• Aucun résultat trouvé

Partie II Pi´ egeage dipolaire 75

Chapitre 8 Perspectives 161

B.2 Profondeur de pi`ege

ae

f

F’=2 F’=3 F’=4 F’=5

F = 3 1 3/4 5/12 0

F = 4 0 1/4 7/12 1

Tab. B.2: Rapports de branchement en ´emission spontan´ee de la raie D2

entre l’´etat excit´ee

et un ´etat fondamental f.

B.2 Profondeur de pi`ege

Le paragraphe 1.3.2 donne l’expression du potentiel dipolaire dans le cas d’un atomes `a deux

niveaux :

U0 = 1

4kBTD

s0

δ/Γ (B.2)

L’atome de C´esium ´etant un atome `a plusieurs niveaux, chaque transition va contribuer au

potentiel dipolaire. Pour ´eviter les cycles d’absorption/´emission spontan´ee, la fr´equence laser est

choisie loin d’une r´esonance, typiquement de quelques nanom`etres (soit quelques centaines de

GHz). `A cette ´echelle, les ´ecarts d’´energie entre les niveaux hyperfins (de l’ordre de la centaine

de MHz) sont n´egligeable, et l’on peut consid´erer que le d´esaccord est le mˆeme pour toutes les

transitions de la raie D2.

Dans le cas d’une polarisation π, les niveaux d’´energie hyperfins restent d´eg´en´er´es, et le

potentiel dipolaire total est obtenu par la somme des contributions de la raie D2 :

U0 = 1

4kBTD

X

e

s0wf e

δ/Γ (B.3a)

U0 = 1

4kBTD

2

3

s0

δ/Γ (B.3b)

U0 = 1

4kBTD

s0

δef f/Γ (B.3c)

avec

δef f = 3

2δ (B.4)

L’expression du potentiel dipolaire pour l’atome `a deux niveaux reste donc valable, en

rempla¸cant le d´esaccord δ par un d´esaccord effectif δef f.

Notons que ce r´esultat n’est pas valable pour les d´esaccords trop importants, pour lesquels

la contribution de la raie D1 n’est plus n´egligeable. Le d´esaccord effectif prend alors pour

expression :

1

δ

ef f

=

1

D1

+ 2

D2

(B.5)

L’´ecart en longueur d’onde entre les raies D1 et D2 du C´esium est de 42 nm. Les d´esaccords

par rapport `a la raieD2 les plus importants utilis´es dans ce travail ´etant typiquement de 5 nm,

la contribution de la raie D1 est bien n´egligeable.

De plus, dans le cas o`u la polarisation est σ

±

, un terme s’ajoute pour tenir compte de

l’ellipticit´e de la polarisation. Le lecteur pourra consulter [75] pour de plus amples informations.

Dans le cas du travail pr´esent´e ici, la polarisation du laser est rectiligne, et la direction du

champ magn´etique r´esiduel est inconnue. Nous choisissons donc de prendre l’expression donn´ee

par l’´equation (B.3c), faute de mieux.

Bibliographie

[1] G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. WEINER, and H. J. Lezec.

The optical response of nanostructured surfaces and the composite diffracted evanescent

wave model. Nature Phys., 2 :262–267, 2006.

[2] G. Gay, O. Alloschery, B. V. de Lesegno, J. Weiner, and H. J. Lezec. Surface wave

gene-ration and propagation on metallic subwavelength structures measured by far-field

inter-ferometry. Phys. Rev. Lett., 96 :213901, 2006.

[3] G. Gay, O. Alloschery, J. Weiner, H. J. Lezec, C. O’Dwyer, M. Sukharev, and T. Seideman.

Surface quality and surface waves on subwavelength-structured silver films. Phys. Rev. E,

75 :016612, 2007.

[4] F. Kalkum, G. Gay, O. Alloschery, J. Weiner, H. J. Lezec, Y. Xie, and M. Mansuripur.

Surface-wave interferometry on single subwavelength slit-groove structures fabricated on

gold films. Opt. Express, 15 :2613–2621, 2007.

[5] G. Gay. Atomes et nanostructures : dispositif de lithographie atomique et r´eponse optique

d’ouvertures sub-longueur d’onde. PhD thesis, Universit´e Toulouse 3, 2006.

[6] E. L. Raab, M. Prentiss, Alex Cable, Steven Chu, and D. E. Pritchard. Trapping of neutral

Sodium atoms with radiation pressure. Phys. Rev. Lett., 59 :2631, 1987.

[7] M. H. Anderson, J. R. Ensher, M. R. Matthews, C.E. Wieman, and E. A. Cornell.

Obser-vation of Bose-Einstein condensation in a dilute atomic vapor. Science, 269 :198, 1995.

[8] K. I. Lee, J. A. Kim, H. R. Noh, and W. Jhe. Single-beam atom trap in a pyramidal and

conical hollow mirror. Opt. Lett., 21 :1177, 1996.

[9] T Pfau and J. Mlynek. A 2D quantum gas of laser cooled atoms. OSA Trends Opt.

Photon., 7 :33, 1997.

[10] J. Reichel, W. Hansell, and T. W. Hansch. Atomic micromanipulation with magnetic

surface traps. Phys. Rev. Lett., 83 :3398, 1999.

[11] R. Folman, P. Kruger, J. Schmiedmayer, J. Denschlag, and C. Henkel. Microscopic atom

optics : from wires to an atom chip. Adv. Atom. Mol. Opt. Phys., 48 :263, 2002.

[12] W. Hansel, P. Hommelhoff, T. W. Hansch, and J. Reichel. Bose-Einstein condensation on

a microelectronic chip. Nature, 413 :498, 2001.

[13] Y. J. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M.

Pren-tiss, R. A. Saravanan, S. R. Segal, and S. J. Wu. Atom Michelson interferometer on a chip

using a Bose-Einstein condensate. Phys. Rev. Lett., 94 :090405, 2005.

[14] T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph,

J. Schmiedmayer, and P. Kruger. Matter-wave interferometry in a double well on an atom

chip. Nature Phys., 1 :57, 2005.

[15] D. Rychtarik, B. Engeser, H. C. Nagerl, and R. Grimm. Two-dimensional Bose-Einstein

condensate in an optical surface trap. Phys. Rev. Lett., 92 :173003, 2004.

[16] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg. Processus d’interaction entre

photons et atomes. Presses du CNRS, 1988.

[17] H. J. Metclaf and P. Van der Straten. Laser cooling and trapping. Springer, 1999.

[18] J. Weiner and P.-T. Ho. Light-matter interaction : fundamentals and applications.

Wiley-Interscience, 2003.

[19] L. Allen and J. H. Eberly. Optical resonance and two-level atoms. Dover Publications,

1975.

[20] J. Dalibard and C. Cohen-Tannoudji. Laser cooling below the Doppler limit by polarization

gradients : simple theoritical models. JOSA B, 6 :2023, 1989.

[21] P. J. Ungard, D. S. Weiss, E. Riis, and S. Chu. Optical molasses and multilevel atoms :

theory. JOSA B, 6 :2058, 1989.

[22] M. Drewsen, Ph. Laurent, A. Nadir, G. Santarelli, A. Clairon, Y. Castin, D. Grison, and

C. Salomon. Investigation of sub-Doppler cooling effects in a cesium magneto-optical trap.

Appl. Phys. B, 59 :283, 1994.

[23] A. Browaeys. Pi´egeage magn´etique d’un gaz d’h´elium m´etastable : vers la condensation de

Bose-Einstein. PhD thesis, Universit´e Paris 6, 2000.

[24] J. Esteve. Du miroir au guide d’onde atomique : effets de rugosit´e. PhD thesis, Universit´e

Paris Sud - Paris XI, 2004.

[25] A. Takamizawa, T. Steinmetz, R. Delhuille, T. W. Hansch, and J. Reichel. Miniature

fluorescence detector for single atom observation on a microchip. Opt. Express, 14 :10976,

2006.

[26] A. M. Steane, M. Chowdhury, and C. J. Foot. Radiation force in the magneto-optical trap.

JOSA B, 9 :2142, 1992.

[27] C. G. Townsend, N. H. Edwards, C. J. Cooper, K. P. Zetie, C. J. Foot, A. M. Steane,

P. Szriftgiser, H. Perrin, and J. Dalibard. Phase-space density in the magneto-optical trap.

Phys. Rev. A, 52 :423, 1995.

[28] M. Chevrollier, E. G. Lima, O. DiLorenzo, A. Lezama, and M. Oria. Magneto-optical trap

near a surface. Opt. Commun., 136 :22, 1997.

[29] D. Schneble, M. Hasuo, T. Anker, T. Pfau, and J. Mlynek. Integrated atom-optical circuit

with continuous-wave operation. JOSA B, 20 :648, 2003.

[30] J. Reichel. Microchip traps and Bose-Einstein condensation. Appl. Phys. B, 74 :469, 2002.

[31] V. Vuletic, C. Chin, A. J. Kerman, and S. Chu. Degenerate Raman sideband cooling of

trapped cesium atoms at very high atomic densities. Phys. Rev. Lett., 81 :5768, 1998.

[32] A. J. Kerman, V. Vuletic, C. Chin, and S. Chu. Beyond optical molasses : 3D Raman

sideband cooling of atomic cesium to high phase-space density. Phys. Rev. Lett., 84 :439,

2000.

thesis, Stanford University, 2002.

[34] S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable. Experimental observation of optically

trapped atoms. Phys. Rev. Lett., 57 :314, 1986.

[35] W. Hansel, J. Reichel, P. Hommelhoff, and T. W. Hansch. Magnetic conveyor belt for

transporting and merging trapped atom clouds. Phys. Rev. Lett., 86 :608, 2001.

[36] R. Long, T. Rom, W. Hansel, T. W. Hansch, and J. Reichel. Long distance magnetic

conveyor for precise positioning of ultracold atoms. Eur. Phys. J. D, 35 :125, 2005.

[37] H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann. Bose-Einstein

condensation in a surface microtrap. Phys. Rev. Lett., 8723 :230401, 2001.

[38] A. Gunther, S. Kraft, M. Kemmler, D. Koelle, R. Kleiner, C. Zimmermann, and J. Fortagh.

Diffraction of a bose-einstein condensate from a magnetic lattice on a microchip. Phys.

Rev. Lett., 95 :170405, 2005.

[39] P. Hommelhoff, W. Hansel, T. Steinmetz, T. W. Hansch, and J. Reichel. Transporting,

splitting and merging of atomic ensembles in a chip trap. New J. Phys., 7 :3, 2005.

[40] C. D. J. Sinclair, E. A. Curtis, I. L. Garcia, J. A. Retter, B. V. Hall, S. Eriksson, B. E.

Sauer, and E. A. Hinds. Bose-Einstein condensation on a permanent-magnet atom chip.

Phys. Rev. A, 72 :031603, 2005.

[41] T. L. Gustavson, A. P. Chikkatur, A. E. Leanhardt, A. Gorlitz, S. Gupta, D. E. Pritchard,

and W. Ketterle. Transport of Bose-Einstein condensates with optical tweezers. Phys.

Rev. Lett., 88 :020401, 2002.

[42] I. Dotsenko, W. Alt, M. Khudaverdyan, S. Kuhr, D. Meschede, Y. Miroshnychenko,

D. Schrader, and A. Rauschenbeutel. Submicrometer position control of single trapped

neutral atoms. Phys. Rev. Lett., 95 :033002, 2005.

[43] R. Dumke, M. Volk, T. Muther, F. B. J. Buchkremer, G. Birkl, and W. Ertmer.

Micro-optical realization of arrays of selectively addressable dipole traps : a scalable configuration

for quantum computation with atomic qubits. Phys. Rev. Lett., 89 :097903, 2002.

[44] T. Steinmetz, Y. Colombe, D. Hunger, T. W. Hansch, A. Balocchi, R. J. Warburton, and

J. Reichel. Stable fiber-based Fabry-Perot cavity. Appl. Phys. Lett., 89 :111110, 2006.

[45] A. E. Leanhardt, A. P. Chikkatur, D. Kielpinski, Y. Shin, T. L. Gustavson, W. Ketterle,

and D. E. Pritchard. Propagation of Bose-Einstein condensates in a magnetic waveguide.

Phys. Rev. Lett., 89 :040401, 2002.

[46] C. Girard. Near fields in nanostructures. Reports on progress in physics, 68 :1883, 2005.

[47] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical recipes.

Cambridge University Press, 2002.

[48] D. Courjon and C. Bainier. Le champ proche optique. Springer, 2001.

[49] J. W. Goodman. Introduction `a l’optique de fourier et `a l’holographie. Masson & Cie,

1972.

[50] L. Mandel and E. Wolf. Optical coherence and quantum optics. Cambridge university

press, 1995.

[51] D. W. Zhang, X. C. Yuan, N. Q. Ngo, and P. Shum. Fast Hankel transform and its

application for studying the propagation of cylindrical electromagnetic fields. Opt. Express,

10 :521, 2002.

[52] Y. B. Ovchinnikov. Coherent manipulation of atoms by copropagating laser beams. Phys.

Rev. A, 73 :033404, 2006.

[53] S. J. M. Kuppens, K. L. Corwin, K. W. Miller, T. E. Chupp, and C. E. Wieman. Loading

an optical dipole trap. Phys. Rev. A, 62 :013406, 2000.

[54] R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov. Optical dipole traps for neutral atoms.

Adv. Atom. Mol. Opt. Phys., 42 :95, 2000.

[55] O. Alloschery, R. Mathevet, J. Weiner, and H. J. Lezec. All-optical atom surface

traps implemented with one-dimensional planar diffractive microstructures. Opt. Express,

14 :12568, 2006.

[56] C. Henkel and M. Wilkens. Heating of trapped atoms near thermal surfaces. Europhys.

Lett., 47 :414, 1999.

[57] S. Kuhr, W. Alt, D. Schrader, I. Dotsenko, Y. Miroshnychenko, W. Rosenfeld, M.

Khu-daverdyan, V. Gomer, A. Rauschenbeutel, and D. Meschede. Coherence properties and

quantum state transportation in an optical conveyor belt. Phys. Rev. Lett., 91 :213002,

2003.

[58] R. Folman, P. Kruger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer.

Control-ling cold atoms using nanofabricated surfaces : atom chips. Phys. Rev. Lett., 84 :4749,

2000.

[59] P. A. Quinto-Su, M. Tscherneck, M. Holmes, and N. P. Bigelow. On-chip optical detection

of laser cooled atoms. Opt. Express, 12 :5098, 2004.

[60] S. Eriksson, M. Trupke, H. F. Powell, D. Sahagun, C. D. J. Sinclair, E. A. Curtis, B. E.

Sauer, E. A. Hinds, Z. Moktadir, C. O. Gollasch, and M. Kraft. Integrated optical

com-ponents on atom chips. Eur. Phys. J. D, 35 :135, 2005.

[61] S. Kraft, A. Gunther, P. Wicke, B. Kasch, C. Zimmermann, and J. Fortagh. Atom-optical

elements on micro chips. Eur. Phys. J. D, 35 :119, 2005.

[62] J. J. Arlt, O. Marago, S. Webster, S. Hopkins, and C. J. Foot. A pyramidal magneto-optical

trap as a source of slow atoms. Opt. Commun., 157 :303, 1998.

[63] J. M. Kohel, J. Ramirez-Serrano, R. J. Thompson, and L. Maleki. Generation of an intense

cold-atom beam from a pyramidal magneto-optical trap : experiment and simulation.JOSA

B, 20 :1161, 2003.

[64] A. Camposeo, A. Piombini, F. Cervelli, F. Tantussi, F. Fuso, and E. Arimondo. A cold

cesium atomic beam produced out of a pyramidal funnel. Opt. Commun., 200 :231, 2001.

[65] M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds,

Z. Moktadir, C. Gollasch, M. Kraft, G. V. Prakash, and J. J. Baumberg. Pyramidal

micromirrors for microsystems and atom chips. Appl. Phys. Lett., 88 :071116, 2006.

[66] M. O. Mewes, M. R. Andrews, D. M. Kurn, D. S. Durfee, C. G. Townsend, and W. Ketterle.

rative cooling of a guided rubidium atomic beam. Phys. Rev. A, 72 :033411, 2005.

[68] W. Guerin, J. F. Riou, J. P. Gaebler, V. Josse, P. Bouyer, and A. Aspect. Guided

quasi-continuous atom laser. Phys. Rev. Lett., 97 :200402, 2006.

[69] E. N. Glytsis, M. E. Harrigan, K. Hirayama, and T. K. Gaylord. Collimating cylindrical

diffractive lenses : rigorous electromagnetic analysis and scalar approximation. Appl. Opt.,

37 :34, 1998.

[70] G. Birkl, F. B. J. Buchkremer, R. Dumke, and W. Ertmer. Atom optics with

microfabri-cated optical elements. Opt. Commun., 191 :67–81, 2001.

[71] X. M. Ji and J. P. Yin. One- and two-dimensional arrays of double-well optical traps for

cold atoms or molecules. Chin. Phys. Lett., 21 :2399, 2004.

[72] N. Davidson, H. Jin Lee, C. S. Adams, M. Kasevich, and S. Chu. Long atomic coherence

times in an optical dipole trap. Phys. Rev. Lett., 74 :1311, 1995.

[73] S. W. Du, M. B. Squires, Y. Imai, L. Czaia, R. A. Saravanan, V. Bright, J. Reichel, T. W.

Hansch, and D. Z. Anderson. Atom-chip Bose-Einstein condensation in a portable vacuum

cell. Phys. Rev. A, 70 :053606, 2004.

[74] S. Schneider, A. Kasper, C. vom Hagen, M. Bartenstein, B. Engeser, T. Schumm, I.

Bar-Joseph, R. Folman, L. Feenstra, and J. Schmiedmayer. Bose-Einstein condensation in a

simple microtrap. Phys. Rev. A, 67 :023612, 2003.

[75] I. H. Deutsch and P. S. Jessen. Quantum-state control in optical lattices. Phys. Rev. A,

57 :1972, 1998.