• Aucun résultat trouvé

Trace element biogeochemistry

N/A
N/A
Protected

Academic year: 2021

Partager "Trace element biogeochemistry"

Copied!
62
0
0

Texte intégral

(1)

Ph.D Winter School, 16 February 2016, Piacenza

Trace element biogeochemistry

in the rhizosphere

Why bother with plant-mediated

physical-chemical processes?

Matthieu Bravin

Recycling and Risk group

La Réunion, France

(2)

2

Introduction

Ph.D School Piacenza

Réunion: location and main interests

Doelsch et al. 2010 Geoderma, 155, 390-400

www.reunion.fr

(3)

3

Introduction

Ph.D School Piacenza

Réunion: but also an open-sky laboratory

reunionnais.n et

www.terdav.com Cirad

lenergeek.com

 Pedological and climatic diversity

 Agronomic diversity

 High pedogeochemical background Ni, Cr, Cu, and Zn

 Space limitation to recycle organic wastes

Soil contamination

 Low Cu and Zn in forage

Cow diet deficiency

 French and EU regulations

Environmental protection

0.5 m/y

1.2 m/y

4 m/y 5 m/y

(4)

4

Introduction

Ph.D School Piacenza

Trace element biogeochemistry

a sound issue

 Soil fertility

Plant micronutrients

 Crop biofortification

Human micronutrients

(5)

5

Introduction

Ph.D School Piacenza

Phytoavailability concept

Root Solution Solid Phase

-TE

Organic Matters

-TE

Oxy-hydroxides

-TE

Clays

-TE

Precipitates

TE-DOM

TE-Linorg

Uptake

TE

(6)

6

Introduction

Ph.D School Piacenza

Objectives

Summary

 Relevance of rhizosphere chemistry

for trace element phytoavailability

 Range of plant-mediated physical-chemical processes

 Experimental and analytical tools

 Part I. Case study 1: Cu phytotoxicity

 Part II. Rhizosphere basics & techniques

 Part III. Case study 2: As phytostabilization

(7)

7

Part I. Cu Phytotoxicity

Ph.D School Piacenza

Cu contamination in former vineyard soils

Top

Soil

Deeper

Layer

Vine

Vitis sp.

Cu Cu Cu Cu Cu Cu >1000 mg kg-1

Cu

Bordeaux Mixture Cu Cu Cu Cu Cu Cu 5-30 mg kg-1 Durum wheat

Triticum turgidum durum

80 000 ha Replaced by Annual crops

(8)

8

Part I. Cu Phytotoxicity

Ph.D School Piacenza

Cu toxicity to wheat in calcareous soils

(Michaud et al. 2007, Plant Soil)

Cu toxicity to wheat

Fe chlorosis

(9)

9

Part I. Cu Phytotoxicity

Ph.D School Piacenza

Toxicity occurrence

≠ Bulk-soil chemistry

Soil solution pH Cu2+ activity, pCu2+ 6 7 8 9 5 6 7 8

 Bulk-soil chemistry predicts

a much higher Cu toxicity

in strongly acidic soils

than in calcareous soils

Strongly acidic soils Calcareous soils High Low

(10)

10

Part I. Cu Phytotoxicity

Ph.D School Piacenza

Field: Cu phytoavailability not related

to bulk-soil pH

0 60 120 180 240 4 5 6 7 8 Total Cu in roots, mg kg-1 Bulk-soil pH 50 < Cu  100 100 < Cu < 200 Total Cu in soil, mg kg-1 Cu  50 Michaud et al. 2007

(11)

11

Part I. Cu Phytotoxicity

Ph.D School Piacenza

Field: Rhizosphere alkalization decreases

Cu availability in strongly acidic soils

pH (Rhizosphere minus Bulk soil)

R2 = 0,82*** n = 40 Bulk soil pH 4 5 6 7 8 -0.5 0 0.5 1 1.5 2 Cu-CaCl2, mg dm-3 0 0.1 0.2 0.3 0.4 4 5 6 7 8 Bulk Soil Rhizosphere

Bulk soil or Rhizosphere pH

Michaud et al. 2007 Plant and Soil, 298, 99-111

Rhizosphere alkalisation

as a function of bulk soil pH

Drastic decrease

in Cu in solution

(12)

12

Part I. Cu Phytotoxicity

Ph.D School Piacenza

Lab: Rhizosphere alkalization decreases

Cu phytoavailability

NO3- Rhizosphere

Alkalization

 Root

exposure to Cu

NH4+ Rhizosphere Bulk soil 5 6 7 8 9 10 3 4 5 6 7 8 Cu2+ activity, pCu2+ pH 0 50 100 150 200 250 NH4+

Plant uptake Cu flux, pg Cu m-2 s-1

*

NO3

-Alkalization

 Cu

phytoavailability

(13)

13

Part I. Cu Phytotoxicity

Ph.D School Piacenza

Rhizosphere effect in acidic soils

Solution Solide Phase

Large

Availability

Bulk Soil

Initial state

Cu

2+

Cu

pH 4-5

Strongly acidic soils pH<5

(14)

13

Part I. Cu Phytotoxicity

Ph.D School Piacenza

Rhizosphere effect in acidic soils

Root Solution Solide Phase

Final state

pH 7-7.5

Cu

2+

Cu

pH

Uptake

Low

Phytoavailability

Rhizosphere

(15)

14

Part I. Cu Phytotoxicity

Ph.D School Piacenza

Field: Cu-induced Fe deficiency

1 cm

Root Fe concentration, mg kg-1

Root Cu concentration, mg kg-1

Non calcareous soils Calcareous soils Calcareous soils with Fe chlorosis

Michaud et al. 2007 Plant and Soil, 298, 99-111

(16)

15

Part I. Cu Phytotoxicity

Ph.D School Piacenza

Phytosiderophores release in calcareous

soils

0 0.25 0.5 0.75 1 - Fe + Fe

*

Phy to siderophore exud atio n , µmol Cu g -1 dry root Michaud 2007 PhD thesis

(17)

16

Part I. Cu Phytotoxicity

Ph.D School Piacenza

Rhizosphere effect in calcareous soils

Solution Solid Phase

Low

Availability

Bulk Soil

Initial state

pH ≈ 8

Cu2+

Cu

Calcareous soils pH

8

Cu phytotoxicity

Fe3+

(18)

17

Part I. Cu Phytotoxicity

Ph.D School Piacenza

Rhizosphere effect in calcareous soils

Root Solution Solid Phase

Final state

pH ≈ 8

Cu

2+

Cu

Rhizosphere

Phytosiderophores

Fe3+

X

(19)

18

Part I. Cu Phytotoxicity

Ph.D School Piacenza

Take-home message

 Rhizosphere effect can be so strong

that rhizosphere chemistry can contradict bulk-soil chemistry

 A given plant species can manipulate its rhizosphere

in very different ways depending on soil conditions

 Evidence rhizosphere effects under realistic conditions

and study them in depth under controlled conditions

(20)

19

Part II. Rhizosphere

Basics & Techniques

Ph.D School Piacenza

Rhizosphere effects

Root Solution Solid Phase

-TE

Organic Matters

-TE

Oxy-hydroxides

-TE

Clays

-TE

Precipitates

TE-DOM

TE-Linorg

Uptake

TE

According to Hinsinger et al. 2005 New Phytologist, 168, 293-303

[TE]

(21)

20

Part II. Rhizosphere

Basics & Techniques

Ph.D School Piacenza

Studying the soil-root interface

TE TE TE TE TE TE TE TE TE TE TE TE TE

Soil-Root Interface

Root Solution Solid Phase

-TE

-TE Transfert

From natural to controlled conditions Polyamide mesh 30 µm Nutritive solution Root mat Soil Vertical positionning Horizontal positionning Nutritive solution Soil layer (~ mm thick) Polyamide mesh, 30 µm Root mat

(22)

21

Part II. Rhizosphere

Basics & Techniques

Ph.D School Piacenza

Cu depletion in wheat rhizosphere

Bravin et al. 2009 Environmental Science & Technology, 43, 5686-5691

0 3 6 9 12

Distance from roots, mm pCu, soil solution

Roots

5.75

6

6.25

6.5

Bulk soil pCu = 5.8

Modelling Cu depletion

by considering only

root uptake

(23)

22

Part II. Rhizosphere

Basics & Techniques

Ph.D School Piacenza

pH gradient drives Cu depletion

0 3 6 9 12

Distance from roots, mm pCu, soil solution

Roots

5.75

6

6.25

6.5

Bulk soil pCu = 5.8

Bravin et al. 2009 Environmental Science & Technology, 43, 5686-5691

Rhizosphere alkalisation

by +2.8 pH units

pH 4 5 6 7 8 0 3 6 9 12

Distance from roots, mm

Bulk soil pH = 4.7

Cu depletion

(24)

23

Part II. Rhizosphere

Basics & Techniques

Ph.D School Piacenza

pH: Principle of electrical neutrality

In root cells = Solution

Uptake

C

+

C

+

C

+

C

+

C

+

C

+

A

-A

-A

-A

-C

+

A

-Root uptake >

A

-C

+ Root uptake <

A

-C

+

C

+

A

-A

-A

-

Uptake

pH

H

+

pH

OH

(25)

24

Part II. Rhizosphere

Basics & Techniques

Ph.D School Piacenza

pH: Nitrogen forms vs. Metabolic drivers

Bulk soil pH

Tobacco – 100 % NO

3

Loosemore et al. 2004 Plant and Soil

260, 19-32 Bulk soil pH

Rape

– 100 % NO

3 3 4 5 6 7 8 Chaignon et al. 2009 Environmental Pollution 157, 3363-3369

Only

alkali-zation

Both

alkalization

and

acidification

Only

acidification

3 4 5 6 7 8 3 4 5 6 7 8 R h iz o sp h er e p H Bulk soil pH

Wheat

– 100 % NO

3 3 4 5 6 7 8 3 4 5 6 7 8 Bravin et al. 2009 Plant and Soil 318, 257-268

Acidification

(26)

25

Part II. Rhizosphere

Basics & Techniques

Ph.D School Piacenza

pH: Soil effects

Fescue

– 100 % NO

3

Tomato

– 100 % NO

3

(27)

27

Part II. Rhizosphere

Basics & Techniques

Ph.D School Piacenza

DOM: Underlying mechanisms

Root Solution Solid Phase

TE-DOM

Uptake

TE

Exudation

Phytosiderophores Organic anions Phenolics Amino acids

Neumann and Römheld 2007 In: Pinton R, Varanini Z, Nannipieri P (eds)

Kuzyakov 2002 J. Plant Nutr. Soil Sci. 165, 382-396

Exudation

Priming effect CO2

-TE

Organic Matters

(28)

28

Part II. Rhizosphere

Basics & Techniques

Ph.D School Piacenza

DOM: Concentration change

Rhizosphere * * * * * * * 0 15 30 45 60 Bulk soil DOC, mg C dm-3 4.8 5.3 5.6 5.9 6.4 6.9 6.9 7.5 Bulk soil pH

(29)

29

Part II. Rhizosphere

Basics & Techniques

Ph.D School Piacenza

DOM: Impact on metal availability

Bravin et al. 2012 Geochim. Cosmochim. Acta 84, 256-268

4.7 5.4 5.7 5.8 6.4 6.8 7.0 7.4 Bulk Soil pH 0 20 40 60 80 Bulk Soil Rhizosphere DGT Cu-Flux, ng m-2 s-1 7.4 6.9 7.0 7.1 6.9 7.1 7.2 7.2 Rhizosphere pH

(30)

30

Part II. Rhizosphere

Basics & Techniques

Ph.D School Piacenza

DOM: Change in metal binding properties

Bulk soil pH = 7.4 Total Cu = 0.5 µM 0 10 20 30 40 50 -1 -0.8 -0.6 -0.4 -0.2 0 0.2

% [Cu] Total Solution

Deposition Potential (Edep), V

Cu2+ + Cu-Linorg Cu-DOM Rhizosphere pH = 7.2 Total Cu = 0.6 µM

DOM Reactivity

Bravin et al. 2012

Geochim. Cosmochim. Acta 84, 256-268

(31)

31

Part II. Rhizosphere

Basics & Techniques

Ph.D School Piacenza

DOM: Change in metal binding properties

5 6 7 8 9 10 11 5 6 7 8 9 10 11 pCu2+ modelled pCu2+ !easured Fulvic Ac. Reactivity 42 %

Bulk Soil Solution

Rhizosphere Solution

Fulvic Ac. Reactivity

27 %

Bravin et al. 2012

Geochim. Cosmochim. Acta 84, 256-268

(32)

32

Part II. Rhizosphere

Basics & Techniques

Ph.D School Piacenza

DOM: Generalize quantitative & qualitative

changes

(33)

33

Part II. Rhizosphere

Basics & Techniques

Ph.D School Piacenza

Redox: Reduction in dicot rhizosphere

Root Solution Solid Phase

-TE

Fe oxy-hydroxides dissolution

Uptake

TE

Reductase activity

Oxic conditions

Respiration 

pO

2

-TE

Redox sensitive TE e.g. Cu

(34)

34

Part II. Rhizosphere

Basics & Techniques

Ph.D School Piacenza

Redox: Reduction in dicot rhizosphere

Soil redox potential, mV

Soil-root contact time, d

Cornu et al. 2007 Plant Soil 292, 63-77

Bulk-soil Rhizosphere

(35)

35

Part II. Rhizosphere

Basics & Techniques

Ph.D School Piacenza

Redox: Oxidation in reduced soils

Bulk soil Fe(II) Fe(II) Fe(II) Fe(II) Fe(II) Rice root Begg et al. 1994 New Phytol 128, 469-477

(36)

35

Part II. Rhizosphere

Basics & Techniques

Ph.D School Piacenza

Redox: Oxidation in reduced soils

Bulk soil Rhizosphere Atmospheric O2 O2 O2 O2 O2 O2 O2 O2 O2 Fe(II) Fe (III) O2 O2 Rice root Begg et al. 1994 New Phytol 128, 469-477 Fe(II) Fe(II)

(37)

35

Part II. Rhizosphere

Basics & Techniques

Ph.D School Piacenza

Redox: Oxidation in reduced soils

Bulk soil Rhizosphere Atmospheric O2 O2 O2 O2 O2 O2 O2 O2 O2 Fe(II) Fe (III) O2 As (III) mobile As (V) strongly adsorbed Rice root Begg et al. 1994 New Phytol 128, 469-477 Liu et al. 2006 ES&T 40, 5730-5736

(38)

36

Part II. Rhizosphere

Basics & Techniques

Ph.D School Piacenza

Redox: Oxidation in reduced soils

Soil redox potential, mV

Soil-root contact time, d

Control

roots coatingsRoots Controlroots coatingsRoots

(39)

37

Part II. Rhizosphere

Basics & Techniques

Ph.D School Piacenza

Root system:

Limitation of root mat approaches

Polyamide mesh 30 µm Nutritive solution Root mat Soil

 Average rhizosphere effect

 Geometry issue

 Coupled with invasive and/or

destructive analytical tools

(40)

38

Part II. Rhizosphere

Basics & Techniques

Ph.D School Piacenza

Root system: pH effect

Larsen et al. 2015 Plant Soil DOI 10.1007/s11104-015-2382-z

Blossfeld et al. 2010 Plant Soil 330, 173-184

mm

(41)

39

Part II. Rhizosphere

Basics & Techniques

Ph.D School Piacenza

Root system: Redox effect

(42)

49

Part II. Rhizosphere

Basics & Techniques

Ph.D School Piacenza

Root system: DOM effect

Days after sowing

Dessureault-Rompré et al. 2006 Plant Soil 286, 99-107 Dessureault-Rompré et al. 2008 ES&T 42, 7146-7151

(43)

41

Part II. Rhizosphere

Basics & Techniques

Ph.D School Piacenza

Field scale: Sampling in 10-y field trial

 2 species

• Tomato = dicot

• Fescue = monocot

 3 fertilizations

• Mineral

• Pig slurry compost

• Poultry litter compost

 Soil sampling

• Bulk soil

• Rhizosphere

(44)

42

Part II. Rhizosphere

Basics & Techniques

Ph.D School Piacenza

Field scale: Analyses

 Soil solution extraction

• 1:10 soil:solution ratio

• 0.2 µm filtration

 Measurements

• pH

• DOM concentration

• Major cations and anions

• Total metals

• Free Cu

2+

 Modelling

• Estimation of DOM quality

(45)

43

Part II. Rhizosphere

Basics & Techniques

Ph.D School Piacenza

Field scale: Usual soil solution properties

R h iz o sp h er e pH Fescue Tomato 5 6 7 8 9 5 6 7 8 9 DOM, mg l-1 0 10 20 30 40 50 0 10 20 30 40 50 Bulk soil 6 6.5 7 7.5 8 6 6.5 7 7.5 8

Total Cu, pCu

Bulk soil Bulk soil

(46)

44

Part II. Rhizosphere

Basics & Techniques

Ph.D School Piacenza

Field scale: DOM qualitative aspects

Rhizosph

ere

Bulk soil

DOM reactivity, %FA

Fescue Tomato 0 100 200 300 400 0 100 200 300 400

Djae et al. 2015 13th ICOBTE

Bulk soil Tomato Rhizosphere Fescue Rhizosphere Int ensit y mg -1 C Humic Fulvic or Proteins

3D DOM Fluorescence

(47)

45

Part II. Rhizosphere

Basics & Techniques

Ph.D School Piacenza

Field scale: Determining Cu speciation

Djae et al. 2015 13th ICOBTE

Rhizosph

ere

Bulk soil

Free Cu activity, pCu

2+

9

10

11

12

13

9

10

11

12

13

Fescue Tomato 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5pCu 2+ (Rz Bs) estimat edpCu2+ (Rz – Bs) measured

R

2

= 0.70

***

pCu

2+

= 0.8

pH + 1.3

log

10

[%FA]

+ 1.5

pCu + 1.5

log

10

[MOD]

+ 0.2

(48)

46

Part II. Rhizosphere

Basics & Techniques

Ph.D School Piacenza

Take-home message

 Chemical changes can be very different

depending on plant species (cultivars) and soil properties

 Coupled as many analytical techniques as you can

to unravel chemical processes involved

 Check the realism of soil-root approaches

by multiplying the treatments tested

by scaling-up your approach to the whole root system

under controlled and field conditions

(49)

48

Part III. As phytostabilization

Ph.D School Piacenza

As-rich, calcareous soils

around the Au-mining area of Salsigne

Obeidy et al. 2016 Ecotox. Environ. Safe. 126, 23-29

(50)

49

Part III. As phytostabilization

Ph.D School Piacenza

As dynamic in the rhizosphere

lessons from the literature

Obeidy et al. 2016 Ecotox. Environ. Safe. 126, 23-29

Root Solution Solid Phase

-As

Organic Matters

-As

Fe, Al oxy-hydroxides

-As

Clays

Uptake

As(V)

[As] Distance to root

Oxic conditions

?

(51)

50

Part III. As phytostabilization

Ph.D School Piacenza

Microcosm experiment and analyses

Obeidy et al. 2016 Ecotox. Environ. Safe. 126, 23-29

 5 sampling dates

• pH

• DOM

• Ca, Mg, NO

3

, SO

4,

Fe

• As

 5 plant species + 1 control soil

 Plant growing during 90 days

(52)

51

Part III. As phytostabilization

Ph.D School Piacenza

Exchangeable As  but As in solution 

(53)

52

Part III. As phytostabilization

Ph.D School Piacenza

Fe-As co-mobilization from soil solid-phase

(54)

49

Part III. As phytostabilization

Ph.D School Piacenza

As dynamic in the rhizosphere

lessons from the literature

Obeidy et al. 2016 Ecotox. Environ. Safe. 126, 23-29

Root Solution Solid Phase

-As

Organic Matters

-As

Fe, Al oxy-hydroxides

-As

Clays

Uptake

As(V)

Specific exudation

Oxic conditions

Organic

ligand

Anion exchange

Fe

(55)

53

Part III. As phytostabilization

Ph.D School Piacenza

Ca uptake

 As in solution

(56)

49

Part III. As phytostabilization

Ph.D School Piacenza

As dynamic in the rhizosphere

lessons from the literature

Obeidy et al. 2016 Ecotox. Environ. Safe. 126, 23-29

Root Solution Solid Phase

-As

Organic Matters

-As

Fe, Al oxy-hydroxides

-As

Clays

Uptake

As(V)

Uptake

Oxic conditions

Ca

Charge screening

Mg

SO

4

(57)

54

Part III. As phytostabilization

Ph.D School Piacenza

pH effect

(58)

49

Part III. As phytostabilization

Ph.D School Piacenza

As dynamic in the rhizosphere

lessons from the literature

Obeidy et al. 2016 Ecotox. Environ. Safe. 126, 23-29

Root Solution Solid Phase

-As

Organic Matters

-As

Fe, Al oxy-hydroxides

-As

Clays

Uptake

As(V)

OH

-

excretion

Oxic conditions

pH

Anion exchange

(59)

55

Part III. As phytostabilization

Ph.D School Piacenza

Similar As dynamic for the 4 species

(60)

56

Part III. As phytostabilization

Ph.D School Piacenza

As mass-balance unravels As dynamic

Obeidy et al. 2016 Ecotox. Environ. Safe. 126, 23-29

  exchangeable As

was due to

• 5% As  in solution

• 35% As plant uptake

• 60% As sorbed

(61)

58

Part III. As phytostabilization

Ph.D School Piacenza

Take-home message

 The dynamic of a targeted trace element

is often link with the dynamic of many others

 Plants often mediated several chemical processes

concomitantly

 Calculate the mass-balance of your targeted element

when you experimental system is closed

(62)

Acknowledgements

Colleagues and students

More information

Matthieu.bravin@cirad.fr

http://agents.cirad.fr/index.php/Matthieu+BRAVIN/Publication_list

http://rhizotest.cirad.fr/en

Ph.D School Piacenza

Références

Documents relatifs

In the previous case we have seen that Radial Basis Functions can be simulated by multilayer perceptron. This is not surprising since a Radial Basis

Montrer que S est un R-espace vectoriel de dimension

Montrer que A est de rang 1, puis d´eterminer la dimension

On rappelle qu’on note E ij ∈ M n (k) la matrice dont tous les coefficients sont nuls, sauf celui `a l’intersec- tion de la ligne i et de la colonne j, qui vaut 1.. Exercice

On rappelle qu’on note E ij ∈ M n (k) la matrice dont tous les coefficients sont nuls, sauf celui `a l’intersec- tion de la ligne i et de la colonne j, qui vaut 1.. Exercice

Faire un dessin repr´esentant C.. D´eterminer les points extr´emaux

D´eterminer l’ensemble des points fixes de φ et de f.. Faire un dessin

programs (via &lt;function definition».. Types the value of the data item associated with &lt;identifier&gt; &lt;subscript option&gt;. Evaluates the &lt;expression&gt;