• Aucun résultat trouvé

Amphimedonoic acid and psammaplysene E, novel brominated alkaloids from Amphimedon sp.

N/A
N/A
Protected

Academic year: 2021

Partager "Amphimedonoic acid and psammaplysene E, novel brominated alkaloids from Amphimedon sp."

Copied!
5
0
0

Texte intégral

(1)

HAL Id: hal-01657062

https://hal.univ-reunion.fr/hal-01657062

Submitted on 6 Dec 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Amphimedonoic acid and psammaplysene E, novel brominated alkaloids from Amphimedon sp.

Pierre-Éric Campos, Jean-Luc Wolfender, Emerson F. Queiroz, Laurence Marcourt, Ali Al-Mourabit, Nicole de Voogd, Bertrand Illien, Anne

Gauvin-Bialecki

To cite this version:

Pierre-Éric Campos, Jean-Luc Wolfender, Emerson F. Queiroz, Laurence Marcourt, Ali Al-Mourabit,

et al.. Amphimedonoic acid and psammaplysene E, novel brominated alkaloids from Amphimedon

sp.. Tetrahedron Letters, Elsevier, 2017, 58 (40), pp.3901-3904. �10.1016/j.tetlet.2017.08.072�. �hal-

01657062�

(2)

Amph imedono ic ac id and psammap lysene E , nove l brom inated a lka lo idsfrom Amph imedon sp .

P ierre-Er icCampos

a

,Jean-Luc Wo lfender

b

,EmersonF .Que iroz

b

,Laurence Marcourt

b

, A l iA l-Mourab it

c

,N ico leDeVoogd

d

,BertrandI l l ien

a

,AnneGauv in-B ia leck i

a,

aLaboratoiredeChimiedesSubstancesNaturellesetdesSciencesdesAliments,FacultédesSciencesetTechnologies,UniversitédeLaRéunion,15AvenueRenéCassin,CS92003, 97744Saint-DenisCedex9,LaRéunion,France

bSchoolofPharmaceuticalSciences,EPGL,UniversityofGeneva,UniversityofLausanne,QuaiErnest-Ansermet30,CH-1211Geneva4,Switzerland

cInstitutdeChimiedesSubstancesNaturelles,CNRSUPR2301,Univ.Paris-Sud,UniversitéParis-Saclay,1,av.delaTerrasse,91198Gif-sur-Yvette,France

dNaturalisBiodiversityCenter,Darwinweg2,2333CRLeiden,Netherlands

a a b b s s t t r r a a c c t t

Exam inat ion of the CH2Cl2-MeOH (1:1) extract from the Madagascan sponge Amph imedon sp . h igh l ighted two new brom inated a lka lo ids , amph imedono ic ac id (1) and psammap lysene E (2) , a long w ith the known 3 ,5-d ibromo-4- methoxybenzo ic ac id (3) . The ir structures were e luc idated by 1D and 2D NMR spec-troscopy and HRES IMS data .

Marinespongeshavebeenreportedasa majorsourceofbioac- tivesecondary metabolites witha widevarietyofunusualstruc- tures.1The genus Amphimedon has been knownto produce various potent bioactivecompounds, especially alkaloids with uniquestructures.2–4Aspartofourcontinuedsearchforstruc- turally unique metabolitesfrom marineinvertebrates,5–7 the spongeAmphimedonsp.,collectedfromthe MitsioIslands, Mada- gascar, wasinvestigated.Theseinvestigationsaffordedtwonew brominatedalkaloids,amphimedonoicacid(1)andpsammaply- seneE(2),along withtheknown3,5-dibromo-4-methoxybenzoic acid(3).8,9Herein,theisolationandstructureelucidationof 1–3 aredescribed.

ThespongeAmphimedonsp.(36.2g, wet weight)collectedoff the MitsioIslands, Madagascar, wasextracted withCH2Cl2/MeOH (1:1).Thecrudeextract(1.5g) wassubjectedto MPLCoversilica gelandseparatedintotenfractions(F1-F10)usingacombination ofisohexane,EtOAcand MeOHofincreasingpolarity.F9(15 mg) wassubjectedtoasubsequentreversedphasesemi-preparative HPLCseparationtoyieldpurecompound2(0.7 mg).F10(32 mg) wassubjectedtoareversedphasesemi-preparativeHPLCsepara- tionandledtotheisolationofpurecompounds1(2.8 mg),2 (1.3 mg)and3(1.0 mg)(Fig.1).

Amphimedonoicacid(1) wasobtainedasacolorlessoil.The highresolutionelectrospray massspectrumexhibiteda molecular ion[M+H]+asaclusterofpeaksm/z302.0388/304.0388ina1:1 ratio,anisotopepatterncharacteristicofabrominatedcompound. Accordingly, based on HRESIMS, the molecular formula C12H16BrNO3 (calcd for C12H1779BrNO3+, 302.0386), with five degreesofunsaturation,wasdetermined.The1Hand13CNMRdata displayedresonances andcorrelationsfor onecarboxylic acid group,one1,2,4-trisubstitutedaromaticring,three methylenes, oneof which wasoxygenatedandtwoN-methylgroups(Table1). Thebenzoicacid moietywassuggestedbyHMBCcorrelationsfrom H-3(dH8.10)toC-1(dC172.6),C-4(dC111.7),C-5(dC157.6),C-7 (dC131.1),fromH-6(dH6.97)toC-2(dC132.2),C-4,C-5andfrom H-7(dH7.83)toC-3(dC135.3)andC-5(Fig.2).Thechemicalshift (dC111.7)ofthequaternarycarbonC-4placedthebrominesub- stituentatC-4.ThesubstitutionofC-5wassuggestedbyitschem- icalshift(dC157.6)andalsobytheHMBCcorrelationfromH-8(dH

4.21)to C-5.Interpretation ofthe1H–1H COSY correlations between H-8, H-9and H10,revealedthe propylspinsystem C-8 C-9 C-10.Thesubstitutionoftheamine moiety wasdeter- minedby HMBCcorrelationsfrom H-10(dH3.21)toC-11,C-12 (dC43.9)andfrom H-11, H-12(dH2.81)toC-10(dC56.7),C-11 andC-12(Fig.2).

PsammaplyseneE(2) wasobtainedasacolorlessoil.Thehigh resolutionelectrospray massspectrumshowedfourisotopicpeaks

Correspondingauthor.

E-mailaddress:anne.bialecki@univ-reunion.fr(A.Gauvin-Bialecki).

(3)

atm/z694.8758,696.8740,698.8723,700.8702,702.8691[M+H]+ ina1:4:6:4:1ratio,respectively,indicatingthepresenceoftwo bromineatomsinthe molecule.TheHRESIMSallowedassignment ofthe molecularformulaasC23H27Br4N2O3+(calcdforC23H2779Br4-

N2O3+,694.8750)requiringtendegreesofunsaturation.The1Hand

13CNMRdataof2displayedtheresonancesofatrans-a,b-unsatu- ratedcarbonylgroup,twosymmetrical 1,2,4,6-tetrasubstituted aromaticrings,five methylenes,oneof which wasoxygenated, two N-methyl groups and one O-methyl group (Table 1). Fig.1.Structuresofisolatedcompounds1–3.

Table1

1Hand13CNMRdataforamphimedonoicacid(1),psammaplyseneE(2)and3,5-dibromo-4-methoxybenzoicacid(3)(1H500 MHz,13C125 MHz,CD3OD).

Position 1 2 3

dC dH(JinHz) dC dH(JinHz) dC dH(JinHz)

1 172.6 167.6 171.0

2 132.2 123.6 6.52(1H,d,15.7)

3 135.3 8.10(1H,d,1.9) 138.1 7.37(1H,d,15.7) 134.7 8.12(1H,s)

4 111.7 135.1 118.0

5 157.6 132.8 7.79(1H,s) 156.6

6 112.9 6.97(1H,d,8.5) 119.3 118.0

7 131.1 7.83(1H,dd,8.6,2.0) 156.1 134.7 8.12(1H,s)

8 67.2 4.21(2H,t,5.7) 119.3 60.8 3.87(3H,s)

9 25.9 2.23(2H, m) 132.8 7.79(1H,s)

10 56.7 3.21(2H,t,7.4) 60.9 3.88(3H,s)

11 43.9 2.81(3H,s) 41.5 3.51(2H,t,7.1)

12 43.9 2.81(3H,s) 34.9 2.82(2H,t,7.0)

13 139.9

14 134.2 7.50(1H,s)

15 118.7

16 152.3

17 118.7

18 134.2 7.50(1H,s)

19 71.6 4.07(2H,t,5.8)

20 27.4 2.15(2H, m)

21 57.1 3.07(2H,t,7.3)

22 44.3 2.63(3H,s)

23 44.3 2.63(3H,s)

Fig.2.Key1H–1HCOSYand1H–13CHMBCcorrelationsfor1.

Fig.3.Key1H–1HCOSYand1H–13CHMBCcorrelationsfor2.

(4)

Interpretationofthe1H–1HCOSYcorrelationsbetweenH-2andH- 3revealtheconnectivityofC-2toC-3,between H-11and H-12, revealtheconnectivityofC-11toC-12andbetween H-19, H-20 and H-21,thepropylspinsystemC-19 C-20 C-21(Fig.3).The differentpartialstructures werethenlinkedtogetherbyinterpre- tationofthecorrelationsobservedinthe1H–13CHMBCspectrum. TheN-methylH-22andH-23(dH2.63)showedcorrelationstoC- 22,C23(dC44.3)andC-21(dC57.1).Thecorrelationfrom H-19 (dH2.63)toC-16(dC152.3)linkedtheO-methylenetothefirst 1,2,4,6-tetrasubstituedaromaticring.Thesubstitutionofthearo- matic moiety wassuggestedbythecorrelationsfromH-14,H-18 (dH7.50)toC-12(dC34.9),C-15(dC118.7),C-16(dC152.3)and C-17(dC118.7),fromH-12(dH2.82)toC-14(dC134.2)andfrom H-11(dH3.51)to C-13(dC139.9).TheN-methyleneC-11 was linkedtothecarbonyl moietybythecorrelationfromH-11toC- 1(dC171.0).Thetrans-a,b-unsaturation wasdemonstratedbythe correlationfrom H-2(dH6.52)toC-1andfrom H-3(dH7.37)to C-1.Thesubstitutionofthesecond1,2,4,6-tetrasubstituedaro- maticring wasexplainedbythecorrelationsfromH-2toC-4(dC

135.1),from H-3toC-5,C-9(dC132.8),from H-5, H-9(dH7.79) toC-5,C-6(dC119.3),C-7(dC156.1),C-8(dC119.3),C-9andfrom theO-methylH-10(dH3.88)toC-7.

Psammaplysenespreviouslyisolatedfromtwosponges,Psam- maplysilla sp.10andPsammoclemmasp.,11areknowntopossess interestingbiologicalactivities.Toavoidthelimitedsupplyof materialfromspongecollections, Georgiadesand Clardy have developedanefficientsynthesisofpsammaplysenesA(4)andB (5)as wellasotherderivatives.12,13Theyfirstconsideredaret- rosyntheticdisconnectionattheamidebond(Fig.4)yieldingtwo fragments6(or7)and8.Bothofthesefragmentscouldbesyn- thetizedfromthe2,6-dibromo-4-iodophenol(9).Duetothegreat similaritiesbetween2,4and5(seecomparisonofthe1Hand

13C NMRdataforpsammaplysenesAandE,Table2)andinthe lightofthis work,asimilarretrosyntheticpathway withadiscon- nectionattheamidebondcouldalsobeenvisagedforpsammapl- yseneE(2)(Fig.5).Althoughsimilartothefragments6and8,the twosynthons10and11forpsammaplyseneE(2)showsomedif- ferences.Compound10differsfrom6bya methoxygroupinstead ofaN,N-dimethylamine-3-propoxygroup.Compound11differs from8bythesubstitutionsoftheamines,theprimaryamineof 8isreplacedbyatertiaryaminefor11andthetertiaryamineof 8isreplacedbyaprimaryaminefor11.Thus,astheprimaryamine

isnotlocatedonthesameside-chain,theskeletonobtainedafter thefinalcouplingstepbetweentheprimaryamineofthe‘‘eastern half”andthecarboxylicacidofthe‘‘westernhalf”,willbedifferent Fig.4.MainretrosyntheticdisconnectionforpsammaplysenesA(4)andB(5).

Table2

Comparisonof1Hand13CNMRdataforpsammaplyseneA(4)10andpsammaplysene E(2)(CD3OD).

Position dC dH(JinHz)

2 4 2 4

1 167.6 167.5 –

2 123.6 124.1 6.52(1H,d,15.7) 6.64(1H,d,15.7) 3 138.1 137.6 7.37(1H,d,15.7) 7.39(1H,d,15.7)

4 135.1 135.8 –

5 132.8 132.8 7.79(1H,s) 7.82(1H,s)

6 119.3 119.3 –

7 156.1 154.2 –

8 119.3 119.3 –

9 132.8 132.8 7.79(1H,s) 7.82(1H,s) 10 60.9 3.88(3H,s)

11 41.5 59.0 3.51(2H,t,7.1) 3.27(2H,t,7.0) 12 34.9 30.3 2.82(2H,t,7.0) 3.00(2H,t,7.0)

13 139.9 136.8 –

14 134.2 134.1 7.50(1H,s) 7.59(1H,s)

15 118.7 119.1 –

16 152.3 153.2 –

17 118.7 119.1 –

18 134.2 134.1 7.50(1H,s) 7.59(1H,s) 19 71.6 71.7 4.07(2H,t,5.8) 4.07(2H,t,7.0) 20 27.4 30.5 2.15(2H, m) 2.13(2H,q,7.0) 21 57.1 36.6 3.07(2H,t,7.3) 3.60(2H,t,7.0) 22 44.3 43.3 2.63(3H,s) 2.87(3H,s) 23 44.3 43.3 2.63(3H,s) 2.87(3H,s)

Fig.5.Hypothetic mainretrosyntheticdisconnectionforpsammaplyseneE(2).

(5)

betweenpsammaplyseneE(2)andpsammaplysenesA(4)andB (5)(Fig.6).

3,5-Dibromo-4-methoxybenzoicacid(3) wasobtainedasacol- orlessoil.Althoughknown,nospectraldatahasbeenreportedin theliteratureforthiscompound.Therefore,asit wasnotpossible tocompareourdatawiththosepreviouslypublished,thestructure wascompletelyelucidated.TheHRESIMSshowedaclusterofiso- topic[M H]-peaksatm/z306.8618,308.8576and310.8582ina 1:2:1ratio,respectively.The molecularformula wasdeducedto be C8H6Br2O3(calcdfor C8H579Br2O3-, 306.8611)indicating five degreesofunsaturation.The1Hand13CNMRdataof3displayed theresonancesofonecarboxylicacidgroup,onesymmetrical 1,2,4,6-tetrasubstitutedaromaticringand one O-methylgroup (Table1).There wasno1H–1HCOSYcorrelation.Thesubstitution ofthe1,2,4,6-tetrasubstitutedaromaticring wasestablishedby

1H–13C HMBC correlationsfrom H-3, H-7(dH 8.12)to C-1 (dC171.0), C-3(dC134.7), C-4(dC118.0), C-5(dC156.6), C-6 (dC118.0)andC-7(dC1134.7)andfromH-8(dH3.87)toC-5.

Amphimedonoicacid(1),psammaplyseneE(2)arebothbromo- tyrosine-derivatedalkaloids.ThegenusAmphimedonhasprovedto beapowerfulproducerofvariousalkaloids withdiversestruc- tures, such as manzanine analogs or 3-alkylpyridine alka- loids,3,4,14,15 but this is the first report of bromotyrosine- derivated metabolitesfromAmphimedonsponges.Someofthese metaboliteshavealsobeenisolatedfroman Oceanapiasp.sponge andaPsammoclemmasp.sponge,11,16exceptthattheyhavebeen limitedexclusivelytospongesoftheorderVerongidaand were consideredasoneofthe mostsolidchemotaxonomicgroupings amongthePoriferauntilrecentyears.17

Amphimedonoic acid (1), psammaplysene E (2) and 3,5- dibromo-4-methoxybenzoic acid (3) did not show in vitro

cytotoxicity against human epidermoid carcinoma KB cells (IC50>10mg/mL).

Acknowledgments

Theauthorsgratefullyacknowledgefinancialsupportfromthe EuropeanCommissionandtheRegionalCouncilofReunionIsland:

BIOMOL-TCNprogram(ActivitésThérapeutiques,Cosmétologiques etNutraceutiquesde MoléculesIssuesdelaBiodiversitéTerrestre, Marineet MicrobiennedelaZoneSud-Ouestdel’OcéanIndien), ERDF(EuropeanRegional DevelopmentFund). WethankJerôme Bignonforcytotoxicitybioassays.Theauthorsalsoexpresstheir gratitudeto Prof. M. E. Remanevyfor assistancein sponge collection.

A.Supplementarydata

Supplementary dataassociated(experimentalsection,com- poundcharacterization, UVspectrum,1H, HSQC, HMBC, COSY and HRESIMSspectraofcompounds1,2and3) withthisarticle canbefound,intheonlineversion,athttp://dx.doi.org/10.1016/j. tetlet.2017.08.072.

References

1. Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR.NatProd Rep.

2014;31:160–258.

2. Albrizio S, Ciminiello P, Fattorusso E, Magno S, Pawlik JR. J NatProd.

1995;58:647–652.

3. TakahashiY,KubotaT,FromontJ,KobayashiJ.OrgLett.2009;11:21–24.

4. KubotaT,KamijyoY,Takahashi-NakaguchiA,FromontJ,GonoiT,KobayashiJ. OrgLett.2013;15:610–612.

5. Gauvin-BialeckiA,Aknin M,SmadjaJ.Molecules.2008;13:3184–3191. 6. GrosE,Al-MourabitA, Martin M-T,etal.JNatProd.2014;77:818–823. 7. CamposP-E, WolfenderJ-L,QueirozE,etal.JNatProd.2017;80:1404–1410. 8. VenkateswarluY,ChavakulaR.JNatProd.1995;58:1087–1088.

9. TianL-W,FengY,ShimizuY,etal.JNatProd.2014;77:1210–1214. 10. SchroederFC,KauTR,SilverPA,ClardyJ.JNatProd.2005;68:574–576. 11. Buchanan MS,CarrollAR,AddepalliR,AveryVM,HooperJNA,QuinnRJ.JNat

Prod.2007;70:1827–1829.

12. GeorgiadesSN,ClardyJ.OrgLett.2005;7:4091–4094.

13. GeorgiadesSN,ClardyJ.OrgLett.2006;8:4251–4254.

14. Yamada M,TakahashiY,KubotaT,etal.Tetrahedron.2009;65:2313–2317. 15. Nishi T, Kubota T, Fromont J, Sasaki T, Kobayashi J. Tetrahedron.

2008;64:3127–3132.

16. NicholasGM,NewtonGL,FaheyRC,BewleyCA.OrgLett.2001;3:1543–1545.

17. TilviS,RodriguesC, NaikCG,ParameswaranPS, WahidhullaS.Tetrahedron.

2004;60:10207–10215.

Fig.6.Key1H–13CHMBCcorrelationsfor3.

Références

Documents relatifs

To the extent that there has been a structured or planned approach to capacity building in the Kyrgyz health sector, this has been based on allocat- ing responsibility to MANAS

[r]

Les notions d’enthalpie et de capacités thermiques isobares permettent l’analyse et l’utilisation des mesures ainsi réalisées ce qui conduit à la détermination des

[r]

Une perception pessimiste de la situation peut conduire à voir dans la situation politique actuelle une lente érosion des principes démocratiques de la République, une vision

Le mode de gouvernement, les missions de l’Etat et de l’administration (services et employés de l’état) ont évolué ; la conception de l’identité nationale se modifie

[r]

Cet exercice porte sur un procédé connu sous le nom de moyennisation