• Aucun résultat trouvé

edited by Houghton Miin Company, fth edition, 2003

N/A
N/A
Protected

Academic year: 2021

Partager "edited by Houghton Miin Company, fth edition, 2003"

Copied!
7
0
0

Texte intégral

(1)

[1] A. W. Castleman and P. Jena. PNAS, 10328, 10552 (2006).

[2] S. S. Zumdahl. Chemical Principles. edited by Houghton Miin Company, fth edition, 2003.

[3] A. W. Castleman and R. G. Keesee. Science, 241, 36 (1988).

[4] W. Klemperer and V. Vaida. PNAS, 103, 10584 (2006).

[5] T. Wagner, C. von Friedeburg, M. Wenig, C. Otten, and U. Platt. J. Geo- phys. Res., 107D20, 4424 (2002).

[6] K. Pfeilsticker, A. Lotter, C. Peters, and H. Bösch. Science, 300, 2078 (2003).

[7] K. Pfeilsticker, F. Erle, and U. Platt. J. Atmos. Sci., 54, 933 (1997).

[8] S. Solomon, R. W. Portmann, R. W. Sanders, and J. S. Daniel. J. Geophys.

Res., 103D4, 3847 (1998).

[9] S. Kassi, P. Macko, O. Naumenko, and A. Campargue. Phys. Chem. Chem.

Phys., 7, 2460 (2005).

[10] E. E. Ferguson and F. C. Fehsenfeld. J. Geophys. Res., 74, 5743 (1969).

[11] A. A. Vigasin and Z. Slanina. Molecular Complexes in Earth's, Planetary, Cometary, and Interstellar Atmospheres. edited by World Scientic Pub- lishing Co. Pte. Ltd., 1998.

[12] J. M. Hollas. Modern Spectroscopy. edited by John Wiley and Sons, third edition, 1996.

[13] A. Thorne, U. Litzén, and S. Johansson. Spectrophysics. edited by Springer, 1999.

[14] P. W. Atkins. Physical Chemistry. edited by Oxford University Press, fth edition, 1994.

[15] D. Hurtmans. Mesures d'intensités spectrales absolues par spectrométrie de Fourier dans le domaine infrarouge appliquée à des molécules d'intérêt at- mosphérique. (Thèse de doctorat) Université Libre de Bruxelles, 1995.

[16] H. W. Kroto. Molecular Rotation Spectra. edited by Dover Phoenix, 2003.

(2)

[17] P. R. Bunker. Molecular Symmetry and Spectroscopy. edited by Academic Press, Inc., 1979.

[18] W. Demtröder. Laser Spectroscopy. edited by Springer, third edition, 2003.

[19] R. J. Wells. J. Quant. Spectrosc. Radiat. Transfer, 62, 29 (1999).

[20] E. E. Whiting. J. Quant. Spectrosc. Radiat. Transfer, 8, 1379 (1968).

[21] A. Kantrowitz and J. Grey. Rev. Sci. Instr., 22, 328 (1951).

[22] G. B. Kistiakowsky and W. P. Slichter. Rev. Sci. Instr., 22, 333 (1951).

[23] E. W. Becker and K. Bier. Z. Naturforsch., 9a, 975 (1954).

[24] J. B. Anderson, R. P. Andres, and J. B. Fenn. Adv. Chem. Phys., 10, 275 (1966).

[25] R. Campargue. J. Phys. Chem., 88, 4466 (1984).

[26] R. E. Smalley, B. L. Ramakrishna, D. H. Levy, and L. Wharton. J. Chem.

Phys., 61, 4363 (1974).

[27] M. Herman, R. Georges, M. Hepp, and D. Hurtmans. Int. Rev. Phys. Chem., 19, 277 (2000).

[28] T. R. Rizzo, Y. D. Park, and D. H. Levy. J. Am. Chem. Soc., 107, 277 (1985).

[29] S. M. Cohen. J. Chem. Educ., 63, 1038 (1986).

[30] I. Estermann, Simpson O. C., and O. Stern. Phys. Rev., 71, 238 (1947).

[31] R. Georges. Eléments Théoriques sur la Spectroscopie en Jet Supersonique.

Cours libre, 1998.

[32] D. R. Miller. Atomic and Molecular Beam Methods. edited by G. Scholes, Oxford University Press, New York 1, 1988.

[33] J. M. Hayes. Chem. Rev., 87, 745 (1987).

[34] J. P. Toennies and K. Winkelmann. J. Chem. Phys., 66, 3965 (1977).

[35] H. Ashkenas and F. S. Sherman. VthSymposium of Rareed Gas Dynamics.

edited by J. H. de Leeuw, Academic Press, New York, vol. 2, 84, 1966.

[36] H. Pauly. Atom, Molecule and Clusters Beams I. edited by Springer, 2000.

[37] J. C. Hilico, G. S. Baronov, D. K. Bronnikov, S. A. Gavrikov, I. I. Nikolaev, V. D. Rusanov, and Yu. G. Filiminov. J. Mol. Spec., 161, 435 (1993).

[38] R. Jost. NATO ASI Series, Series C: Mathematical and Physical Sciences, 483 (Low Temperature Molecular Spectroscopy), 249 (1996).

[39] R. Berry, S. Rice, and J. Ross. Physical Chemistry. edited by John Wiley and Sons, 1980.

[40] S. DePaul, D. Pullman, and B. Friedrich. J. Phys. Chem., 97, 2167 (1993).

(3)

[41] D. McQuarrie and J. Simon. Molecular Thermodynamics. edited by Univer- sity Science Books, 1999.

[42] C. L. Crowe, D. F. Elger, and J. A. Roberson. Engineering Fluid Mechanics.

edited by Wiley and Sons, seventh edition, 1980.

[43] H. W. Liepmann and A. Roshko. Elements of Gas Dynamics. edited by Wiley and Sons, 1957.

[44] M. Sulkes, C. Jouvet, and S. A. Rice. Chem. Phys. Lett., 97, 2167 (1993).

[45] K. Bier and B. Schmidt. Z. Angew. Phys., 13, 493 (1961).

[46] G. Dupeyrat. XIIth Symposium of Rareed Gas Dynamics. paper 135,

©AIAA Inc., 1980.

[47] S. B. Ryali and J. B. Fenn. Phys. Chem., 88, 245 (1984).

[48] E. W. Becker, K. Bier, and W. Henkes. Z. Phys., 146, 333 (1956).

[49] O. F. Hagena. Surface Science, 106, 101 (1981).

[50] O. F. Hagena. Z. Phys. D - Atoms, Molecules and Clusters, 4, 291 (1987).

[51] J. Vander Auwera. Quantitative high resolution Fourier transform infrared spectroscopy. (Thèse d'agrégation) Université Libre de Bruxelles, 2004.

[52] S. P. Davis, M. C. Abrams, and J. W. Brault. Fourier Transform Spectrom- etry. edited by Academic Press, 2001.

[53] P. R. Griths and J. A. de Haseth. Fourier Transform Infrared Spectrometry.

edited by Wiley and Sons, second edition, 2007.

[54] R. Bracewell. The Fourier Transform and Its Application. McGraw-Hill, Inc., 1965.

[55] R H. Norton and R. Beer. J. Opt. Soc. Am., 66, 259 (1976).

[56] R H. Norton and R. Beer. J. Opt. Soc. Am., 67, 419 (1976).

[57] D. A. Skoog, Holler, F. J., and T. A. Nieman. Principe d'analyse instru- mentale (Traduction from C. Buess-Herman and F. Dumont). de boeck, 2003.

[58] C. G. Herbert and R. A. W. Johnstone. Mass Spectrometry Basics. CRC Press, 2003.

[59] G. Berden, R. Peeters, and G. Meijer. Int. Rev. Phys. Chem., 19(4), 565 (2000).

[60] J. M. Herbelin, J. A. McKay, M. A. Kwok, R. H. Ueunten, D. S. Urevig, D. J. Spencer, and D. J. Benard. Appl. Opt., 19(1), 144 (1980).

[61] D. Z. Anderson, J. C. Frisch, and C. S. Masser. Appl. Opt., 23(8), 1238 (1984).

[62] A. O'Keefe and D. A. G. Deacon. Rev. Sci. Instrum., 59(12), 2544 (1988).

(4)

[63] A. O'Keefe, J. J. Scherer, A. L. Cooksy, R. Sheeks, J. Heath, and R. J.

Saykally. Chem. Phys. Lett., 172, 214 (1990).

[64] D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel. Chem. Phys.

Lett., 264, 316 (1997).

[65] D. Romanini, A. A. Kachanov, and F. Stoeckel. Chem. Phys. Lett., 270, 538 (1997).

[66] B. A. Paldus and A. A. Kachanov. Can. J. Phys., 83, 975 (2005).

[67] G. von Basum, H. Dahnke, D. Halmer, P. Hering, and M. Mürtz. J. Appl.

Physiol., 95, 2583 (2003).

[68] B. G. Fidric, R. A. Provencal, S. M. Tan, E. R. Crosson, A. A. Kachanov, and B. A. Paldus. Opt. Photonics News, July, 24 (2003).

[69] K. W. Busch and M. A. Busch. Cavity-Ringdown spectroscopy: An Ultratrace-Absorption Measurement Technique. Chap 2: Introduction to Cavity-Ringdown Spectroscopy. edited by K. W. Busch and M. A. Busch, American Chemical Society, Washington, DC, 1999.

[70] M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashfold. J.

Chem. Soc. Faraday Trans., 94(3), 337 (1998).

[71] M. Mazurenka, A. J. Orr-Ewing, R. Peverall, and G. A. D. Ritchie. Annu.

Rep. Prog. Chem., Sect. C, 101, 100 (2005).

[72] J. B. Paul and R. J. Saykally. Anal. Chem., 69(9), 287A (1997).

[73] K. W. Busch, A. Hennequin, and M. A. Busch. Cavity-Ringdown spec- troscopy: An Ultratrace-Absorption Measurement Technique. Chap 4: Mode Formation in Optical Cavities. edited by K. W. Busch and M. A. Busch, American Chemical Society, Washington, DC, 1999.

[74] J. T. Hodges, J. P. Looney, and R. D. van Zee. J. Chem. Phys., 105(23), 10278 (1996).

[75] P. Dupré. C. R. Acad. Sci. Paris,, série IVt.2, 929 (2001).

[76] K. K. Lehmann and D. Romanini. J. Chem. Phys., 105(23), 10263 (1996).

[77] P. Zalicki and R. N. Zare. J. Chem. Phys., 102(7), 2708 (1995).

[78] P. Macko, D. Romanini, S. N. Mikhailenko, O. V. Naumenko, S. Kassi, A. Jenouvrier, Vl. G. Tyuterev, and A. Campargue. J. Mol. Spec., 227, 90 (2004).

[79] A. Amrein, M. Quack, and U. Schmitt. J. Phys. Chem., 92, 5455 (1988).

[80] G. Baldacchini, S. Marchetti, and V. Montelatici. Lett. Nuovo Cimento, 41, 439 (1984).

[81] K. Veeken and J. Reuss. J. Appl. Phys., B34, 149 (1984).

[82] M. A. Gaveau, D. Boscher, and J. P. Martin. Chem. Phys. Lett., 107, 31 (1984).

(5)

[83] P. Wallra, M. K. T. Yamada, and G. Winnewisser. Z. Naturforsch, 42a, 246 (1987).

[84] M. Snels and G. Baldacchini. Appl. Phys. B: Photophys. Laser Chem., B47, 277 (1988).

[85] J. B. Anderson, R. P. Andres, J. B. Fenn, and G. Maise. Proceedings of the fourth symposium on rareed gas dynamics, vol.2, 106-107. edited by New York: Academic Press, 1966.

[86] L'Air Liquide. Gas Encyclopedia. 1976.

[87] H. M. Pickett, R. L. Poynter, E. A. Cohen, M. L. Delitsky, J.C. Pearson, and H. S. P. Muller. J. Quant. Spectrosc. Radiat. Transfer, 60, 883 (1998).

[88] Beijerinck H. C. W. and N. F. Verster. Physica B+C: Phys. Condens. Mat- ter+ Atom. Mol. Plasma Phys. Opt., 111(2&3), 327 (1981).

[89] P. Paci, Y. Zvinevich, S. Tanimura, B. E. Wyslouzil, M. Zahniser, and J. et al. Shorter. J. Chem. Phys., 121, 9964 (2004).

[90] E. J. Bohac and R. E. Miller. Phys. Rev. Lett., 71, 54 (1993).

[91] B. J. Orr. Chem. Phys., 190, 261 (1995).

[92] W. D. Waclawik and J. Lawrance. J. Phys. Chem. A, 107, 10507 (2003).

[93] P. B. Graham, K. J. M. Matus, and R. M. Strat. J. Phys. Chem., 121, 5348 (2004).

[94] R. Petry, S. Klee, M. Lock, B. P. Winnewisser, and M. Winnewisser. J. Mol.

Struct., 612, 369 (2002).

[95] S. Hirabayashi and Y. Hirahara. Chem. Phys Lett., 361, 265 (2002).

[96] G. W. Bryant, D. F. Eggers, and Watts R. O. J. Chem. Soc. Faraday. Trans.

2: Molecular and Chemical Physics, 84, 1443 (1988).

[97] P. Macko, C. Lauzin, and M. Herman. Chem. Phys. Lett., 445, 113 (2007).

[98] C. Lauzin, K. Didriche, P. Macko, J. Demaison, J. Liévin, and M. Herman.

submitted to J. Phys. Chem., (2008).

[99] G. T. Fraser, R. D. Suenram, F. J. Lovas, A. S. Pine, J. T. Hougen, and W. J. Laerty. J. Chem. Phys., 89, 6028 (1988).

[100] A. R. W. Mc Kellar. Appl. Phys. B, 90, 213 (2008).

[101] R. H. Tipping, Q. Ma, C. Boulet, and J.-M. Hartmann. J. Mol. Struct., 742, 83 (2005).

[102] F. Keutsch and R. J. Saykally. PNAS, 98(19), 10533 (2001).

[103] H. Yu and Q. Cui. J. Chem. Phys., 127, 234504 (2007).

[104] P. Zielke and M. A. Suhm. Phys. Chem. Chem. Phys., 9, 4528 (2007).

[105] I. Manisali, D. D. Y. Chen, and B. B. Schneider. Trends in Analytical Chemistry, 25(3), 243 (2006).

(6)

[106] T. Gherman, S. Kassi, A. Campargue, and D. Romanini. Chem. Phys. Lett., 383, 353 (2004).

[107] L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. Carleer, K. V. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flau, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Laerty, J.-Y. Mandin, S. T. Massie, V. Nemtchinov, D. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino. J.

Quant. Spectrosc. Radiat. Transfer, 82, 5 (2003).

[108] C. E. Miller, L. R. Brown, R. A. Toth, D. C. Benner, and V. M. Devi. C.

R. Phys., 6, 876 (2006).

[109] G. Wagner and M. Birk. J. Quant. Spectrosc. Radiat. Transfer, 82, 443 (2003).

[110] A. K. Roy and A. J. Thakkar. Chem. Phys. Lett., 386, 162 (2004).

[111] M. Stein and J. Sauer. Chem. Phys. Lett., 267, 111 (1997).

[112] A. K. Roy and A. J. Thakkar. Chem. Phys., 312, 119 (2005).

[113] Y. Maréchal. J. Chem. Phys., 87, 6344 (1987).

[114] M. B. Ewing, T. H. Lilley, G. M. Olofsson, M. T. Rätzsch, and G. Somsen.

Pure Appl. Chem., 66, 533 (1994).

[115] I. Mills, T. Cvitas, K. Homann, N. Kallay, and K. Kuchitsu. Quantities, units and symbols in physical chemistry. edited by Blackwell Scientic Pub- lications, second edition, 1993.

[116] A. S. Coolidge. J. Am. Chem. Soc., 50, 2166 (1928).

[117] R. C. Herman. J. Chem. Phys., 8, 252 (1940).

[118] M. D. Taylor and J. Bruton. J. Am. Chem. Soc., 74, 4151 (1952).

[119] J. R. Barton and C; C. Hsu. J. Chem. Eng. Data, 14, 184 (1969).

[120] A. D. H. Clague and H. J. Bernstein. Spectrochim. Acta, Part A, 25, 593 (1969).

[121] A. Winkler and P. Hess. J. Am. Chem. Soc., 116, 9233 (1994).

[122] W. H. Hocking. Z. Naturforsch., A: Phys. Sci., 31, 1113 (1976).

[123] A. Goldman and J. R. Gillis. Technical report, Dept. of Physics, University of Denver, 1984.

[124] J. Hjorth, G. Ottobrini, and G. Restelli. J. Phys. Chem., 92, 2669 (1988).

[125] J. Notholt, F. Cappellani, H. Roesdahl, and G. Restelli. Spectrochim. Acta, Part A, 47, 477 (1991).

[126] Bor-Ren Shiau and Tai-Ly Tso. Huaxue, 52, 133 (1994).

(7)

[127] D. Berkmans, H. P. Figeys, Y. Marechal, and P. Geerlings. J. Phys. Chem., 92, 61 (1988).

[128] I. Yokoyama, Y. Miwa, and K. Machida. J. Am. Chem. Soc., 113, 6458 (1991).

[129] P. D. Maker and H. Niki. Estimation of the integrated intensity of the q- branch of the ν6 band of formic acid. private communication reported in [130], 1983.

[130] A. Goldman, F. H. Murcray, D. G. Murcray, and C. P. Rinsland. Geophys.

Res. Lett., 11, 307 (1984).

[131] Handbook of chemistry and physics. edited by Weast, R. C., 57th edition, 1976.

[132] J. Vander Auwera. J. Mol. Spectrosc., 201, 143 (2000).

[133] L. Daumont, J. Vander Auwera, J.-L. Teo, V. I. Perevalov, and S. A.

Tashkun. J. Mol. Spectrosc., 208, 281 (2001).

[134] R. Georges, M. Freytes, D. Hurtmans, I. Kleiner, J. Vander Auwera, and M. Herman. Chem. Phys., 305, 187 (2004).

[135] M. Birk, D. Hausamann, G. Wagner, and J. W. C. Johns. Appl. Opt., 35, 2971 (1996).

[136] J. Ballard, R. J. Knight, J. Vander Auwera, M. Herman, G. Di Lonardo, G. Masciarelli, F. M. Nicolaisen, J. A. Beukes, L. K. Christensen, R. McPheat, G. Duxbury, R. Freckleton, and K. P. Shine. J. Quant. Spec- trosc. Radiat. Transfer, 66, 109 (2000).

[137] J. Fischer, R. R. Gamache, A. Goldman, L. S. Rothman, and A. Perrin. J.

Quant. Spectrosc. Radiat. Transfer, 82, 401 (2003).

[138] M. Freytes, D. Hurtmans, S. Kassi, J. Liévin, J. Vander Auwera, A. Cam- pargue, and M. Herman. Chem. Phys., 283, 47 (2002).

[139] H. C. Ramsperger and C. W. Porter. J. Am. Chem. Soc., 48, 1267 (1926).

[140] J. O. Halford. J. Chem. Phys., 10, 582 (1942).

[141] J. Chao and B. J. Zwolinski. J. Phys. Chem. Ref. Data, 7, 363 (1978).

Références

Documents relatifs

On va montrer que l’interférogramme obtenu à l’aide d’un interféromètre de Michelson permet, par transformée de Fourier, d’obtenir le profil de la raie

On va montrer que l’interférogramme obtenu à l’aide d’un interféromètre de Michelson permet, par transformée de Fourier, d’obtenir le profil de la raie

2014 On montre que, pour de faibles épaisseurs ( 10 03BC), le spectre d’absorption infrarouge d’une substance polaire peut être modifié, selon que les

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

extérieures sont difficilcrnent visibles. On peut remarquer que, dans ce cas, on observe la distribution réelle des intensités entre les composantes telle qu’elle

permet d’obtenir en projection deux spectres identiques que l’on peut superposer de manière à réaliser le mélange des différentes couleurs.. Deux fentes verticales,

matriciels d6croissent beaucoup plus vite que dans le cas de 1’acide iodhydrique. - Nous avons mesure les inten- sity et les largeurs des raies de vibration-rotation

La mesure en polarisation revèle, pour le détecteur 10, une dépendance négative avec la polarisation (le rapport signal sur bruit est ici aussi très faible), en d’autres termes,