspectives.  Physiol  Rev.  2011;  91(1):327-­‐

387.   expression  of  adhesion  molecules  by  endothelial  cells.  Blood.  1995;  85(7):1696-­‐

1703.  

126.   Pfenniger  A,  Wong  C,  Sutter  E,  Cuhlmann  S,  Dunoyer-­‐Geindre  S,  Mach  F,   mammalian  cell  metabolism.  Biotechnol  Bioeng.  1988;  32(8):1053-­‐1060.  

129.   Lawrence   MB,   McIntire   LV   and   Eskin   SG.   Effect   of   flow   on   polymorphonuclear   leukocyte/endothelial   cell   adhesion.   Blood.   1987;  

70(5):1284-­‐1290.  

Endothelial  cell  dynamics  under  pulsating  flows:  significance  of  high  versus  low   shear  stress  slew  rates  (d(tau)/dt).  Ann  Biomed  Eng.  2002;  30(5):646-­‐656.  

136.   Qiu   Y   and   Tarbell   JM.   Interaction   between   wall   shear   stress   and   circumferential  strain  affects  endothelial  cell  biochemical  production.  J  Vasc  Res.  

2000;  37(3):147-­‐157.  

137.   Kwak  BR,  Silacci  P,  Stergiopulos  N,  Hayoz  D  and  Meda  P.  Shear  stress  and   cyclic   circumferential   stretch,   but   not   pressure,   alter   connexin43   expression   in   endothelial  cells.  Cell  Commun  Adhes.  2005;  12(5-­‐6):261-­‐270.  

138.   Ziegler  T,  Bouzourene  K,  Harrison  VJ,  Brunner  HR  and  Hayoz  D.  Influence   Exposed  to  Laminar  Shear  Stress.  Cellular  and  Molecular  Bioengineering.  2016;  

9(1):127-­‐138.  

141.   Spruell   C   and   Baker   AB.   Analysis   of   a   high-­‐throughput   cone-­‐and-­‐plate   apparatus   for   the   application   of   defined   spatiotemporal   flow   to   cultured   cells.  

Biotechnol  Bioeng.  2013;  110(6):1782-­‐1793.  

142.   Kis   Z,   Rodin   T,   Zafar   A,   Lai   Z,   Freke   G,   Fleck   O,   Del   Rio   Hernandez   A,   characteristic   of   atherosclerosis-­‐resistant   regions   promotes   glycocalyx   formation   in   cultured   endothelial   cells.   Am   J   Physiol   Cell   Physiol.   2013;  

Phosphorylation  and  activation  of  the  endothelial  nitric  oxide  synthase  by  fluid   shear  stress.  Acta  Physiol  Scand.  2000;  168(1):81-­‐88.   activated  endothelial  cells.  Eur  J  Pharmacol.  2010;  649(1-­‐3):268-­‐276.  

152.   Zakkar   M,   Chaudhury   H,   Sandvik   G,   Enesa   K,   Luong   le   A,   Cuhlmann   S,   Mason  JC,  Krams  R,  Clark  AR,  Haskard  DO  and  Evans  PC.  Increased  endothelial   mitogen-­‐activated   protein   kinase   phosphatase-­‐1   expression   suppresses   proinflammatory  activation  at  sites  that  are  resistant  to  atherosclerosis.  Circ  Res.  

2008;  103(7):726-­‐732.  

153.   Lerner-­‐Marmarosh  N,  Yoshizumi  M,  Che  W,  Surapisitchat  J,  Kawakatsu  H,   Akaike   M,   Ding   B,   Huang   Q,   Yan   C,   Berk   BC   and   Abe   J.   Inhibition   of   tumor   necrosis   factor-­‐[alpha]-­‐induced   SHP-­‐2   phosphatase   activity   by   shear   stress:   a   mechanism  to  reduce  endothelial  inflammation.  Arterioscler  Thromb  Vasc  Biol.  

2003;  23(10):1775-­‐1781.  

154.   Traub   O   and   Berk   BC.   Laminar   shear   stress:   mechanisms   by   which   endothelial  cells  transduce  an  atheroprotective  force.  Arterioscler  Thromb  Vasc   Biol.  1998;  18(5):677-­‐685.  

155.   Okahara   K,   Sun   B   and   Kambayashi   J.   Upregulation   of   prostacyclin   synthesis-­‐related   gene   expression   by   shear   stress   in   vascular   endothelial   cells.  

Arterioscler  Thromb  Vasc  Biol.  1998;  18(12):1922-­‐1926.  

156.   Malek  AM,  Jackman  R,  Rosenberg  RD  and  Izumo  S.  Endothelial  expression   of  thrombomodulin  is  reversibly  regulated  by  fluid  shear  stress.  Circ  Res.  1994;  

74(5):852-­‐860.  

157.   Kumar   S,   Kim   CW,   Simmons   RD   and   Jo   H.   Role   of   flow-­‐sensitive   microRNAs   in   endothelial   dysfunction   and   atherosclerosis:   mechanosensitive   athero-­‐miRs.  Arterioscler  Thromb  Vasc  Biol.  2014;  34(10):2206-­‐2216.  

158.   Schober   A   and   Weber   C.   Mechanisms   of   MicroRNAs   in   Atherosclerosis.  

Annu  Rev  Pathol.  2016;  11:583-­‐616.  

159.   Fang   Y,   Shi   C,   Manduchi   E,   Civelek   M   and   Davies   PF.   MicroRNA-­‐10a   regulation  of  proinflammatory  phenotype  in  athero-­‐susceptible  endothelium  in   vivo  and  in  vitro.  Proc  Natl  Acad  Sci  U  S  A.  2010;  107(30):13450-­‐13455.   flow-­‐dependent  regulation  of  gene  expression.  Circ  Res.  2003;  93(2):155-­‐161.  

162.   Dunn  J,  Thabet  S  and  Jo  H.  Flow-­‐Dependent  Epigenetic  DNA  Methylation   endothelial  biology.  Circ  Res.  2007;  100(12):1686-­‐1695.  

169.   Parmar  KM,  Larman  HB,  Dai  G,  Zhang  Y,  Wang  ET,  Moorthy  SN,  Kratz  JR,   endothelial  barrier  function.  Arterioscler  Thromb  Vasc  Biol.  2010;  30(10):1952-­‐

1959.  

171.   Atkins  GB  and  Simon  DI.  Interplay  between  NF-­‐kappaB  and  Kruppel-­‐like   factors  in  vascular  inflammation  and  atherosclerosis:  location,  location,  location.  

J  Am  Heart  Assoc.  2013;  2(3):e000290.  

172.   Hergenreider  E,  Heydt  S,  Treguer  K,  Boettger  T,  Horrevoets  AJ,  Zeiher  AM,   Scheffer   MP,   Frangakis   AS,   Yin   X,   Mayr   M,   Braun   T,   Urbich   C,   Boon   RA   and   Dimmeler   S.   Atheroprotective   communication   between   endothelial   cells   and   smooth  muscle  cells  through  miRNAs.  Nat  Cell  Biol.  2012;  14(3):249-­‐256.  

173.   Villarreal  G,  Jr.,  Zhang  Y,  Larman  HB,  Gracia-­‐Sancho  J,  Koo  A  and  Garcia-­‐ atherosclerosis.  Circ  Res.  2010;  107(7):839-­‐850.  

177.   Forstermann   U   and   Sessa   WC.   Nitric   oxide   synthases:   regulation   and   function.  Eur  Heart  J.  2012;  33(7):829-­‐837,  837a-­‐837d.  

178.   Sorescu   GP,   Song   H,   Tressel   SL,   Hwang   J,   Dikalov   S,   Smith   DA,   Boyd   NL,   Platt   MO,   Lassegue   B,   Griendling   KK   and   Jo   H.   Bone   morphogenic   protein   4   produced   in   endothelial   cells   by   oscillatory   shear   stress   induces   monocyte   adhesion  by  stimulating  reactive  oxygen  species  production  from  a  nox1-­‐based   NADPH  oxidase.  Circ  Res.  2004;  95(8):773-­‐779.  

179.   Mahmoud  MM,  Kim  HR,  Xing  R,  Hsiao  S,  Mammoto  A,  Chen  J,  Serbanovic-­‐

Canic  J,  Feng  S,  Bowden  NP,  Maguire  R,  Ariaans  M,  Francis  SE,  Weinberg  PD,  van   der  Heiden  K,  Jones  EA,  Chico  TJ,  et  al.  TWIST1  Integrates  Endothelial  Responses   to  Flow  in  Vascular  Dysfunction  and  Atherosclerosis.  Circ  Res.  2016;  119(3):450-­‐

462.  

sensitive   microRNA-­‐34a   modulates   flow-­‐dependent   regulation   of   endothelial   inflammation.  J  Cell  Sci.  2015;  128(1):70-­‐80.  

182.   Ni   CW,   Qiu   H   and   Jo   H.   MicroRNA-­‐663   upregulated   by   oscillatory   shear   stress   plays   a   role   in   inflammatory   response   of   endothelial   cells.   Am   J   Physiol   Heart  Circ  Physiol.  2011;  300(5):H1762-­‐1769.  

183.   Weber   M,   Baker   MB,   Moore   JP   and   Searles   CD.   MiR-­‐21   is   induced   in   endothelial   cells   by   shear   stress   and   modulates   apoptosis   and   eNOS   activity.  

Biochem  Biophys  Res  Commun.  2010;  393(4):643-­‐648.  

184.   Zhou  J,  Wang  KC,  Wu  W,  Subramaniam  S,  Shyy  JY,  Chiu  JJ,  Li  JY  and  Chien   S.  MicroRNA-­‐21  targets  peroxisome  proliferators-­‐activated  receptor-­‐alpha  in  an   autoregulatory   loop   to   modulate   flow-­‐induced   endothelial   inflammation.   Proc  

186.   Zhou  J,  Li  YS,  Nguyen  P,  Wang  KC,  Weiss  A,  Kuo  YC,  Chiu  JJ,  Shyy  JY  and   Chien  S.  Regulation  of  vascular  smooth  muscle  cell  turnover  by  endothelial  cell-­‐

secreted  microRNA-­‐126:  role  of  shear  stress.  Circ  Res.  2013;  113(1):40-­‐51.  

187.   Weber   M,   Kim   S,   Patterson   N,   Rooney   K   and   Searles   CD.   MiRNA-­‐155   targets  myosin  light  chain  kinase  and  modulates  actin  cytoskeleton  organization   in  endothelial  cells.  Am  J  Physiol  Heart  Circ  Physiol.  2014;  306(8):H1192-­‐1203.  

188.   Donners  MM,  Wolfs  IM,  Stoger  LJ,  van  der  Vorst  EP,  Pottgens  CC,  Heymans   S,   Schroen   B,   Gijbels   MJ   and   de   Winther   MP.   Hematopoietic   miR155   deficiency   enhances  atherosclerosis  and  decreases  plaque  stability  in  hyperlipidemic  mice.  

PLoS  One.  2012;  7(4):e35877.   arterial  inflammation.  Circ  Res.  2011;  108(8):950-­‐959.  

195.   Parhar  K,  Ray  A,  Steinbrecher  U,  Nelson  C  and  Salh  B.  The  p38  mitogen-­‐

activated  protein  kinase  regulates  interleukin-­‐1beta-­‐induced  IL-­‐8  expression  via   an   effect   on   the   IL-­‐8   promoter   in   intestinal   epithelial   cells.   Immunology.   2003;   stress  response.  Oncogene.  1999;  18(45):6163-­‐6171.  

198.   Kumar  A,  Takada  Y,  Boriek  AM  and  Aggarwal  BB.  Nuclear  factor-­‐kappaB:  

201.   Pfenniger  A,  Wohlwend  A  and  Kwak  BR.  Mutations  in  connexin  genes  and   channels  formed  by  cardiac  connexins.  Cardiovasc  Res.  2004;  62(2):276-­‐286.  

205.   Li  C,  Meng  Q,  Yu  X,  Jing  X,  Xu  P  and  Luo  D.  Regulatory  effect  of  connexin  43   deliver?  Biochim  Biophys  Acta.  2012;  1818(8):2076-­‐2081.  

209.   Soon   AS,   Chua   JW   and   Becker   DL.   Connexins   in   endothelial   barrier   cardiovascular  physiology.  Cell  Mol  Life  Sci.  2015;  72(15):2779-­‐2792.  

213.   Begandt   D,   Good   ME,   Keller   AS,   DeLalio   LJ,   Rowley   C,   Isakson   BE   and   Figueroa  XF.  Pannexin  channel  and  connexin  hemichannel  expression  in  vascular   function  and  inflammation.  BMC  Cell  Biol.  2017;  18(Suppl  1):2.  

214.   Gabriels   JE   and   Paul   DL.   Connexin43   is   highly   localized   to   sites   of   disturbed   flow   in   rat   aortic   endothelium   but   connexin37   and   connexin40   are   more  uniformly  distributed.  Circ  Res.  1998;  83(6):636-­‐643.  

215.   Looft-­‐Wilson   RC,   Billaud   M,   Johnstone   SR,   Straub   AC   and   Isakson   BE.  

Interaction  between  nitric  oxide  signaling  and  gap  junctions:  effects  on  vascular   function.  Biochim  Biophys  Acta.  2012;  1818(8):1895-­‐1902.  

216.   Sarieddine   MZ,   Scheckenbach   KE,   Foglia   B,   Maass   K,   Garcia   I,   Kwak   BR  

dependent  leukocyte  adhesion.  Circulation.  2010;  121(1):123-­‐131.  

218.   Morel  S,  Braunersreuther  V,  Chanson  M,  Bouis  D,  Rochemont  V,  Foglia  B,   Pelli   G,   Sutter   E,   Pinsky   DJ,   Mach   F   and   Kwak   BR.   Endothelial   Cx40   limits  

myocardial   ischaemia/reperfusion   injury   in   mice.   Cardiovasc   Res.   2014;  

102(2):329-­‐337.  

219.   Chang  CJ,  Wu  LS,  Hsu  LA,  Chang  GJ,  Chen  CF,  Yeh  HI  and  Ko  YS.  Differential   endothelial   gap   junction   expression   in   venous   vessels   exposed   to   different   hemodynamics.  J  Histochem  Cytochem.  2010;  58(12):1083-­‐1092.  

220.   Inai   T   and   Shibata   Y.   Heterogeneous   expression   of   endothelial   connexin   heterocellular  communication  between  smooth  muscle  and  endothelium.  J  Vasc   Res.  2010;  47(4):277-­‐286.  

233.   Miquerol  L,  Meysen  S,  Mangoni  M,  Bois  P,  van  Rijen  HV,  Abran  P,  Jongsma   H,   Nargeot   J   and   Gros   D.   Architectural   and   functional   asymmetry   of   the   His-­‐

Purkinje  system  of  the  murine  heart.  Cardiovasc  Res.  2004;  63(1):77-­‐86.  

234.   Delorme  B,  Dahl  E,  Jarry-­‐Guichard  T,  Marics  I,  Briand  JP,  Willecke  K,  Gros   D   and   Theveniau-­‐Ruissy   M.   Developmental   regulation   of   connexin   40   gene   expression  in  mouse  heart  correlates  with  the  differentiation  of  the  conduction   system.  Dev  Dyn.  1995;  204(4):358-­‐371.  

235.   Miquerol   L,   Thireau   J,   Bideaux   P,   Sturny   R,   Richard   S   and   Kelly   RG.  

Endothelial   plasticity   drives   arterial   remodeling   within   the   endocardium   after   myocardial  infarction.  Circ  Res.  2015;  116(11):1765-­‐1771.  

236.   Severs   NJ,   Bruce   AF,   Dupont   E   and   Rothery   S.   Remodelling   of   gap   endothelial  cell  function.  Circ  Res.  2006;  99(10):1100-­‐1108.  

244.   Wong  CW,  Christen  T,  Roth  I,  Chadjichristos  CE,  Derouette  JP,  Foglia  BF,   Connexin43  reduces  atherogenesis.  Thromb  Haemost.  2014;  112(2):390-­‐401.  

247.   Glass   AM,   Snyder   EG   and   Taffet   SM.   Connexins   and   pannexins   in   the   immune   system   and   lymphatic   organs.   Cell   Mol   Life   Sci.   2015;   72(15):2899-­‐

2910.  

248.   Pogoda   K,   Fuller   M,   Pohl   U   and   Kameritsch   P.   NO,   via   its   target   Cx37,   Moorman  AF  and  Lamers  WH.  Differential  connexin  distribution  accommodates   cardiac  function  in  different  species.  Microsc  Res  Tech.  1995;  31(5):420-­‐436.  

Biochim  Biophys  Acta.  2004;  1662(1-­‐2):138-­‐148.  

261.   Pfenniger   A,   Derouette   JP,   Verma   V,   Lin   X,   Foglia   B,   Coombs   W,   Roth   I,   Satta   N,   Dunoyer-­‐Geindre   S,   Sorgen   P,   Taffet   S,   Kwak   BR   and   Delmar   M.   Gap   junction   protein   Cx37   interacts   with   endothelial   nitric   oxide   synthase   in   endothelial  cells.  Arterioscler  Thromb  Vasc  Biol.  2010;  30(4):827-­‐834.  

262.   Badimon   L   and   Vilahur   G.   Thrombosis   formation   on   atherosclerotic   lesions  and  plaque  rupture.  J  Intern  Med.  2014;  276(6):618-­‐632.  

263.   Alonso   F,   Boittin   FX,   Beny   JL   and   Haefliger   JA.   Loss   of   connexin40   is   associated  with  decreased  endothelium-­‐dependent  relaxations  and  eNOS  levels   in  the  mouse  aorta.  Am  J  Physiol  Heart  Circ  Physiol.  2010;  299(5):H1365-­‐1373.  

264.   Meens   MJ,   Alonso   F,   Le   Gal   L,   Kwak   BR   and   Haefliger   JA.   Endothelial   Connexin37   and   Connexin40   participate   in   basal   but   not   agonist-­‐induced   NO   release.  Cell  Commun  Signal.  2015;  13:34.  

265.   Lennon   PF,   Taylor   CT,   Stahl   GL   and   Colgan   SP.   Neutrophil-­‐derived   5'-­‐ low-­‐density  lipoprotein  receptor-­‐deficient  mice.  Circulation.  2003;  107(7):1033-­‐

1039.  

269.   Morel   S,   Sutter   E,   Roth   I,   Deutsch   U,   Theis   M,   Kwak   BR   and   Foglia   B.  

Endothelial-­‐specific   Deletion   Of   The   Gap   Junction   Protein   Connexin43   Reduces   Atherosclerosis  In  Mice.  Circulation.  2008;  118(18):S473-­‐S473.  

270.   Chadjichristos   CE,   Matter   CM,   Roth   I,   Sutter   E,   Pelli   G,   Luscher   TF,   Chanson   M   and   Kwak   BR.   Reduced   connexin43   expression   limits   neointima   formation   after   balloon   distension   injury   in   hypercholesterolemic   mice.  

Circulation.  2006;  113(24):2835-­‐2843.  

271.   Liao  Y,  Regan  CP,  Manabe  I,  Owens  GK,  Day  KH,  Damon  DN  and  Duling  BR.  

Smooth  muscle-­‐targeted  knockout  of  connexin43  enhances  neointimal  formation   in  response  to  vascular  injury.  Arterioscler  Thromb  Vasc  Biol.  2007;  27(5):1037-­‐

1042.  

272.   Rhee  DY,  Zhao  XQ,  Francis  RJ,  Huang  GY,  Mably  JD  and  Lo  CW.  Connexin   43   regulates   epicardial   cell   polarity   and   migration   in   coronary   vascular   development.  Development.  2009;  136(18):3185-­‐3193.  

273.   Walker  DL,  Vacha  SJ,  Kirby  ML  and  Lo  CW.  Connexin43  deficiency  causes   dysregulation  of  coronary  vasculogenesis.  Dev  Biol.  2005;  284(2):479-­‐498.  

274.   Xu   X,   Francis   R,   Wei   CJ,   Linask   KL   and   Lo   CW.   Connexin   43-­‐mediated   modulation  of  polarized  cell  movement  and  the  directional  migration  of  cardiac   neural  crest  cells.  Development.  2006;  133(18):3629-­‐3639.  

275.   Arishiro  K,  Hoshiga  M,  Ishihara  T,  Kondo  K  and  Hanafusa  T.  Connexin  43   expression   is   associated   with   vascular   activation   in   human   radial   artery.   Int   J   Cardiol.  2010;  145(2):270-­‐272.  

276.   Chadjichristos   CE,   Morel   S,   Derouette   JP,   Sutter   E,   Roth   I,   Brisset   AC,   Bochaton-­‐Piallat   ML   and   Kwak   BR.   Targeting   connexin   43   prevents   platelet-­‐

derived  growth  factor-­‐BB-­‐induced  phenotypic  change  in  porcine  coronary  artery   smooth  muscle  cells.  Circ  Res.  2008;  102(6):653-­‐660.   polymorphism  in  tumour  cell  proliferation.  Carcinogenesis.  2010;  31(11):1922-­‐

1931.  

280.   Meens   MJ,   Pfenniger   A   and   Kwak   BR.   Risky   communication   in   atherosclerosis  and  thrombus  formation.  Swiss  Med  Wkly.  2012;  142:w13553.  

281.   Wen   D,   Du   X,   Nie   SP,   Dong   JZ   and   Ma   CS.   Association   of   Connexin37   C1019T  with  myocardial  infarction  and  coronary  artery  disease:  a  meta-­‐analysis.  

Exp  Gerontol.  2014;  58:203-­‐207.   hypertrophy  preferentially  in  men.  Clin  Exp  Hypertens.  2015;  37(7):580-­‐586.  

289.   Grayson   TH.   Is   Cx40   a   marker   for   hypertension?   J   Hypertens.   2006;   mutations  cause  the  pleiotropic  phenotype  of  oculodentodigital  dysplasia.  Am  J   Hum  Genet.  2003;  72(2):408-­‐418.  

294.   Britz-­‐Cunningham  SH,  Shah  MM,  Zuppan  CW  and  Fletcher  WH.  Mutations   oculodentodigital  dysplasia  phenotype.  Hum  Mutat.  2009;  30(5):724-­‐733.  

296.   Judisch   GF,   Martin-­‐Casals   A,   Hanson   JW   and   Olin   WH.   Oculodentodigital   dysplasia.   Four   new   reports   and   a   literature   review.   Arch   Ophthalmol.   1979;  

97(5):878-­‐884.  

297.   Laird  DW.  Syndromic  and  non-­‐syndromic  disease-­‐linked  Cx43  mutations.  

FEBS  Lett.  2014;  588(8):1339-­‐1348.   aortic  endothelium.  J  Histochem  Cytochem.  2000;  48(10):1377-­‐1389.  

300.   Tsai  CH,  Yeh  HI,  Tian  TY,  Lee  YN,  Lu  CS  and  Ko  YS.  Down-­‐regulating  effect   connexin40  and  nitric  oxide  signaling  during  hypertension.  Hypertension.  2015;  

65(4):910-­‐915.   Haefliger  JA.  An  angiotensin  II-­‐  and  NF-­‐kappaB-­‐dependent  mechanism  increases   connexin   43   in   murine   arteries   targeted   by   renin-­‐dependent   hypertension.   endothelial  cells.  Diabetes.  2002;  51(5):1565-­‐1571.  

309.   Hou   CJ,   Tsai   CH,   Su   CH,   Wu   YJ,   Chen   SJ,   Chiu   JJ,   Shiao   MS   and   Yeh   HI.  

Diabetes   reduces   aortic   endothelial   gap   junctions   in   ApoE-­‐deficient   mice:  

simvastatin  exacerbates  the  reduction.  J  Histochem  Cytochem.  2008;  56(8):745-­‐

752.   distribution  of  early  atheroma  in  man.  Nature.  1969;  223(5211):1159-­‐1160.  

312.   Ohura  N,  Yamamoto  K,  Ichioka  S,  Sokabe  T,  Nakatsuka  H,  Baba  A,  Shibata   Physiol  Heart  Circ  Physiol.  2000;  278(5):H1598-­‐1605.  

317.   Salameh   A   and   Dhein   S.   Effects   of   mechanical   forces   and   stretch   on   identity  and  remodeling  events  during  flow-­‐driven  arteriogenesis.  Development.  

2010;  137(13):2187-­‐2196.  

322.   Fang   JS,   Angelov   SN,   Simon   AM   and   Burt   JM.   Cx40   is   required   for,   and   cx37  limits,  postischemic  hindlimb  perfusion,  survival  and  recovery.  J  Vasc  Res.  

2012;  49(1):2-­‐12.  

323.   Vorderwulbecke  BJ,  Maroski  J,  Fiedorowicz  K,  Da  Silva-­‐Azevedo  L,  Marki   A,  Pries  AR  and  Zakrzewicz  A.  Regulation  of  endothelial  connexin40  expression   by  shear  stress.  Am  J  Physiol  Heart  Circ  Physiol.  2012;  302(1):H143-­‐152.  

324.   Yao   QP,   Qi   YX,   Zhang   P,   Cheng   BB,   Yan   ZQ   and   Jiang   ZL.   SIRT1   and   Connexin40   Mediate   the   normal   shear   stress-­‐induced   inhibition   of   the   proliferation  of  endothelial  cells  co-­‐cultured  with  vascular  smooth  muscle  cells.  

Cell  Physiol  Biochem.  2013;  31(2-­‐3):389-­‐399.  

activation    

Jean-­‐François  Denis1,*,  K.E.  Ludwig  Scheckenbach1,*,  Anna  Pfenniger1,2,  Merlijn  J.  

Jean-­‐François  Denis1,*,  K.E.  Ludwig  Scheckenbach1,*,  Anna  Pfenniger1,2,  Merlijn  J.