• Aucun résultat trouvé

i =1 n i =1 x X n i =1 X i i m = E ( X )= p x X n n i P ( X = i )= p =1 P ( X = i )=16 8 i 2f 1 ::: 6 g n i i p =1 X 1 2 n X x ;x ;:::;x

N/A
N/A
Protected

Academic year: 2022

Partager "i =1 n i =1 x X n i =1 X i i m = E ( X )= p x X n n i P ( X = i )= p =1 P ( X = i )=16 8 i 2f 1 ::: 6 g n i i p =1 X 1 2 n X x ;x ;:::;x"

Copied!
10
0
0

Texte intégral

(1)

!!" ##$%

&('*) +-,/.10.32547698;:9<>=@?.3AB,C6ED<

FGIH9J9KMLNKPO JRQTS

X

UWVWX9Y[Z U]\_^a`WbP^dcfegU/^Beihj^aXlkabm`nUpo3Y[b[q `nUfZ rsegU3V$\B^BeiU3Y[`tV

x 1 , x 2 , . . . , x n

u

VWb9qvkBY[`(XwkBY[X

i

kaZR^

p i = 1

n

u ^BeikB`tVeg^xrBbyVWXz`WbPc3Y[XzbPkBZrdU@eg^{\B^B`WbP^dcfegU|^}hj^aXlkabm`nU

X

U3VtX

rabmXlUsY[Zvb~3ka`W€UN

‚„ƒ†…ˆ‡1‰9Š‹…

Œ„Žfdv‘n’y“[”f•j–s—i–˜—y™aTŽ3š˜“†›œx“[šdžŸ—y™( B™d•n’y™a¡—i–˜™d—gšN™B¢jd’i•n–/•j–f£v•nšN‘¤–*}¢t™aI¢¥—i–˜•jš*‘nœ—g¢j™a¢

}¡[¢n–*Iœ¦‘nœ’§¢]œv–C—g}’Ÿœ’g¨Md•j©€šf©€–fI¢]“[’y‘ª¢j•n’i¡œš*–¬«

P(X = i) = 1

6 ∀ i ∈ { 1 . . . 6 }

­˜®[¯B®° L*G ¯ KP±*L*KP²Ÿ³9…ˆ±¬´µ…|Š® Š‹OTK;³9JµK‹¶zO ¯ ‡·…

¸·¹

O K;´9…¦‰ ¯ OTº ® º9K‹ŠPKPL*G «

P (X = i) = p i = 1 n

¸·»

Oˆ¼T…ˆJ9Jµ… «

m X = E(X ) =

n

X

i=1

p i x i

= 1 n

n

X

i=1

x i

(2)

¸1Ô

®[¯ K® J ° … «

v X = E(X − m X ) 2 = E(X 2 ) − (E(X )) 2

=

n

X

i=1

p i x 2 i − m 2 X

= 1 n

n

X

i=1

x 2 i − m 2 X

‚¥ƒ†…ˆ‡1‰ÂŠP…´7Õ® ‰9‰9Š‹K°}® L*K‹OTJ

Ö;×|ØjÙN×IÚwÛ§ÜdÝjÞªßáàBâ}ß/ÜIã*×}ڄâ}×IßCßtÚwä[ÝjØtßáãf×IÛæå/ã*çæßsÜ}ßjâ}è@éNÝt×}ßtÚ

α

ßjê

β

ë Ûæ׈Üdìtä[ßt׈Ü}ã*×BêªÚ

ë

Úwß

êwÞ¤ã*Ü}âIÛæÚwßt×Bê7åCÙ*Þªä}íIÙNçæÙ*éNÛ§àBâIßtåCßt×BêÓäˆã3Þ$ç§ãCä}ÞªìtÚwßj×IØt߄Ü}ß]Þ¤ãtî}âdÞªßtÚÓÚwâ}Þ$ç§ãCØtÙaàBâIÛæçæçæßpÜdߥçmïã*×}Ûæå/ã*çmð

ñ ߥé*Ýt×Iß

α

ãsÜdßtâ}èáã*çæçæÝtçæßtÚ

A

ßjê

a

ßjê

β

ã/Üdßtâ}è€ã*çæçæÝtçæßtÚ

B

ßjê

b

ë êªßtçæÚ$àBâIß

A

ÜdÙNåCÛæ×Iß

a

ßnê

B

ÜdÙNåCÛæ×Iß

b

ð

ñ ã„êwÞ¤ãNÜdâIØjêªÛæÙ*׀åCÙ*Þªä}íIÙNçæÙ*éNÛ§àBâIßÜdâáéNìj×IÙ*ê‹îdä[ßßtÚlêÓçgã„ÚwâIÛæòNãf×BêªßÑó

ôdõMöw÷zøæùªúªûMü ý*þwõMöª÷‹øæùªú¤ûMü

aabb

ÿ öwûÿù §û

Aabb

÷

AAbb

öwûÿù æû

aaBb

÷

aaBB

ÿù §ûMü

AaBb

÷

AABb

÷

AaBB

÷

AABB

øæ÷üÿù æûMü

aÙNÛê

X

ç§ãÑòNã3ÞªÛ§ãIçæߥã*çæìWã3êªÙNÛުߋ×IÙNå}Þªß;Ü}ß;Þ¤ãtîdâ}ÞªßtÚ;ßjêÓçæßØjÞªÙNÛæÚwßtåCßt×BêÆÚwâ}Û§ò*ã*×Bêó yßtåCßjç§çæß

×

å*çæß

= AaBb × aabb

ìjêªßjÞªåCÛæ×IßjÞÆçæßtÚÆØWã3Þ¤ã*ØjêªìnÞªÛ§ÚlêªÛ§àBâIßjÚ;Üdß

X

ñ ÙNÛë åCÙWîBßt×I×}ß

ë

ò*ãfÞªÛ§ã*×}Øtßnð

&(' +x,s.10@< <$69?,/="!!3.

#%$'&)(+*,-*./(10243/5687:9';<%<=?>A@?BC6D<?;/EC<GFH5;7JIK<LB@?M9NI7DO7P<?M7QOHIK@O7D568B<R<?7SM5T687

A

9';U@?VW?;<X

Y

<?;7ZF[@8\);6+M9'BQE?<?77]<P<=?>A@?BC6D<?;/EC<-^_3`5687

X

IaOPVTOBC6bOdceIK<QOHIK@O7D5T68B<f>`B<?;/O;A7gIaOPVTOHIK<?9'B

1

h 9AO;/F

A

<?M7iB@OHI68M@j<?7:k

h

9AO;/F

A ¯

<?M7lB@OHI68M@-^:ml;nF67

h

9<

X

<?M7i9';<poqArsqtduvnwvyxGvrHzg{A|}uuas MN~6I_<=68M7]<

p

<?7

q

FdO;M

R

V@?B?6\gO;7:

P (X = 1) = p P (X = 0) = q

p + q = 1

ml;€FT687:@bdOHIK<

Y

<?;7

h

9<

X

M9'687f9';/<‚Ia56gF[<QƒQ<?B?;`59NI8I6

B(0, 1, p)

^

„†…R‡

,eˆ‰Š#G$[&Z(_*,-*.( ó[‹;×}ßÆòNã3ÞªÛgãTIçæß7Ü}ßJŒ9ßjÞª×IÙ*âIçæçæÛIêwÞ¤ãNÜdâIÛêÂâ}×IßÆßjèdä[ìjÞªÛæßt×}ØtßÓã*çæìWãfêªÙ*ÛÞªß

ãtîaã*×Bê/Üdßtâ}è|ÛæÚwÚwâ}ßtÚCä[ÙNÚwÚwÛaIçæßtÚ/ßjêpߍßtØjêªâ}ìt߀âI×}ߘÚwßjâIçæßRyÙ*ÛæÚtð

B(0, 1, p)

ßtÚlêCç§ã@çæÙNÛÓÜdß

Œ9ßjÞª×}ÙNâIçæçæÛ Üdßäˆã3Þ¤ã*åCÝjêwÞªß

p

ó

 P (X = 0) = 1 − p = q P (X = 1) = p

„†Ž

ãfÞ]ØtÙ*×aò_ßt×BêªÛæÙN×

ë

p

0 ≤ p ≤ 1

7ßjÚlê]çgã/ä}ުوãTIÛæçæÛæêªìpÜ}ßÑÚwâ}ØtØtÝtÚ$ã*çæÙ*ÞªÚ]àBâIß

q = 1 − p

ßtÚlêÓç§ãpä}ÞªÙHIã}Û§çæÛêªì]ÜvïìtؤíIßjØNð

(3)

‚„ƒ†…ˆ‡1‰9Š‹…ˆ±

„ ñ

ã*×}ØtßjÞ7ÜvïâI×}ß$äIÛæÝtØjß]Ü}ß$åCÙ*×I׈ãfÛæßpó

“

A

óIä}Ûæç§ß

“

¯ A

ómã*Øjß

“

p = q = 1 2

„

aâIÛêªßÜdßçgãf×IØtßnÞªÚ7Üdß]Ü}ìÑó

“

A = 1, 6

“

¯ A = 2, 3, 4, 5

“

p = 1 3

ßjê

q = 2 3

„•”

ÞªÙ*ÛæÚwßtåCßt×Bê7ÜvïíIìjêªìnÞªÙH–jîdéNÙfêªßtÚ

Bb

ð ñ ïÛ§ÚwÚwâ(ÜdâáØjÞªÙ*ÛæÚwßtåCßt×BêÆßtÚlêÓâIטäIíIìj×IÙ*ê‹îdä[ß

B

ìtò_ݗ

×}ßtåCßt×Bê

A

9ÙNâ

b

ìtò_Ýt×}ßtåCßt×BêEØtÙ*×aêwÞ¤ãfÛÞªß

A ¯

“

A = BB, Bb, bB

“

¯ A = b, b

“

p = 3 4

ßjê

q = 1 4

­˜®[¯B®° L*G ¯ KP±*L*KP²Ÿ³9…ˆ±¬´µ…|Š® Š‹OTK;´9…™˜˜… ¯ JµO ³9ŠPŠPK

„›š

./*lœ+‰€+ˆ./ž_Ÿ`ž}*8 *,e$

ó

P (X = 1) = p P (X = 0) = q = 1 − p

„›¡

.A¢/‰A(}(_‰ ó

m X = E(X ) =

n

X

i=1

p i x i

= p × 1 + q × 0 = p

„U£

ŸAˆT*Ÿ/(+¤‰

ó

v X = E(X − m X ) 2 = E(X 2 ) − (E(X)) 2

=

n

X

i=1

p i x 2 i − m 2 X

= p − p 2

= p(1 − q)

= pq

&('n& +-,/.¥ .3?@,˜D.¦!3<

#G$[&Z(+*§,-*.(•00©¨Z5T;M6bF[@?B5;Mª9';«M?EC¬@

Y

OnF[<jƒQ<?BC;/5T9AII6QFd<P>`B5dcOdc6I687]@

p

^)­}<;`5

Y

cB<GF[<

M9EECW?MnO9®E59'B?MnF+~9N;/<€M@?B?6b<"F[<

n

@]>`B<?9'V<?M™<?M7ª9';<€VTOTB?6bOHceIK<"OHIK@O7D568B<

X

^S­+OUIa56LF[<

>`B5HcCOHc6I687]@Fd<EC<?77]<‚VTOBC6bOdceIK<‚OHIK@O7D568B<j<?M7}>NOB‚F[@8\);6876b5T;nIaOªIa56gc68;`5

Y

6OHIK<

B(0, n, p)

^

‚„ƒ†…ˆ‡1‰9Š‹…ˆ±

„U¯

ÙNå}Þªß$ÜdßäIÛæçæßçæÙ*ÞªÚÓÜ}ß

n

ç§ã*×IØjßjÞªÚÓÜvïâI×}ß$äIÛæÝtØtß]ÜdßåCÙN×}׈ã*Ûæß

„U¯

ÙNå}Þªß$Üdß

6

ÙHdêªßt×aâáçæÙ*ÞªÚÓÜdß

n

ç§ãf×IØtßjÞªÚÆÚwâ}ØtØtßtÚwÚwÛ°yÚ;ÜvïâI×áÜ}ì

„U¯

ÙNå}Þªß$ܝïÛ§×IÜ}ÛæòaÛ§Ü}âáÙ}êªßt×aâ}ÚÆÜ}ß$ä}íIìt×}Ù*êzîdä[ß

B

äˆã3ÞªåC۝ç§ßjÚ

n

Ü}ßjÚwØtßt׈Ü}ã*×BêªÚÓÜvïâI×sØjÞªÙ*Ûa—

ÚwßjåCßt×Bê

Bb × Bb

(4)

­˜®[¯B®° LNG ¯ K‹±fLNKP²Ÿ³9…I±¬´9… Š® ŠPO KQ˜˜K‹JµO ‡·K® ŠP…

„†š

./*iœ_‰²+ˆ./ž+Ÿ`ž+*8 8*,e$

ó

P (X = x) = n x

!

p x (1 − p) n x

„†¡

.N¢/‰(+(_‰

ó

m X = E(X ) = np

„«£

ŸˆT*Ÿ`(+¤H‰

ó

v X = E(X − m X ) 2 = E(X 2 ) − (E(X )) 2

= npq

Ù³

` n x

´ = x!(n n! x)!

ßtÚlêEçæß;ØjÙBß´CØtÛæßt×Bêi}Û§×}ÙNåCÛ§ã*ç

ë

Ø*ïßjÚlê:µ„ÜdÛÞªß7çæß;×}ÙNå}ÞªßÓÜ}ßÓØtÙNåIÛæ׈ãfÛæÚwÙN×IÚ9Ü}ß

x

ìjç§ìjåCßt×BêªÚEØní}ÙNÛæÚwÛæÚ7äIãfÞªåCÛ

n

ð

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0 2 4 6 8 10 12 14 16

B(0,1,0.3) B(0,4,0.3) B(0,8,0.3) B(0,16,0.3)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

0 2 4 6 8 10

B(0,10,0.2) B(0,10,0.5) B(0,10,0.8)

¶·b¸S¹}º»½L¼€½i¾ –*©á£v—g–N‘]“[–/—id’y‘¡’id©€’y™a—i–*‘$£ dœ•„“[’K¿ šf•j–fI¢j–*‘ B™a—i–fœv•j‘]“–*‘£v™d•j™d©€”3¢n•j–*‘

n

–f¢

p

»

‚¥ƒ†…ˆ‡1‰ÂŠP…´7Õ® ‰9‰9Š‹K°}® L*K‹OTJ

‹7׀ç§ã[ÙfÞ¤ãfêªÙNÛުߥÜ}Ù*Ûê;ãf׈ãfçæîdÚwßjÞ

N

ìtؤíˆãf×aêªÛæçæçæÙN×}Ú

E 1 , E 2 , . . . , E N

ä[ÙNâdÞ;ÜdìjêªßjÞªåCÛæ×IßnÞÆØtßtâ}è

àBâIۆØtÙ*×BêªÛ§ßj×I×Ißj×aê]â}×ØtÙfÞªäIÚ

C

ð

C

ßtÚlê¥ä}ÞªìtÚwßt×Bê¥Ü}ã*×IÚ]çmïâI×|àBâ}ßtçæØtÙN×Iàaâ}ßpÜdßtÚ]ìtØníIã*×BêªÛæçæç§Ù*×IÚ

E i

ãWò_ßtجç§ã¦ädÞªÙHˆãTIÛæçæÛêªì

p

ð Ž ÙNâdÞmã*ÛÞªßâI×-×}ÙNå}ު߬ܝïãf׈ãfçæîdÚwßtÚsÛæ×AiìjÞªÛæßtâ}ÞRµ

N

ë ÙN×-âdêªÛ§çæÛæÚwßç§ß ädÞªÙ*êªÙBØtÙ*ç§ß]Úwâ}Û§ò*ã*×Bêó

„

Ö;טުìtäIãfÞwêªÛêÓçæßtÚ

N

ìjØníIã*×BêªÛæç§çæÙ*×IÚÆßt×

k

é*ÞªÙ*âIä[ßtÚ7Ü}ß

n

N = kn

„†Ž

ÙNâdÞ7â}×áéfÞªÙNâIä[ß

ë

Ù*×áÞªìWã*çæÛæÚwß]âIטä}ÞªìtçæÝtò_ßjåCßt×BêÆÜIãf×IÚÆØníIã*Øtâ}׀ÜdßtÚEìtؤíˆã*×BêªÛæçæçæÙN×IÚtð

„ ñ

ßtÚTä}ÞªìtçæÝtòNßtåCßt×BêªÚÚwÙN×Bê åCìjçgãf×Ié*ìtÚ

ë

ÙN×ØnÞªìtß9ãfÛæ×IÚwÛ_â}××IÙNâ}ò_ßtçfìtؤíˆã*×BêªÛæçæçæÙN×¥àBâTïÙN×ÚwÙ*âIåCßjê

µÑçmïã*׈ãfçî}Úwß

Øtßnê7ìjØníIã*×BêªÛæç§çæÙ*×GPÞªìtÚwâIåCß$çæßéfÞªÙNâIä[ß?nð

„

dۄç§ß|ÞªìtÚwâ}çê¤ãfêßtÚlê@ä[ÙNÚwÛêªÛ°˜Ù*×ã*×Iã*çîdÚwß Úwìtäˆã3ÞªìtåCßt×BêØníIã*Øtâ}×RÜ}ßjÚ@ìtؤíˆãf×BêªÛ§çæçæÙN×}ÚÜdâ

é*ÞªÙ*âIä[ßNð

Á ‡

‰NÂe,-*./(ÄÃ

”

ÙNåL}Ûæßt׀ܝïãf׈ãfçæîdÚwßtÚÆÚwÙ*×aêÓߍßjØjêªâIìtßjÚÓßj×áåCÙWîBßt×}×IßÅ

(5)

L ¯_® Jµ±NŠ® LNKPO JR´ÓÕi³µJ9…|ŠPO KJ˜áKPJ9O ‡·K® Š‹…

#G$[&Z(+*§,-*.(•0ÎÏ3A6I~5;OÐe59'7]<:9';p>NOBO

Y

W?7B<Q<?;76D<?BÑ>N5M6876Ò

d

F[<l7BO;AMCIaO76b5;7]<I

h

9<

d < n

Ó

5;€F[@8\Z;A687lIaOIa56Zc68;`5

Y

6OHIK<

B(d, n, p)



P (X = x) = n − d x − d

!

p x d q n x ∀ x ∈ d, d + 1, . . . , d + n m X = d + (n − d)p v X = (n − d)pq

0 0.05 0.1 0.15 0.2 0.25

0 2 4 6 8 10 12 14

B(0,10,0.5) B(5,15,0.5)

¶·b¸J¹`º»°Ô

¼G½i¾

–f©€£—i–*‘7“[–]—id’y‘E¡’id©€’y™a—i–*‘E£ dœ•7“[’K¿ šf•j–fI¢j–*‘Æ B™d—g–*œ•j‘Ó“[œ¬£v™a•t™a©€”f¢n•j–$“–

¢j•j™dv‘¤—y™B¢j’g}

d

»

Ž

ÙNâdÞ;â}×IßçæÙNÛ

B(d, n, p)

ë çæß]ÚwÛæéN×}߄Üdâ€ØtÙBß´pØtÛæßt×BêÜvïãfÚlî}åCìnêwÞªÛ§ß

γ 1

Ü}ìjä[ßt׈ܘÜ}ß]ç§ãpä}ÞªÙHIãT—

I󾍾󐻓

p

ÛæéNâ}ު߂Ö;ó

“

ÚwÛ

p < 0.5

ã*çæÙ*ÞªÚ

γ 1 > 0

çæÙNÛvìjê¤ã*çæìt߂µpÜaÞªÙNÛêªß

ë

“

ÚwÛ

p = 0.5

ã*çæÙ*ÞªÚ

γ 1 = 0

çæÙNÛvÚlî}åCìnêwÞªÛgàBâ}ß

ë

“

ÚwÛ

p > 0.5

ã*çæÙ*ÞªÚ

γ 1 < 0

çæÙNÛvìjê¤ã*çæìt߂µÑéNã*âIؤíIß-nð

&('C× Ø-<]DÚÙ¦2 0›ÛC¦p:†:µ<?˜:µ<Ýܦ+-,/.1Þß,sDÝß;:µ69.à€=<

áâDãPâCä åæèçêéë‚ìZíæ

dÙ*Ûê9â}×IßÂâdÞª×IßEØtÙ*×aêªßj׈ã*×Bê5âI×}ßEä}ÞªÙ*ä[Ù*ÞwêªÛæÙN×

p

Üdßi[ÙNâIçæßtÚZIç§ãf×IؤíIßtچßjê

q = 1 − p

Üdßi[ÙNâ}ç§ßjÚ

×IÙ*ÛæÞªßjÚtðTÖ;׀êªÛæު߄Ü}ßjÚQ[ÙNâ}çæßtÚ$âI×}߂µ/â}×I߄ãWò_ßtØÞªßtåCÛæÚwßNðvÖ;×(×IÙfêªß

X

çæߥޤãf×Ié˜Üvïã*ä}äˆã3ÞªÛæêªÛæÙ*×@Üdß ç§ãÑä}ÞªßtåCÛæÝjÞªßQ[ÙNâIçæßp}çgãf×IؤíIßNð

X

ßtÚlêÓçæß ,e‰Aî"}ÂLœgïaŸ,e,‰(/,e‰ Ü}ß$ç§ãGðjÝjÞªßP[ÙNâ}ç§ßp}ç§ã*×IؤíIß*ð

áâDãPâ]ñ òôóÑõLö÷ø÷éJö

#G$[&Z(+*§,-*.(•0Nùúmf;•F67‚F+~9';<%VTOTB?6bOHceIK<ŠOHIK@O7D568B<

X

M9'687p9';<GIa56i[@5

Y

@?7BC6

h

9<yF[<‚>NOBOHX

Y

W?7B<

p

Ó

G(0, p)

Ó M6g5;nOG

P(X = k) = pq k 1

(6)

ÀÂÁ„Ã]ÄÆÅfÇÂÈÉʝË@Ì;Í;ŤÎτŤΆÀÂÈÐÑÇ9É7ÎRÒ9ÎEÒ5ÉÓ̵̆É7Î

­˜®[¯B®° LNG ¯ K‹±fLNKP²Ÿ³9…I±¬´9… Š® ŠPO KQüTGˆO ‡·GIL ¯ KP²Ÿ³9…

„†š

./*iœ_‰²+ˆ./ž+Ÿ`ž+*8 8*,e$ ó

P(X = x) = pq x 1

„†¡

.N¢/‰(+(_‰ ó

m X = E(X) = 1 p

„«£

ŸˆT*Ÿ`(+¤H‰

ó

v X = E(X − m X ) 2 = E(X 2 ) − (E(X )) 2

= q

p 2

‚¥ƒ†…ˆ‡1‰ÂŠP…ˆ±

ã*×IڄâI×}ßsä[Ù*äIâ}çgã3êªÛæÙN×{Ü}ß/ò*ã*×I×}ßWã*âdè

ë

ç§ã¬ä}ÞªÙHIã}Û§çæÛêªì˜Ü}ߘÜ}ìtØtÝjÚpÜvïâ}צÙNÛæÚwßWãfâxãfâ{ØjÙNâ}ÞªÚ

ܝïâ}×Ißãf×I×}ìtßßtÚlêÆØtÙ*×IÚlê¤ã*×BêªßßjêÓìtéNã*çæ߂µ

1/3

ë àBâIßtçßtÚlêÓçmï*éNß]åCÙWîBßtטÜvïâ}×áÙNÛæÚwßWãfâÅ

&('ý +x,s.•þ.3?,sD.¦%!3<>?nßpÞ%¦p:µ.-ÿ/<

#%$'&)(+*,-*./(10ê¨Z5;M6bF[@?B5;Mp9';yM?EC¬@

Y

ORF[<QƒQ<?B?;`59NI8I6gF[<:>B5dcOdc6I67]@

p

^

­}<%;`5

Y

cB<RF+~@]>`B<?9'V<?M‚>N5T9NBR5dc7]<?;A68B

r

MC9AEECW?My<?M79';/<%VTOBC6bOdceIK<ROHIK@O7D5T68B<

X

^Z­+O

Ia56pFd<>`B5dcOdc68I687]@yF[<ŠEC<?77]<ŠVTOTB?6bOHceIK<²OIK@OT7D568B<y<?M7:>NOBRF[@8\Z;A6876b5;•IaOnIa56c68;/5

Y

6bOHIK<

;@bdO768V<

N B(r, r, p)

^

36

r

<?M7g9N;n<?;A76D<?BpM7B?6E7]<

Y

<?;7+>N5M6876Ò Ó

N B(0, r, p)

<?M7fIaOjIa56gF9R;`5

Y

cB<F+~@EC¬<EM

OVTO;A7:F+~OVT5T68B

r

>N59'B

d

h 9<IaE5; h 9`< Ó 5;²;/57]<PIaOªIa56gc68;/5

Y

6bOHIK<;@bdO768V<

N B(d, r, p)

^

F@KÓG

¯

…IJ

°

…ˆ±;…ˆJ L ¯ …/Š

®

ŠPO KºÂKPJ9OT‡ K®

Š‹…¥…IL;Š

®

Š‹OTKvº9K‹JµO ‡·K

®

ŠP…¥J9G`ü

®

L*K …

N B(d, r, p)

ã*×IÚÆçæßØWã*ÜdÞªß]Üvïâ}×Iß$Úwâ}Ûæêªß]ܝïìtä}Þªßtâ}ò_ßtÚÆÜdßpŒ9ßjÞª×}ÙNâIçæçæÛ Ûæ×IÜ}ìtä[ßt×IÜIãf×aêªßjÚ

ë

„

ç§ãpç§Ù*Û_}Ûæ×IÙNåCÛ§ãfç§ß

B(0, n, p)

Ù*âIß]ÜdÙN×IØçæß$Þ *ç§ß]Üdß

 ./*iœ_‰²¤H.î"+,Ÿ`‰

„

ç§ã/çæÙ*Û}IÛæ×IÙ*åCÛ§ã*çæß]×IìtéNãfêªÛæò_ß

N B(r, r, p)

ÙNâ}߄çæßÞ Nçæ߄Ü}ß  ./*:œgïK*8(,e‰'ˆNŸ` 8 ‰

Ü}ß$êªßtåCä}Ú

ÚwÛ çmïÙN׬ãfÚwÚwÛæåCÛ§çæß]âI×}ß$ìtädÞªßtâIò_ß;Ü}ßPŒ9ßnÞª×IÙNâ}çæç§Û+µÑâI×}ß$âI×}ÛêªìÜ}ß;êªßjåCäIÚCnð

„

åCä[ÙfÞwê¤ã*×IØjߥädÞªÛæÚw߄äIãfÞ$ØjßtÚ;×}Ù*êªÛæÙN×}Ú$Ü}ߥçæÙN۟Üd߄ØjÙNåCä}ê¤ãféNß]ßjê$Ü}ߥç§Ù*۟ÜvïÛæ×BêªßjÞªò*ã*çæçæßÑÜ}ã*×IÚ

çæßtÚ7ädÞªÙBØtßtÚwÚwâ}ÚÓÚlêªÙBؤíˆãfÚlêªÛ§àaâ}ßtÚtð

­˜®[¯B®° LNG ¯ K‹±fLNKP²Ÿ³9…I±¬´9… Š® ŠPO K7º9K‹JµO ‡·K® ŠP…JµG`ü ® L*KT…

N B(d, r, p)

„†š

./*iœ_‰²+ˆ./ž+Ÿ`ž+*8 8*,e$ ó

P(X = x) = x − d + r − 1 r − 1

!

p r q x−d ∀x ∈ d, d + 1, . . .

(7)

ʝˈËÌ7Í;ÅQ;՘͑|ŪÄ̆ÉôP˂ÊÃ]Ç9Å9É ½

„›¡

.A¢/‰A(}(_‰

ó

m X = d + rq p

„U£

ŸAˆT*Ÿ/(+¤‰ ó

v X = rq p 2

„

‹7×IßpçæÙ*Û

N B(d, r, p)

ßtÚlêêªÙNâ ÙNâdÞªÚ]ìjê¤ã*çæìtßµ€ÜaÞªÙNÛêªßpßjê]çæßCØtÙBß?´CØtÛæßt×Bê„Üvïã*ÚlîdåCìjêwÞªÛæß

γ 1

ßjÚlê;ÜdÙN×}Ø;êªÙNâ

ÙNâdÞªÚ7ä[Ù*ÚwÛêªÛa‹ð

0 0.1 0.2 0.3 0.4 0.5

0 2 4 6 8 10 12 14

NB(0,1,0.5) NB(5,1,0.5)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0 5 10 15 20

NB(0,0.5,0.5) NB(0,1,0.5) NB(0,3,0.5) NB(0,6,0.5)

0 0.1 0.2 0.3 0.4 0.5

0 5 10 15 20 25

NB(0,2,0.7) NB(0,2,0.5) NB(0,2,0.3)

¶·b¸J¹gº»º

¼«½i¾

–f©€£—i–*‘/“–á—id’y‘C“[–€¡’id©€’y™a—i–€šI™B¢n’i d–ᣠdœ•/“[’§¿ šf•j–fI¢n–N‘p _™d—g–*œ•t‘C“[œ

£v™d•j™d©€”3¢n•j–p“[–Ñ¢n•t™av‘n—i™a¢n’id

d

žT“[œ@£T™a•t™a©€”3¢j•n–

r

–f¢¥“[–p—i™€£•jd¡T™a¡’i—g’g¢nš

p

»

‚„ƒ†…ˆ‡1‰9Š‹…

ÙaÜ}ìjç§ÛæÚªã3êªÛ§Ù*׀Üdß7ç§ã]ä}ÞªìtÚwßt×}Øtß$ÜdßÆçgã]åCÙNçæìtØjâIçæß$ܝïãfç§ã*×IÛæ×}ß;Ü}ã*×IÚ9çgãÚlêwÞªâ}Øjêªâ}Þªß7Ü}â I68M?5

Y <

ä}ÞªÙfêªìtÛæ×Iß9ؤíIße–çmïíIÙ*åCåC߄ó

"!$#&%$!' ( #)"'$#"' * + ,"*$-"#"*/.10$'( 2 3 +4%

56 '"( 3!"0$* -2)$#&() 2 -2( * , #40 )$,-*7.849&.12

:6 0 # -3"% 2$,"* ) ;"*($"2 ("%=<"'0"%0$(' '&91,"2/.1(

>6 ,&($"(% ( # # ,&;&9=*7.8#"($3-(3#2 #"%"9=2 # ,"

@?6A#/91-&9$*% *$

BDCEGFHCIKJLMJNCOQP

RTS

ÿKUÿ

ööwûV WX Y SZ U ø

ÿM[

öwûV \ ] SUû

öªûV ^

_ SÿZööwûV WX ` S

ÿKa ZU ø

ÿM[ba

Vdc e SU

ùªü§öwûV f

g Sÿ ügú

ÿÿZöwûVTWh i SZ Uù öªûV WKW j S[

õmøgþ÷zöCöwûV k

lTS

ÿKatÿ ügú

ÿ

§ø

a

Vm^ n S

þü§øöwûV W o S

ú¤þwõMölù

UÿKUÿ ööªûVpk

qrS

ùªügø§õböªûV ^ s Süg÷

öwûV f t S

úCæ÷

UöªûV k

urS

ügõbKöªûV \ v S

øgþCæõm÷lööwûV f w S øæùªúwøg÷zú¤þ

ÿ

öªûV f

xTSy

ÿKU

öwûV ^

z CE|{}M~LKC€LK€‚„ƒ~…}†@IMJNƒ‡IˆP‰@Š‹

ŒCJL

X k

‚Ž‘6P“’OCE”{}~Dƒ•€– JNƒ~ I—€EGJNO† I„‚N‡I™˜‡IKš‡•›‚œžŸJN @EG~¡}~@O6–@COLM}M~@Ž~ –b‡O~DEGC‚N† – ‡‚N~

ƒ•€‚€OJNO~£¢“

¤

€‚N~@‡6}MIC{IK~ }Ž† ~@I¥ƒ~

X k

FHC‡}

k ≤ 7

(8)

ÀÂÁ„Ã]ÄÆÅfÇÂÈÉʝË@Ì;Í;ŤÎτŤΆÀÂÈÐÑÇ9É7ÎRÒ9ÎEÒ5ÉÓ̵̆É7Î

k = 1 X 1 : { 9, 17, 6, 10, 5,26, 3, 7, 7, 2, 2, 2, 11, 3 } k = 2 X 2 : { 26, 16,31, 10, 9, 4, 14 }

k = 3 X 3 : { 32, 41,17, 6 } k = 4 X 4 : { 42, 41,13 } k = 5 X 5 : { 47, 45 } k = 6 X 6 : { 73, 23 } k = 7 X 7 : { 76, 34 }

¦¨§©ª «€¬®­‘¯±°"²´³ †“LK~ }EGJNO~ }…‚N~ IµŽ€‚N~ ‡}I¶EGC@·~ OO~ I

x k

FHC‡}…‚N~ I…ƒJ¸¹†@}~ OLM~ I…Ž€‚N~ ‡}I¶ƒ6~

k

ºCO

F}~ Oƒ}M

k ≤ 7

»

¦¨§©ª «€¬®­‘¯½¼¾²¿ O"IK‡6F¹CF6IK~Àš‡~Á‚ÂIM·OLKà IM~8ƒ‡‚NJNIKCē·6EG~ÅIƕ~“¸¹~ –“LK‡~8IM~ ‚NCO"‡6O&IM–£Ã† E¨Qƒ6~

Ç ~ }OC‡‚N‚NJŸ

‰ ¿ OÁIK‡6FFHCIK~ˆLKC‡6L¥ƒ•€{HC}Mƒ8š‡~ˆ‚ÈF}C{™€{JN‚NJLM†|ƒ6~ˆLMJN}~@}‡O8€– JNƒ~¶€EGJNO†…~ IML¥‚”EGÉ EG~µFHC‡}

‚N~ I

20

€– JNƒ~ I€EGJNO† IƐ ³ †“LK~ }EGJNO~ }ʂN~ I—Ž€€‚N~ ‡}MIÊEGCÆ·~ OO~ IDF}JNIK~ I—F™€}ʂN~ I—Ž€€}MJ€{6‚N~@ID€‚N†ÆLMCJN}~@I

X k

LKÃ6†@C}JNš‡~ IƐ‘Ë¥‡~…FH~ ‡6LCOÀ~ OÀƒ† ƒ‡6JN}M~´Ì

Š6

¿

OÁIK‡6FFHCIK~¶E¨€JNOLM~ O™€OLš‡~|‚N~ I¥€–@JNƒ6~@I¥€EGJNO† IIMCOL‡6LMJN‚NJNIK† IF}MCFHC}LKJNCO6O~ ‚N‚N~@EG~ OLˆ›G‚N~ ‡}

Í}† š‡6~@O6–@~¶ƒ™€OI‚N~…I£€O6ΐ ¿ OÀIM~…FHCIK~…‚N~ IbEGÉ@EG~ Iš‡~ IMLMJNCOIÆϙ@Ž~ –

P (A) = 0.16



áâMÐâ?ä Ñ ógç éJ÷ Òæ ëÂÓÔöPæÉíéJ÷%ë‚÷ÆÕÖDÒìÑø/æ

× ~@I‚NCJNIbΆ CEG† LM}JNš‡~ I

N B(0, 1, p)

~“L

N B(1, 1, p)

IKCOL‚N~@IbIM~@‡6‚N~@I¥Ø­‘¬®ª”Ù´¬Úª@ÛÜÝ«©ªGª@Þ¹¯ªÈß1àá ß1­‘¬®Ü© â„C‡}b‚”‚NCJ

N B(1, 1, p)

Ï6OC‡I@ŽCOI¶P

P (X = x + u | X > u) = pq x+u 1

q u = pq x 1 = P (X = x)

ã3J L*…

¯ ‰ ¯

GIL

®

L*K‹OTJ

ä ¿ OÁIK‡6FFHCIK~¶š‡~ˆ‚”Ž€€}MJ€{‚N~¶€‚N†@LMCJN}M~

X

}~ F}M† IM~@OLM~ȂŸ•JNOLM~ }Ž€€‚N‚N~ˆƒ~…LK~ EGFI~@OLM}M~

2

†“Ž† O~“ž

EG~ OLMIÆÏ

ä

‚=‚NCJµƒ~‚Ÿ•JNOLK~ }Ž€‚N‚N~8ƒ~8LM~ EGFI

X

ϏIK€–£Ã™€OLÁš‡~‚N~

2

  EG~8† Ž† O~ EG~ OLÀIM~QF6}MCƒ‡JLÀ€F} @I

‚Ÿ•JNOIMLK€OL

u

ύO~µƒ6†@FH~ OƒåF™€Ibƒ~µ– ~“LbJNOIMLK€OL@ϙE¨€JNID‡6OJNš‡6~@EG~ OLbƒ‡GLK~ EGFIb† – C‡‚N†µƒ~ F‡6JNI– ~“L JNOIMLK€OLƐ

ä

â„C‡}

N B(0, 1, p)

COÀåP

P (X = x + u | X ≤ u) = pq x+u

q u = pq x = P (X = x)

&('@æ +x,s.èçêéŠÙ<$6lÞß,sDÝß;:µ69.à€=<

ë à엯„¬N«¬­‘¯&¼™íïî‘ðñÚòó6ôHõÈóö“ôHõÅ÷Kðô™òŸõÆôHøô™ò

N

ùðóúõ@û”øü€õK÷¨óôHõµýHöMð“ýðö“òŸñþðôÿõ

p

ùðóúõ@û ù úøôH÷6õÆû

õ@òbÿõ

q = 1 − p

ùðóúõ@û|ôHðñ®öMõ@ûôQòŸñÚöõÈû“øô™û¶öõ”ñ®û“õ

n

ùðóúõÆû øÅü€øö“ñÚø

ù úõ¨øú@òðñÚöõ

X

øúõGøó

ôHð

ù

öõÈÿõ

ù

ðó6úõÆû

ù úøôH÷6õÆûˆð

ù

òŸõÆô™óõ@û…û£ó6ñ®òDóôHõ”úðñ “ýõÆöKðÆòŸö“ñÆó6õ

H(N, n, p)

­˜®[¯B®° LNG ¯ K‹±fLNKP²Ÿ³9…I±¬´9… Š® ŠPO K ¼Ÿ‰Ó… ¯ ü GˆOT‡ G}L ¯ KP²Ÿ³9…

ä

­‘¬DÙ©„Ü­Þ´¬Ø¬«Æà P

P (X = x) =

` N p

x

´` N q

n−x

´

` N n

´

ä

­ ¹©6¯„¯© P

m X = E(X ) = np

ä"!

ÞHܬ޹¯Û© P

v X = E(X − m X ) 2 = E(X 2 ) − (E(X)) 2

= npq N − n

N − 1

(9)

ʝË#_ËÌ7Í;Å;Ï¥ÉÄÑÍ;ŤΝΆ͐

‚„ƒ†…ˆ‡1‰9Š‹…@´7Õ® ‰µ‰ÂŠPK°d® LNKPO J

³ €OI…‡6O~ÈFHCF‡‚LMJNCO1ƒ6~

N

JNOƒJŽJNƒ‡I@ϑCOÂF}† ‚N “Ž~

a

JNOƒJŽJNƒ‡I…š‡~ȂŸ•CO8E¨€}š‡6~”~“Lˆ}M~ ‚%$€–£Ã6~

ƒ™€OIG‚QF¹CF6‡‚LKJNCO‘

¿

O~“¸‘~ –“LM‡~‡O~ÁIM~@– COƒ6~8–Ɓ€FLK‡}~ƒ~

n

JNOƒ6JŽ6JNƒ‡6IƐDBCEGEG~ OL

Í

€JN}M~ÀF¹C‡6}

ƒ†“LK~ }EGJNO~ }

N

Ì

&('& +-,/.10<(',/.3252µ,/?

ë à엯„¬«€¬®­‘¯¼) î‘ðñ®ò

X

ó6ôHõ$ü€øö“ñÚø

ùúõøúKøòŸðñ®öõ8ý6ðó6üøô™ò|ýHöõÆôHÿöõ"òŸðóòõÆûÂúõÆûÂü€øúõ@ó6ö“ûQõÆô™òþñ*@öMõ@û

0,1, . . . , n, . . .

ü+@ö“ñ,Êøô™ò.-

P (X = x) = e λ λ x x!

ôÂÿñÚò/@óõ

X

û£ó6ñ®òó6ôHõ¶úðñDÿõ10bðñÚû£û£ðô

P (0, λ)

ÿõý6øöø2*@òŸöõ

λ

­˜®[¯B®°

L*G

¯

KP±*L*KP²Ÿ³9…ˆ±¬´µ…|Š

®

Š‹OTK;´9…43¥O KP±N±*O J

ä5

­¬—Ù©6„Ü­Þ´¬

Ø

¬N«à

P

P (X = x) = e −λ λ x x!

ä5

­7H©6¯„¯©

P

m X = E(X) = λ

ä8!

ÞHܬ®Þ¹¯Û© P

v X = E(X − m X ) 2 = E(X 2 ) − (E(X )) 2

= λ

L ¯_® Jµ±NŠ® LNKPO JR´ÓÕi³µJ9…|ŠPO K7´9…93„OTK‹±*±NOTJ

ë à엯„¬«€¬®­‘¯¼;: î¹ñbú<ðôø>=@ðóòõÅóô8ý6øöø2*@òŸöõÁõÆô™òŸñÚõÆöý6ðû£ñ®òŸñ?

d

ÿõÅòŸöøô™ûKúøòŸñÚðô @µðôÿA,—ô™ñ®ò¥úøÁúðñ ÿõB0ðñ®û£û“ðô

P (d, λ)

-

P (X = x) = e λ λ x d

(x − d)! ∀ x ∈ d, d + 1, . . . m X = d + λ

v X = λ

â„C‡}‡O~…‚NCJ

P (d, λ)

ςN~…IMJNÎO~µƒ‡å– C~CG– JN~ OL¥ƒ•€IM·EG†“LK}JN~

γ 1

~ IMLbLMC‡€˜MC‡6}MIF¹CIMJLKJ͐

D O6~…‚NCJ

P (d, λ)

~ IMLƒCO–µLMC‡€˜C‡}MI†“L£€‚N† ~¶›”ƒ}CJLK~

áâEJâCä FAíCíÆÔÅÕAø„ÒHGfø÷éSö ëÅÔ çêéë‚ìZíæ

ä z

CE”{}~¥ƒ6~Ž† ÃJN– ‡‚N~ I Í}M€O–£Ã6JNIKI£€OL‡O¨FHCIMLM~¥ƒ6~¥FH†@€Î~µFH~@O6ƒ™€OLb‡6O~¥FH† }MJNƒ6Cƒ~¥ƒ~¥ƒ‡6}M† ~

T



ä z CE”{}~…ƒ~…ƒ†Í€‡6LMIƒCOL~@IL¸‘~ –“LM†¶‡6OÀC{6˜~“Lš‡J~@IL ́€{}JNš‡†ˆ~@OåIK† }JN~

ä z CE”{}~…ƒ•C~ ‡ ÍIbFHCƒO‡6I¥€‡å–@C‡6}MIƒ•‡O~…FHCOLK~ˆF™€}– ~@}LK€JNO~ I¥~ IKFH  – ~@I¥€OJNE¨€‚N~ IƐ

ä

 @

‚„ƒ†…ˆ‡1‰9Š‹…ˆ±

¿

O/IM‡FFHCIK~š‡~1‚N~8O6CE”{}~ƒ•C~ ‡

Í

IÀFHCƒO‡IÀF™€}å‡O/JNOIM~ – LM~ÂIK‡JLå‡O~‚NCJ…ƒ~Qâ„CJNIKIMCO4ƒ~

F™€}M€EG  LM}~

λ

 ¿ OÅIK‡F6F¹CIM~µ† ΁€‚N~ EG~@OLbš‡~µ‚N~ IC~ ‡ ÍIFHCOƒ‡IbIMCOLbE|‡6LK‡6~@‚N‚N~ EG~ OLJNOƒ† FH~ Oƒ™€OLKI~“L

š‡6~‚µF}C{™€{JN‚NJLM†¥ƒ6~¥ƒ†“Ž~ ‚NCFFH~ EG~@OLƒ•‡6OGC~ ‡ Í ~@IL

p

Ë¥‡~ ‚N‚N~b~ IMLD‚…F}C{™€{JN‚NJLM†¥FHC‡}—š‡6~ÏF™€}EGJ

‚N~ IC~ ‡ ÍIFHCOƒ‡6IÆϙJN‚H·å€JL~I6€–“LK~ EG~ OL

k

IK‡}Ž6JŽ€€OLMI‘Ì

J

~@E¨€}š‡~ÈP ¿ Oå}K€FFH~ ‚N‚N~…š‡~

X

0

(λ × q) j

j! = e λq

(10)

ÀÂÁ„Ã]ÄÆÅfÇÂÈÉʝË@Ì;Í;ŤÎτŤΆÀÂÈÐÑÇ9É7ÎRÒ9ÎEÒ5ÉÓ̵̆É7Î

0 0.05 0.1 0.15 0.2

0 2 4 6 8 10 12 14 16

P(0,4) P(5,4)

0 0.1 0.2 0.3 0.4

0 2 4 6 8 10 12 14 16 18

P(0,1) P(0,2) P(0,4) P(0,8)

¶·b¸S¹_º»K

¼y½i¾

–f©€£—i–*‘;“[–„—id’y‘;“[–ML}’i‘j‘¤}v‘Æ£ dœv•$“’K¿ šf•j–fI¢n–N‘Ó B™d—g–*œ•j‘;“[–N‘Ó£v™d•j™d©€”3¢n•j–*‘

d

–3¢

λ

»

&('ON P Ù"Ù69,RQ¬.*Dݦp:µ.3,/?"0< !T¦ !3,/.1þ¦.3?,sD.¦!3<

¿ OåEGCOLM}~…š‡~ÈP

“ n k

” p k q n k → e np (np) k k!

¿ Oå~ OÀƒ† ƒ‡JLš‡~…IKJ

(X n )

~ IMLb‡O6~¶IM‡JLM~µƒ~µŽ€}J€{‚N~ I€‚N†ÆLMCJN}~@ILK~ ‚N‚N~ Iš‡~…FHC‡}LMC‡6L

n

Ï

X n

IM‡JL‡O~

B(n, p)

ÏH€‚NC}MI

X n

– COŽ~ }Î~”~ OÁ‚NCJŽ~ }I¥‡O~…Ž€€}MJ€{‚N~|€‚N†@LKCJN}~¶ƒJNIK– }  LM~

X

š‡JIK‡6JL‡6O~

‚NCJ‘ƒ~ˆâ„CJNIKIKCO

P (np)



SLNKPŠ‹KP± ® L*K‹OTJ ‰ ¯B® LNKP²Ÿ³9…

ŒJ

n

~ IL”Î}M€Oƒ$~“L

p

€IKIM~@ĨFH~“LKJL@Ï´CO=FH~ ‡6L|}M~ EGF‚€– ~ }¶‚À‚NCJD{JNOCEGJN‚€~

B(n, p

F€}|‚À‚NCJʃ~

â„CJNIKIMCOåƒ6~¶EGÉ EG~~ IKFH† }K€O– ~¶E¨LKÃ6†@E¨LMJNš‡~

P (np)



T OÀF}MLMJNš‡~ÏHCOÀ€ƒEG~“L– ~“LLK~¶€FF}CIJNE¨LMJNCOÀI£LMJNÍ€JNI£€OLM~…F¹C‡6}

n ≥ 30

~“L

p ≤ 0.1



Références

Documents relatifs

L'utilisation de cette fonction est un artifice technique, qui 6vite, par le biais de la formule sommatoire de Poisson, un d6veloppement en s6rie de Fourier... Cette

Sechs Punktquadrupel einer zweizagigen Ca, deren Tangentialpunkte die Ecken eines vollstandigen Vierseits sind, bilden eine Cf. Es kann leicht gezeigt werden, dass

II- Une enquête effectuée auprès des 60 élèves d’une Terminale Littéraire d’un établissement de la ville, à propos des réseaux sociaux sur internet révèle que : 40

[r]

§-QS map with small s is close to a similarity. Suppose that the first part of the theorem is false.. Proceeding inductively, we similarly obtain at:bt for

[r]

A vant d'aepter la partie, vous essayez de simuler e jeu, pour voir si vous. avez des hanes de

[r]