• Aucun résultat trouvé

On trouvera ici les tableaux présentant toutes les phases identifiées par diffraction RX utilisés dans le chapitre V de cette étude. Celles-ci sont classées par ordre de référence JCPDS croissante, et l’importance relative des pics dans les diagramme est indiquée.

Tableau I. Principales phases identifiées par diffraction RX dans l’échantillon oxAlT1.

N° JCPDS Fort Moyen Faible Très faible Phase

31006 X PtAl2 40787 X Al 40802 X Pt 40875 X η-Al2O3 40877 X Al2O3 40878 X κ-Al2O3 80117 X TiO 90309 X Ti3O5 100425 X γ-Al2O3 160394 X δ-Al2O3 180069 X Ti9Al23 181405 X Ti9Al17 260031 X Al2O3 260038 X Al3Ti 350088 X TiO2 351179 X Al21Pt6 371449 X Al3Ti 420810 X Al5Ti3 421134 X Al5Ti2 421135 X Al11Ti5

Annexe I Tableaux JCPDS

148

Tableau II. Principales phases identifiées par diffraction RX dans l’échantillon oxAlT2.

N° JCPDS Fort Moyen faible Très faible Phase

31006 X PtAl2 40787 X Al 40802 X Pt 40878 X κ-Al2O3 90309 X Ti3O5 100414 X β-Al2O3 100425 X γ-Al2O3 160394 X δ-Al2O3 170680 X Pt3Ti 180979 X PtTi3 181401 X Ti6O11 290063 X Al2O3 290070 X AlPt3 371449 X Al3Ti 420810 X Al5Ti3

Tableau III. Principales phases identifiées par diffraction RX dans l’échantillon oxAlT1 avant son oxydation.

N° JCPDS Fort Moyen faible Très faible Phase

31006 X PtAl2

40787 X Al

50682 X Ti

290070 X AlPt3

Annexe I Tableaux JCPDS

Tableau IV. Principales phases identifiées par diffraction RX dans l’échantillon oxAlT2 avant son oxydation.

N° JCPDS Fort Moyen faible Très faible Phase

31006 X PtAl2 40787 X Al 50682 X Ti 290070 X AlPt3 391287 X Pt8Al21 260038 X Al3Ti 421134 X Al5Ti2 421135 X Al11Ti5

Tableau V. Principales phases de l’échantillon oxALD3 identifiées par diffraction RX.

JCPDS Fort Moyen faible Très faible Phase

31006 X PtAl2 40787 X Al 40880 X χ-Al2O3 50678 X AlTi 50682 X Ti 100425 X γ-Al2O3 110218 X Ti2O 120754 X TiO 160394 X δ-Al2O3 210010 X ε-Al2O3 211272 X TiO2-anatase 231310 X PtTi 290360 X Al2O3 291360 X TiO2-brookite 331381 X TiO2 340493 X Al2O3 351179 X Al21Pt6 371449 X Al3Ti 421134 X Al5Ti2 60583 X Ti3Sn 250614 X PtSn

Annexe I Tableaux JCPDS

150

Tableau VI. Principales phases de l’échantillon oxALD4 identifiées par diffraction RX.

JCPDS Fort Moyen faible Très faible Phases

31006 X PtAl2 40787 X Al 40880 X χ-Al2O3 50678 X AlTi 100425 X γ-Al2O3 110218 X TiO2 160394 X δ-Al2O3 290063 X Al2O3 340493 X Al2O3 371449 X Al3Ti 371462 X Al2O3 421136 X Al2Ti 421137 X Al(1+x)Ti(1-x) 60583 X Ti3Sn 250614 X PtSn 260042 X Al3Sn4 270367 X Pt11Zr9

Annexe I Tableaux JCPDS

Tableau VII. Principales phases identifiées par diffraction RX dans oxAlPt1.

JCPDS Fort Moyen faible Très faible Phase

31006 X PtAl2 40787 X Al 40802 X Pt 40880 X χ-Al2O3 50682 X TiAl 100425 X γ-Al2O3 160394 X δ-Al2O3 120754 X TiO 130373 X χ-Al2O3 211272 X TiO2-anatase 290063 X γ-Al2O3 340493 X χ-Al2O3 350121 X θ-Al2O3 371449 X Al3Ti 421136 X Al2Ti

Annexe I Tableaux JCPDS

152

Tableau VIII. Principales phases identifiées par diffraction RX dans oxAlPt2. N° JCPDS Fort Moyen faible Très faible Phase

31006 X PtAl2 40787 X Al 40802 X Pt 40875 X η-Al2O3 40880 X χ-Al2O3 50678 X AlTi 50682 X Ti 90240 X TiO 100425 X γ-Al2O3 130373 X χ-Al2O3 160394 X δ-Al2O3 160415 X Al2Zr3 170680 X Pt3Ti 210010 X ε-Al2O3 230606 X Ti3O5 250989 X Ti,5 Zr0,5O0,19 260038 X Al3Ti 260042 X Al3Zr4 270911 X ω-Ti2ZrO 290063 X γ-Al2O3 290070 X AlPt3 340493 X χ-Al2O3 351179 X Al21Pt6 371449 X Al3Ti 371462 X Al2O3 420810 X Al5Ti3 421135 X Al11Ti5

Annexe I Tableaux JCPDS

Tableau IX. Principales phases identifiées par diffraction RX dans oxAlPt4.

JCPDS Fort Moyen faible Très faible Phase

1093 X Al3Zr 40787 X Al 40802 X Pt 40785 X ε-Al2O3 40880 X χ-Al2O3 50786 X AlTi 50682 X Ti 100425 X γ-Al2O3 130373 X χ-Al2O3 160394 X δ-Al2O3 170064 X Pt3Ti 231009 X θ-Al2O3 231310 X PtTi 290069 X AlPt2 290070 X AlPt3 350121 X θ-Al2O3 371449 X Al3Ti 421135 X Al11Ti5

Annexe I Tableaux JCPDS

154

Tableau X. Principales phases identifiées par diffraction RX dans oxAlPt3. N° JCPDS Fort Moyen faible Très faible Phase

31006 X PtAl2 40787 X Al 40802 X Pt 40880 X χ-Al2O3 50682 X Ti 100425 X γ-Al2O3 130373 X χ-Al2O3 170064 X Pt3Ti 210010 X ε-Al2O3 211272 X TiO2-anatase 231310 X PtTi 260041 X Al9,83Zr0,17 290063 X γ-Al2O3 290070 X AlPt3 351179 X Al21Pt6 371449 X Al3Ti 371462 X Al2O3 420810 X Al5Ti3 421134 X Al5Ti2

Bibliographie

155

[1] F. H. Froes, "Titanium alloys: Alloys designation system," in Encyclopaedia of materials:

Science and technology, vol. ISBN 0-08-0431526, Elsevier, Ed., 2001, pp. 9364.

[2] S. Malinov, W. Sha, and C. S. Voon, "In-situ high temperature microscopy study of the surface oxidation and phase transformations in titanium alloys," J Micrsoc., vol. 207, pp. 163- 168, 2002.

[3] ASM. international, "Binary phase alloys," 1996.

[4] J. C. Williams, "Phase transformations in titanium alloys," in Titanium and titanium alloys, vol. 2, J. C. Williams, Ed.: plenum press, 1982, pp. 1477.

[5] Y. Chabanne, C. Sarrazin-Baudoux, and J. Petit, "Comportement en fatigue-corrosion et corrosion sous contrainte d'alliages de titane sous environnement gazeux à 500°C," Ann.

Chim. Sci. Mat., vol. 24, pp. 377-393, 1999.

[6] C. C. Chen and J. E. Coyne, "Reationship beween microstructure and mechanical properties in Ti-6Al-2Sn-4Zr-2Mo~0,1Si alloy forgings," in Handbook of titanium and titanium alloys, pp. 1197-1207.

[7] Y.-W. Kim, "Ordered intermetlallic alloys, part III: gamma titanium aluminides," JOM, vol. July 1994, pp. 30-39, 1994.

[8] W. J. Zhang, B. V. Reddy, and S. G. Deevis, "Physical properties of TiAl alloys," Scrip.

Mater., vol. 45, pp. 645-651, 2001.

[9] C. Leyens, M. Peters, and W. A. Kaysser, "Oxidation and protection of near-alpha titanium alloys," Mat. Sci. forum, vol. 251-254, pp. 769-776, 1997.

[10] H. L. Du, P. K. Datta, D. B. Lewis, and J. S. Burnell-Gray, "Air oxidation behaviour of Ti- 6Al-4V alloy between 650 and 850°C," Corr. sci., vol. 36, pp. 631-642, 1994.

[11] G. H. Meier, F. S. Pettit, and S. Hu, "Oxidation behavior of titanium aluminides," J. de

Physique IV- colloque C9, vol. 3, pp. 395-402, 1993.

[12] L. I. Vegara, M. C. G. P. Jr, and J. Ferron, "The role of passivation in titanium oxidation: thin film and temperature effects," Appl. Surf. Sci., vol. 187, pp. 1999-206, 2002.

[13] A. Takasaki, K. Ojima, Y. Taneda, T. Hoshiya, and A. Mitsuhashi, "Higth-temperature oxidation process of intermetallic compound Ti-42%Al," J. Mat. Sci., vol. 28, pp. 1067-1073, 1993.

[14] J. S. Fish and D. J. Duquette, "Isothermal and cyclic oxidation of TiAl composites," Journal

de physique IV-C9, vol. 3, pp. 411-418, 1993.

[15] R. Beye, M. Verwerft, J. T. M. d. Hosson, and R. Gronsky, "Oxidation subscale of Gamma- titanium aluminide," acta mater., vol. 44, pp. 4225-4231, 1996.

[16] Thermodata, "GEMINI." Grenoble, 1998.

[17] M. P. Brady, W. J. Brindley, J. L. Smialek, and I. E. Locci, "The oxidation and protection of gamma titanium aluminides," JOM, vol. november 1996, pp. 46-50, 1996.

[18] H. J. Seifert, A. Kussmaul, and F. Adlinger, "Phase equilibria and diffusion paths in the Ti-Al- O-N system," J. All. Comp., vol. 317-318, pp. 19-25, 2001.

[19] D. K. Peacock, C. Eng, and M. I. Corr, "Effective design of high performance corrosion resistant system or oceanic environments using titanium," Corr. Reviews, vol. 18, pp. 295-330, 2000.

[20] J. R. Nicholls, "Advances in Coating Design for High-Performance Gas Turbines," MRS

Bulletin, vol. september 2003, pp. 659-670, 2003.

[21] R. Streiff, "Protection of materials by advanced high temperature coatings," J. Phys. IV, vol. 3, pp. 17-41, 1993.

[22] J. Y. Park, S. W. Park, H. N. Lee, M. H. Oh, and D. M. Wee, "L12 (Al,Cr)3Ti-based two phase intermetallic compounds-II. Application to coating materials on TiAl," Scrip. Mater., vol. 36, pp. 801-806, 1997.

[23] Z. Tang, F. Wang, and W. Wu, "Effetcs of Al2O3 and enamel coatings on 900°C oxidation and hot corrosion behavior of Gamma-TiAl," Mat. Sci. Eng. A, vol. 276, pp. 70-75, 2000.

Bibliographie

[24] R. J. Damani and P. Makroczy, "Heat Treatment Induced Phase and Microstructural

Development in Bulk Plasma Sprayed Alumina," J. Europ. Ceram. Soc., vol. 20, pp. 867-888, 2000.

[25] S. Taniguchi, T. Shibata, T. Yamada, X. Liu, and S. Zou, ISIJ Int., vol. 33, pp. 869, 1993. [26] W. Liang and X. G. Zhao, "Improving the oxidation resistance of TiAl-Based alloy by

siliconizing," Scrip. Mater., vol. 44, pp. 1049-1054, 2001.

[27] T. E. Strangman and P. A. Solfest, "Ceramic thermal barrier coating with alumina interlayer." US: allied-Signal, Inc., 1989.

[28] C. Leyens, M. Peters, P. E. Hovsepian, D. B. Lewis, Q. Luo, and W.-D. Münz, "Novel coating systems produced by the combined cathodic arc/ unbalanced magnetron sputtering for

environmental protection of titanium alloys," Surf. Coat. Techn., vol. 155, pp. 103-111, 2002. [29] S. Taniguchi, T. Kuwayama, Y.-C. Zhu, Y. Matsumoto, and T. Shibata, "Influence of silicon

ion implantation and post-implantation annealing on the oxidation behaviour of TiAl under thermal cycle conditions," Mat. Sci. Eng. A, vol. 277, pp. 229-236, 2000.

[30] U. Hornauer, R. Günzel, H. Reuther, E. Richter, E. Weiser, W. Möller, G. Schumacher, F. Dettenwanger, and M. Schütze, "Protection of gamma-based TiAl againts high temperature oxidation using ion implantation of chlorine," Surf. Coat. Techn., vol. 125, pp. 89-93, 2000. [31] X. Y. Li, S. Taniguchi, Y. C. Zhu, K. Fujita, N. Iwamoto, Y. Matsunaga, and K. Nakagawa,

"Oxidation behavior of TiAl protected by Al and Nb combined ion implantation at hight temperature," Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interacts. Mater. Atoms, vol. 187, pp. 207-214, 2002.

[32] F. Sanchette and A. Billard, "Main feautures of magnetron sputtered aluminium-transition metal alloy coatings," Surf. Coat. Techn., vol. 142-144, pp. 218-224, 2001.

[33] C. Leyens, M. Peters, and W. A. Kaysser, "Intermetallic Ti-Al coatings for protection of titanium alloys: oxidation and mechanical behavior," Surf. Coat. Techn., vol. 94-95, pp. 34-40, 1997.

[34] C. Leyens, J.-W. v. Liere, M. Peters, and W. A. Kaysser, "Magnetron sputtered coatings for oxidation protection of titanium alloys," Surf. Coat. Techn., vol. 108-109, pp. 30-35, 1998. [35] J. K. Lee, H. N. Lee, H. K. Lee, M. H. Om, and D. M. Wee, "Effects of Al-21Ti-23Cr coatings

on oxidation and mechanical properties of TiAl Alloy," Surf. Coat. Techn., vol. 155, pp. 59- 66, 2002.

[36] H. Mabuchi, H. Tsuda, T. Kawakami, S. Nakamatsu, T. Matsui, and K. Morii, "Oxidation resistant coating for gamma titanium aluminides by pack cementation," Scrip. Mater., vol. 41, pp. 511-516, 1999.

[37] H. N. Lee, Z. M. Park, M. H. Oh, K. Y. Kim, and D. M. Wee, "Oxidation behavior and mechanical properties of yttrium-doped L1² (Al,Cr)3Ti coatings on TiAl alloys," Scrip.

Mater., vol. 41, pp. 1073-1078, 1999.

[38] H. Liu, S. Hao, X. Wang, and Z. Feng, "Interaction of a near alpha-type titanium alloy with NiCrAlY protective coating at hight températures," Script. Mater., vol. 39, pp. 1443-1450, 1998.

[39] Z. Tang, F. Wang, and W. Wu, "Effects of MCrAlY overlay coatings on oxidation resistance of TiAl intermetallics," Surf. Coat. Techn., vol. 99, pp. 248-252, 1998.

[40] D. B. Lee, H. Habazaki, A. Kawashima, and K. Hashimoto, "Hight temperature oxidation of a Nb-Al-Si coating sputter-deposited on titanium," Corr. sci., vol. 42, pp. 721-729, 2000. [41] A. Katsman, A., Ginzburg, T. Werber, I. Cohen, and L. Levin, "Nickel-aluminide Coatings of

TiAl by a Two-stage Process," Surf. Coat. Techn., vol. 127, pp. 220-223, 2000.

[42] T. Izumi and T. N. Narita, "Formation and oxidation behavior of Ni2Al3 coating on heat- resistant Ti-alloy," Intermetallics, vol. 13, pp. 615-619, 2005.

[43] I. C. Hsu and S. K. Wu, "Oxidation improvement of Ti-48-Al-2Cr-2Nb intermetallics by air plasma sprayed SrO2-Ni-4.5wt%Al coatings," Surf. Coat. Techn., vol. 90, pp. 6-13, 1997. [44] I. Garcia, J. d. l. Fuente, and J. J. d. Damborenea, "(Ti,Al)/(Ti,Al)N Coatings produced by

laser surface alloying," Ma. Lett., vol. 53, pp. 44-51, 2002.

[45] I. Gurrappa and A. K. Gogia, "Hight performance coatings for titanium alloys to protect against oxidation," Surf. Coat. Techn., vol. 139, pp. 216-221, 2001.

Bibliographie

157

[47] J. Angenete and K. Stiller, "Comparison of inward and outward grown Pt modified aluminide diffusion coatings on a Ni based single crystal superalloy," Surf. Coat. Techn., vol. 150, pp. 107-118, 2002.

[48] Aqualogic.INC, "www.AMC-TECHNCOATINGS.com," 2002.

[49] B. Saint Raymond and J. Nicholls, "Method of making a protective oating forming a thermal barrier with a bonding underlayer on a superalloy substrate, and a part obtained thereby." France: Sncma moteurs, 2002.

[50] M. J. Pomeroy, "Coatings for gas turbine materials and long term stability issues," Materials

& Design, vol. article in press, 2004.

[51] B. M. Warnes and D. C. Punola, "Clean diffusion coatings by chemical vapor deposition,"

Surf. Coat. Techn., vol. 94-95, pp. 1-6, 1997.

[52] G. E. Creech, P. S. Korinko, and S. K. Naik, "One-step noble metal-aluminide coatings." UK: Rolls Royce, 2002.

[53] W. J. Shriver, N. S. Dushane, B. M. Warnes, and R. J. H. Jr., "A coating Aluminide/MCrAlY." US: Howmet res. corp., 2000.

[54] D. K. Das, M. Roy, V. Singh, and S. V. Joshi, "Microstructural degradation of plain and platinum aluminide coatings on superalloy CM247 during isothermal oxydation," Mat. Sci.

Tech., vol. 15, pp. 1199-1208, 1999.

[55] A. L. Purvis and B. M. Warnes, "The effects of platinum concentration on the oxidation resistance of superalloys coated with single-phase platinum aluminides," Surf. Coat. Techn., vol. 146-147, pp. 1-6, 2001.

[56] B. D. Prasad, S. N. Sankaran, K. E. Wiedemann, and D. E. Glass, "Platinum substitutes and two-phase-glass overlayers as a low cost alternatives to platinum aluminides coatings," Thin

solid films, vol. 345, pp. 255-262, 1999.

[57] I. G. Wright, B. Pint, and A. Haynes, "Factors affecting the performance of bond coatings," presented at turbomat, Bonn, 2002.

[58] G. Fischer, P. K. Datta, and J. S. Burnell-Gray, "An assessment of the oxidation resistance of an iridium and an iridium/platinum low-activity aluminide/MarM002 system at 1100°C," Surf.

Coat. Techn., vol. 113, pp. 259-267, 1999.

[59] K. N. Chen and K. H. Yow, "Pulsed vapor phase aluminide process for high temperature oxidation-resistant coating applications." SG, 1999.

[60] P. A. v. Manen, G. W. R. Leibbrandt, R. Klumpes, and J. H. W. d. Wit, "The oxidation of Pt20Ni30Al50," J. Phys. IV, vol. C9, pp. 123-131, 1993.

[61] P. J. Hill, N. Adams, T. Biggs, P. Ellis, J. Hohls, S. S. Taylor, and I. M. Wolf, "Platinum alloys based on Pt-Pt3Al for ultra-high temperature use," Mat. Sci. Eng. A, vol. 329-331, pp. 295-304, 2002.

[62] P. J. Hill, L. A. Cornish, P. Ellis, and M. J. Witcomb, "The effects of Ti and Cr additions on the phase equilibria and properties of (Pt)/Pt3Al alloys," J. All. Comp., vol. 322, pp. 166-175, 2001.

[63] P. J. Hill, Y. Yamabe-Mitarai, and I. M. Wolff, "High-temperature compression strengths of precipitation-strengthened ternary Pt-Al-X alloys," Scrip. Mater., vol. 44, pp. 43-48, 2001. [64] N. Birks, G. H. Meyer, and F. S. Pettit, "Forming continuous alumina scales to protect

superalloys," JOM, vol. december 1994, pp. 42-46, 1994.

[65] Y. Zhang, J. A. Haynes, W. Y. Lee, I. G. Wright, B. A. PINT, K. M. Cooley, and P. K. Liaw, "Effetcs of Pt incorporation on the isothermal oxidation behavior of chemical vapor deposition aluminide coatings," Metal. Mat. trans. A, vol. 32A, pp. 1727-1741, 2001.

[66] Y. Zhang, W. Y. Lee, J. A. Haynes, I. G. Wright, B. A. Pint, K. M. Cooley, and P. K. Law, "Synthesis and cyclic oxidation behavior of a (Ni,Pt)Al coating on a desulfurised Ni-Base superalloy," Metal. Mat. trans. A, vol. 30A, pp. 2679-2687, 1999.

[67] M. Kawamura, T. Mashima, Y. Abe, and K. Sasaki, "Formation of ultra-thin continuous Pt and Al films by sputtering," Thin solid films, vol. 377-378, pp. 537-542, 2000.

[68] C. Sarioglu, M. J. Stiger, J. R. Blachere, R. Janakimaran, E. Schumann, A. Ashary, F. S. Pettit, and G. H. Meier, "The adhesion of alumina films to metallic alloys and coatings," Mat.

Bibliographie

[69] A. M. Huntz, "Influence of active elements on the oxidation mechinsm of M-Cr-Al alloys,"

Mat. Sci. Eng. A, vol. 87, pp. 251-260, 1987.

[70] G. Fisher, P. K. Datta, J. S. Burnell-Gray, W. Y. Chan, and J. C. Soares, "The effects of active element addition on the oxidation performance of a platinum aluminide coating at 1100°C,"

Surf. Coat. Techn., vol. 110, pp. 24-30, 1998.

[71] B. M. Warnes, "Reactive element modified chemical vapor deposition low activity platinum aluminide coatings," Surf. Coat. Techn., vol. 146-147, pp. 7-12, 2001.

[72] H. M. Tawancy, N. Sridhar, N. M. Abbas, and D. Rickerby, "Failure mechanism of a thermal barrier coating system on a nickel-base superalloy," J. Mat. Sci., vol. 33, pp. 681-686, 1998. [73] S. Nourbakhsh, O. Sahin, and H. Margolin, "A structural study of oxidation in an Al2O3 fiber

reinforced titanium aluminide composite," acta metal. mater., vol. 43, pp. 3035-3044, 1995. [74] Metal. Mat. trans. A, vol. 3, pp. 1596-1598, 1972.

[75] J. A. Haynes, M. J. Lance, B. A. Pint, and I. G. Wright, "Characterization of commercial EB- PVD TBC systems with CVD (Ni,Pt) Al bond coating," Surf. Coat. Techn., vol. 146-147, pp. 140-146, 2001.

[76] SETARAM, "http://www.setaram.com/."

[77] D. Monceau and D. Poquillon, "Continuous Thermogravimetry under Cyclic Conditions,"

Oxidation of metals, vol. 61, pp. 143-163, 2004.

[78] D. Monceau and B. Pieraggi, "Determination of parabolic rate constant from a local analysis of mas-gain cirves," Ox. Met., vol. 50, pp. 477-492, 1998.

[79] N. Pilling and R. Bedworth, "The oxidation of metals at high temperatures," J. Inst. Met., vol. 29, pp. 529-591, 1923.

[80] C. Wagner, Z. Physik Chem, vol. B21, pp. 25, 1933.

[81] J. C. Salabura and D. Monceau, "Moyen d'essai pour l'oxydation cyclique," in France, 2004. [82] J. C. Salabura and D. Monceau, "Multi-sample termobalance for rapid cyclic oxidation under

controlled atmosphere," Mat. Sci. Forum, vol. 461-464, pp. 689-696, 2004.

[83] M. Hiratani, T. Nabatame, Y. Matsui, and S. Kimura, "Crystallographic and electrical properties of platinum film grown by chemical vapor deposition using

(methylcyclopentadienyl)trimethylplatinum," Thin solid films, vol. 410, pp. 200-204, 2002. [84] O. Valet, P. Doppelt, P. K. Baumann, M. Schumacher, E. Balnois, F. Bonnet, and H. Guillon,

"Study of platinum thin films deposited by MOCVD as electrodes for oxide applications,"

Microelec. Eng., vol. 64, pp. 457-463, 2002.

[85] J. R. V. Garcias and T. Goto, "Chemical Vapor Deposition of Iridium, Platinum,Rhodium and Platinum," Mat. Trans., vol. 44, pp. 1717-1728, 2003.

[86] S. D. Robinson and B. L. Shaw, "Transition Metal-Carbon Bonds. Part III. Cyclopentadielnyltrimethylplatinum(IV)," J. Chem. Soc., pp. 1529-1530, 1965. [87] G. W. Adamson, J. C. J. Bart, and J.J.Daly, "Crystal and Molecular Structure of

Cyclopentadienyl(trimethyl)platinum (IV), (Pi-C5H5)PtMe3," J. Chem. Soc (A), pp. 2616- 2619, 1971.

[88] Z. Xue, M. J. Strouse, D. K. Shuh, C. B. Knobler, H. D. Kaesz, R. F. Hicks, and R. S. Williams, "Characterization of(Methylcyclopentadienyl)trimethylplainum and Low-

Temperature of OMCVD of Platinum Metal," Am. Chem. Soc., vol. 111, pp. 8779-8784, 1989. [89] Z. Xue, H. Tridandam, H. D. Kaesz, and R. F. Hicks, "Organometallic Chemical Vapor

Deposition of Platinum. Reaction Kinetics and Vapor Pressures of Precursors," Chem. Mater., vol. 4, pp. 162-166, 1992.

[90] J.-H. Wong and S.-G. Yoon, "Characterization of Pt Films Deposited by Metallorganic Chemical Vapor Deposition for Ferroelectric Bottom Electrodes," J. Electrochem. Soc., vol. 144, pp. 2848-2854, 1997.

[91] S. D. Hersee and J. M. Ballingall, "The operation of metalorganic bubblers at reduced pressure," J. Vac. Sci. Technol. A, vol. 8, pp. 800-804, 1990.

[92] J. Goswami, C.-G. Wang, W. Cao, and S. K. Dey, "MOCVD of platinum films from (CH3)3CH3CpPt and Pt(acac)2: Nanostructure, conformality, and electrical resistivity,"

Chem. Vap. Dep., vol. 9, pp. 213-220, 2003.

[93] Y.-J. Chen, H. D. Kaesz, H. Thridandam, and R. F. Hicks, "Low temperature organometallic chemical vapor deposition of platinum," Appl. Phys. Lett., vol. 53, pp. 1591-1592, 1988.

Bibliographie

159

[94] B. Niemer, A. A. Zinn, W. K. Stovall, P. E. Gee, R. F. Hicks, and H. D. Kaesz,

"Organometallic chemical vapor deposition of tungsten metal, and suppression of carbon incorporation by codeposition of platinum," Appl. Phys. Lett., vol. 61, pp. 1793, 1992. [95] T. Aaltonen, M. Ritala, T. Sajavaara, J. Keinonen, and M. Leskelä, "Atomic layer deposition

of Platinum thin films," Chem. Mater., vol. 15, pp. 1924-1928, 2003.

[96] A. Zinn, B. Niemer, and H. D. kaesz, "Reaction Pathways in organometallic CVD," Adv. mat., vol. 4, pp. 375-377, 1992.

[97] M. Hiratani, T. Nabatame, Y. Matsui, K. Imagawa, and S. Kimura, "Platinum Film Growth by CVD Based on Autocatalytic OxydativeDecomposition," J. Electrochem. Soc., vol. 148, pp. C524-C527, 2001.

[98] N. R. Avery, "Bonding and reactivity of cyclopentene on Pt (111)." Surf. Sci., vol. 146, pp. 363-381, 1984.

[99] J. H. Sinfelt, "Catalytic hydrogenolysis on metals," Cat. Let., vol. 9, pp. 159-172, 1991. [100] L. Brissoneau, "Dépôt Chimique en Phase Vapeur de Couches Minces de Nickel à Partir de

Précurseurs Métal-Organique," in Etude des interfaces et des matériaux (ENSCT, LIMAT). Toulouse: INPT, 1998.

[101] R. Jonnalagadda, D. Yang, B. R. Rogers, J. T. Hillman, R. F. Foster, and T. S. Cale, "Programmed Substrate temperature ramping to increase nucleation density and decrease surface roughness during metalorganic chemical vapor deposition of aluminum," J. Mat. Res., vol. 14, pp. 1982-1989, 1999.

[102] K. Sugai, H. Okabayashi, S. Kishida, and T. Shinzawa, "Titanium-containing hydrofluoric acid pretreatment for aluminum CVD," Thin solid films, vol. 280, pp. 142-146, 1996.

[103] T. Kodas, M. G. Simmonds, and W. L. Gladfelter, "CVD of Aluminum," in The Chemistry of

Metal CVD, M. Hampden-Smith, Ed.: VCH, 1994, pp. 45-103.

[104] G. Natta, P. Pina, and G. Mazzanti, "Polymers and copolymers of certain unsaturated hydrocarbons." US.

[105] C. Vahlas, P. Ortiz, D. Oquab, and I. W. Hall, "Toward the improvement of the microstructure of chemical deposited aluminium on silicon carbide," J. Electrochem. Soc., vol. 148, pp. C583-C589, 2001.

[106] B. R. Rogers, "Underlayer work function effect on nucleation and film morphology of chemical vapor deposited aluminum," Thin solid films, vol. 408, pp. 87-96, 2002.

[107] B. E. Bent, R. G. Nuzzo, and L. H. Dubois, "surface organometallic chemistry in the chemical vapor deposition of aluminum films using triisobutylaluminum: bêta-hydride and bêta-alkyl elimination reaction of surface alkyl intermediates," J. Am. Chem. Soc., vol. 111, pp. 1634- 1644, 1989.

[108] B. V. Zhuk and V. K. Khamylov, "Effect of adsorbed ferrocène on themorphology of pyrolytic Al films," Doklady Akademii Nauk, vol. 233, pp. 862-865, 1977.

[109] S. P. Muraka, I. A. Blech, and H. J. Levinstein, "Thin-film interaction in aluminium and platinum," J. Appl. Phys., vol. 47, pp. 5175-5181, 1976.

[110] P. Gas, J. Labar, G. Clugnet, A. Kovacs, C. Bergman, and P. Barma, "Initial formation and growth of an amorphous phase in Al-Pt thin films and multilayers: Role of diffusion," J. Appl.

Phys., vol. 90, pp. 3899-3904, 2001.

[111] R. J. Schwoebel and E. J. Shipsey, "Step motion on crystal surfaces," J. Appl. Phys., vol. 37, pp. 3682-3686, 1966.

[112] G. Ehrlich and F. G. Hudda, "Atomic view of surface self-diffusion: tungsten on tungsten," J.

Chem. Phys, vol. 44, pp. 1039, 1966.

[113] R. Kröger, M. Eizenberg, D. Cong, N. Yoshida, L. Y. Chen, S. Ramaswami, and D. Carl, "Influence of diffusion barriers on the nucleation and growth of CVD Cu for interconnect applications," Microelec. Eng., vol. 50, pp. 375-381, 2000.

[114] E. S. Hwang and J. Lee, "Surfactant-assised metallorganic CVD of (111)-oriented copper films with excellent surface smoothness," Electrochem. Solid-state lett., vol. 3, pp. 138-140, 2000.

[115] J. Ferron, L. Gomez, J. M. Gallego, J. Camarero, J. E. Prieto, V. Cros, A. L. V. d. Parga, J. J. d. Miguel, and R. Miranda, "Influence of surfactants on atomic diffusion," Surf Sci, vol. 459, pp. 135-148, 2000.

Bibliographie

[116] J. Vrijmoeth, H. A. v. d. Vegt, J. A. Meyer, E. Vlieg, and R. J. Behm, "Surfactant induced layer by layer grawth of Ag on Ag(111): origins and side effects," Phys. Rev. Lett., vol. 72, pp. 3843-3846, 1994.

[117] C. Tölkes, R. Struck, and R. David, "Surfactant-induced layer by layer growth on a highly anisotropic substrate: Co/Cu(110)," Phys. Rev. Lett., vol. 80, pp. 2877-2880, 1998.

[118] T.-Y. Chang, J.-J. Tze, and D.-S. Shyang, "Influences of surface additives iodine and indium on the initial growth of copper chemical vapor deposition,"? 2003.

[119] M. Copel, M. C. Reuter, E. Karixas, and R. M. Tromp, "Surfactant in epitaxial growth," Phys.

Rev. Lett., vol. 63, pp. 632-635, 1989.

[120] J. Camarero, J. Ferron, V. Cros, L. Gomez, A. L. V. d. Parga, and J. M. Gallego, "Atomistic mechanism of surfactant-assisted epitaxial growth," Phys. Rev. Lett., vol. 81, pp. 850-853, 1998.

[121] M. d. Keijser and G. J. M. Dormans, "Modelling of organometallic CVD of lead titanate," J.

Cryst. Growth, vol. 149, pp. 215-228, 1995.

[122] M. Tao, "A kinetic model for MOCVD from trimethylgallium and arsine," J. Appl. Phys., vol. 87, pp. 3554-3562, 2000.

[123] E. Kondoh, Y. Kawano, N. Takeyasu, and T. Ohta, "Interconnection formation by doping CVD aluminum with copper simultaneously: Al-Cu CVD," J. Electrochem. Soc., vol. 141, 1994.

[124] W. L. Gladfelter and E. C. Phillips, "CVD of Al using DMEAA," in US patents. US: Regent of the university of Minnesota, 1991.

[125] Epichem, "DMEAA physical properties and datas.," vol. 2002: Epichem, 2002.

[126] J. A. Jegier and W. L. Gladfelter, "The Use of Aluminium and Gallium Hydrides in Material Science," Coord Chem Rev, vol. 206-207, pp. 631-650, 2000.

[127] T. W. Jang, W. Moon, J. T. Baek, and B. T. Ahn, "Effetcs of temperature and substrate on the growth behavior of chemical vapor deposited Al films with dimethylethylamine alane source,"

Thin solid films, vol. 333, pp. 137-141, 1998.

[128] Y. Neo, M. Niwano, H. Mimura, and K. Yokoo, "Growth of aluminum on Si using dimethyl- ethyl amine alane," Appl. Surf. Sci., vol. 142, pp. 443-446, 1999.

[129] H. Matsuhashi, C.-H. Lee, T. Nishimura, K. Masu, and K. Tsubouchi, "Superiority of DMAH to DMEAA for Al CVD technology," Mat. Sci. Semicond. Proc., vol. 2, pp. 303-308, 1999. [130] T. Nakajima, M. Nakatomi, and K. Yamashita, "Quantum Chemical Calculations on Al-CVD

using DMEAA: Surface Reaction Mechanism of AlH3 on Al (111)," Molec. Phys., vol. 101, pp. 267-276, 2003.