• Aucun résultat trouvé

Oncogenic c-KitW556A and c-KitD814V receptors inhibit KitL-induced cell spreading on

The function of TKRs must be tightly regulated. Gain-Of-Function mutations in different regions of a receptor can alter this regulation and lead to an abnormal signaling that results in neoplastic growth. In the case of c-Kit, oncogenic mutations are frequent at exon 11 (coding for the JMD) and exon 17 (coding for the A-loop in the kinase domain). While the variants of exon 11 are prevalent in GIST and other solid tumors; leukemia and mastocytosis result from exon 17 mutations (Lennartsson & Ronnstrand, 2012). These c-Kit modifications determine the sensitivity or resistance to tyrosine kinase inhibitors such as imatinib (Frost et al., 2002).

The last part of this research was committed to studying the effects of c-Kit oncogenic mutations in cell spreading.

COS cells overexpressing either the c-KitW556A or c-KitD814V mutants showed a reduction in cell spreading. The mutation W556A had never been identified in human malignancies.

Nevertheless, other substitutions (human W557R) or deletions encompassing this residue are have been found in GISTs tumors (Willmore et al., 2004) as well as in malignant melanomas (Hodi et al., 2013) as a kinase-activating mutation. Because of its localization in the c-Kit JMD, we speculated that this hydrophobic residue might be involved in the regulatory function of this region. D816V.

Employing the tagRFP, we observed that both c-Kit versions mostly localized at the cytoplasm, a situation that can explain the lack of spreading response. A similar localization was observed in patients with GIST (S. Tabone-Eglinger et al., 2008). In this study, the authors showed that homozygous activating mutations are more frequently found in the nucleus than those in heterozygous state or the wild-type ones. The D816V mutant was also located intracellularly in the case of systemic mastocytosis (Bougherara et al., 2013). It has been shown that the c-Kit expression at the plasma membrane depends on its maturation at the ER (Brahimi-Adouane et al., 2013). It is, therefore, possible that such mutants are activated, phosphorylated and even degraded before reaching the plasma membrane.

Considering that a cytoplasmic expression might be responsible for lack of spreading, we studied the effect of treatment with imatinib and dasatinib in the spreading response. We carried on dose-response studies with TKIs which efficiently target specific c-Kit mutations.

After 1 hour of treatment, the cells were seeded on surfaces coated with fibronectin in the presence of immobilized-KitL. Different to MC/9 cells, COS cells overexpressing the WT receptor showed a reduced and delayed spreading from 10 µM of imatinib. Interestingly, although no significant, imatinib slightly increased the spreading response of cells expressing the mutant c-KitW556A. However, cells expressing the kinase active c-KitD814V were insensitive to this drug. Because dasatinib is more potent than imatinib in blocking SFK and c-Kit and recognizes the active form of TKR, we hypothesized that it might inhibit cell spreading induced by both ET and Kit activating mutants. Indeed, dasatinib significantly blocked c-KitWT-mediated spreading from 100nM. However, it was less effective than imatinib in recovering the spreading of c-KitW556A expressing cells.

These results suggest that imatinib which is effective against regulatory mutants (W556A?) but not the catalytic ones (D814V) is also effective in recovering cell spreading. Likely imatinib induces the relocation of the W556A to the cell membrane while is less efficient in changing the expression of the mutant D814V. To note that in the case of a WT receptor, imatinib leads to the receptor degradation and internalization without KitL stimulation (D'Allard et al., 2013).

To confirm these observations, we pretreated cells with imatinib or dasatinib for 2h and 3h.

With this treatment regimen, we could increase the spreading of W556A expressing cells (data not shown). Unfortunately, this is preliminary data and we need to go further with the additional spreading test. In parallel, a potential imatinib-induced relocation of W556A to the cell membrane should be confirmed by FACS and immunofluorescence.

By combining various methods to analyze and compare the native and mutated c-Kit, the present study demonstrated that both the JMD (W556A) and the A-loop (D814V) mutants do have the same effect in cell spreading. However, their sensitivity to tyrosine kinase inhibitors vaguely differs. The differences in drug sensitivity need to be confirmed by using other TKIs (e.g., nilotinib or sunitinib), dasatinib being able to block spreading of non-transfected cells.

For example, nilotinib which succeeded in patients with imatinib-resistant melanoma carrying c-Kit mutations (Carvajal et al., 2015). It will be useful to test whether the human mast cell lines (HMC) expressing the activating mutations V560G (HMC-1) and V560G and D816V (HMS-1.2) (I. J. Chan et al., 2013) respond as COS cells overexpressing such c-Kit variants. It seems that the phenomenon of re-spreading of an activated c-Kit receptor induced by imatinib is correlated with the inhibition of their kinase activity. It remains to be confirmed whether this response is associated with de-phosphorylation of c-Kit and the associated signaling proteins.

What is the mechanism by which these mutants interfere with cell spreading?

In the c-Kit auto-inhibitory state, the JMD inserts into the catalytic site preventing the A-loop from switching into its extended active conformation (Mol et al., 2004; Mol et al., 2003). The c-Kit D816V mutant destabilizes the A-loop that in turns release the JMD from its inhibitory conformation and activates the kinase (Laine et al., 2011). DiNitto et al. demonstrated that the active c-Kit D816V mutant cannot bind neither imatinib nor sunitinib and the phosphorylation of Y823 in the A-loop is prevented. They also showed that the c-Kit Y823F affects the sensitivity to drugs and can bind imatinib as well as sunitinib (DiNitto et al., 2010).

The authors suggested that by interfering with the phosphorylation of Y823, the receptor can alternate between an inactive and an active state changing its sensitivity to imatinib. When we overexpressed c-KitY823F in COS cells, spreading on fibronectin was abolished entirely. It is possible that by destabilizing the A-loop mutations in this region the hierarchy of tyrosine phosphorylation is modified. Consequently, the phosphorylation of Y821, which occurs very late after c-Kit activation, might happens in first place. If this is the case, it could block the recruitment of PI3K in Y719 in the kinase insert, therefore, preventing cell spreading.

Concerning the A-loop, further experiments will be addressed to confirm whether there is a different mechanism of c-Kit activation, between soluble- and immobilized-Kit ligand?

In this research work, we have studied the implication of the c-Kit signaling in integrin-dependent adhesion of c-Kit expressing cells. We have also explored the effects of c-Kit kinase inhibition and conclude that Dasatinib is the only drug capable of inhibiting spreading towards an immobilized-KitL in fibronectin-poor surfaces. By introducing mutations in different regions of c-Kit, we observed that oncogenic variants of c-Kit drastically blocked cell spreading. The same response was followed by interfering with the recruitment of PI3K and by destabilizing the A-loop. Molecular and functional studies need to be done to unravel the mechanism by which c-Kit and integrins collaborate in mediating cell spreading and their sensitivity to kinase inhibition. The high spreading in the presence of imatinib argues for a function of c-Kit in mediating the anchorage of malignant cells to their respective niches even in the absence of a functional kinase. Such an adhesive phenotype might favor the resistant of tumor cells to therapy and the disease relapse. Thus, the elucidation of the mechanism that regulates cell-niche interactions is an essential aspect of the tumor biology so that news

"successfully targeted" therapies can be designed.

References

Abella, J. V., & Park, M. (2009). Breakdown of endocytosis in the oncogenic activation of receptor tyrosine kinases. Am J Physiol Endocrinol Metab, 296(5), E973-984.

doi:10.1152/ajpendo.90857.2008

Aebi, M. (2013). N-linked protein glycosylation in the ER. Biochim Biophys Acta, 1833(11), 2430-2437. doi:10.1016/j.bbamcr.2013.04.001

Aiuti, A., Webb, I. J., Bleul, C., Springer, T., & Gutierrez-Ramos, J. C. (1997). The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. J Exp Med, 185(1), 111-120.

Akin, C., Brockow, K., D'Ambrosio, C., Kirshenbaum, A. S., Ma, Y., Longley, B. J., & Metcalfe, D.

D. (2003). Effects of tyrosine kinase inhibitor STI571 on human mast cells bearing wild-type or mutated c-kit. Exp Hematol, 31(8), 686-692.

Alam, N., Goel, H. L., Zarif, M. J., Butterfield, J. E., Perkins, H. M., Sansoucy, B. G., . . . Languino, L. R. (2007). The integrin-growth factor receptor duet. J Cell Physiol, 213(3), 649-653.

doi:10.1002/jcp.21278

Alberts B, J. A., Lewis J, et al.,. (2002). The Extracellular Matrix of Animals Molecular Biology of the Cell (4th edition ed.). New York: Garland Science.

Anderson, D. M., Williams, D. E., Tushinski, R., Gimpel, S., Eisenman, J., Cannizzaro, L. A., . . . et al. (1991). Alternate splicing of mRNAs encoding human mast cell growth factor and localization of the gene to chromosome 12q22-q24. Cell Growth Differ, 2(8), 373-378.

Anthis, N. J., & Campbell, I. D. (2011). The tail of integrin activation. Trends Biochem Sci, 36(4), 191-198. doi:10.1016/j.tibs.2010.11.002

Arias-Salgado, E. G., Lizano, S., Sarkar, S., Brugge, J. S., Ginsberg, M. H., & Shattil, S. J. (2003).

Src kinase activation by direct interaction with the integrin beta cytoplasmic domain.

Proc Natl Acad Sci U S A, 100(23), 13298-13302. doi:10.1073/pnas.2336149100

Ashman, L. K. (1999). The biology of stem cell factor and its receptor C-kit. Int J Biochem Cell Biol, 31(10), 1037-1051.

Ashman, L. K., Ferrao, P., Cole, S. R., & Cambareri, A. C. (1999). Effects of mutant c-Kit in early myeloid cells. Leuk Lymphoma, 34(5-6), 451-461. doi:10.3109/10428199909058472 Ashman, L. K., & Griffith, R. (2013). Therapeutic targeting of c-KIT in cancer. Expert Opin

Investig Drugs, 22(1), 103-115. doi:10.1517/13543784.2013.740010

Babon, J. J., Lucet, I. S., Murphy, J. M., Nicola, N. A., & Varghese, L. N. (2014). The molecular regulation of Janus kinase (JAK) activation. The Biochemical journal, 462(1), 1-13.

doi:10.1042/BJ20140712

Baghestanian, M., Hofbauer, R., Kiener, H. P., Bankl, H. C., Wimazal, F., Willheim, M., . . . Valent, P. (1997). The c-kit ligand stem cell factor and anti-IgE promote expression of monocyte chemoattractant protein-1 in human lung mast cells. Blood, 90(11), 4438-4449.

Bain, J., Plater, L., Elliott, M., Shpiro, N., Hastie, C. J., McLauchlan, H., . . . Cohen, P. (2007). The selectivity of protein kinase inhibitors: a further update. Biochem J, 408(3), 297-315.

doi:10.1042/BJ20070797

Barczyk, M., Carracedo, S., & Gullberg, D. (2010). Integrins. Cell Tissue Res, 339(1), 269-280.

doi:10.1007/s00441-009-0834-6

Baumgartner, C., Cerny-Reiterer, S., Sonneck, K., Mayerhofer, M., Gleixner, K. V., Fritz, R., . . . Valent, P. (2009). Expression of activated STAT5 in neoplastic mast cells in systemic mastocytosis: subcellular distribution and role of the transforming oncoprotein KIT D816V. Am J Pathol, 175(6), 2416-2429. doi:10.2353/ajpath.2009.080953

Bayle, J., Letard, S., Frank, R., Dubreuil, P., & De Sepulveda, P. (2004). Suppressor of cytokine signaling 6 associates with KIT and regulates KIT receptor signaling. J Biol Chem, 279(13), 12249-12259. doi:10.1074/jbc.M313381200

Beadling, C., Jacobson-Dunlop, E., Hodi, F. S., Le, C., Warrick, A., Patterson, J., . . . Corless, C.

L. (2008). KIT gene mutations and copy number in melanoma subtypes. Clin Cancer Res, 14(21), 6821-6828. doi:10.1158/1078-0432.CCR-08-0575

Beghini, A., Peterlongo, P., Ripamonti, C. B., Larizza, L., Cairoli, R., Morra, E., & Mecucci, C.

(2000). C-kit mutations in core binding factor leukemias. Blood, 95(2), 726-727.

Beghini, A., Ripamonti, C. B., Cairoli, R., Cazzaniga, G., Colapietro, P., Elice, F., . . . Larizza, L.

(2004). KIT activating mutations: incidence in adult and pediatric acute myeloid leukemia, and identification of an internal tandem duplication. Haematologica, 89(8), 920-925.

Belle, L., Bruck, F., Foguenne, J., Gothot, A., Beguin, Y., Baron, F., & Briquet, A. (2012). Imatinib and nilotinib inhibit hematopoietic progenitor cell growth, but do not prevent adhesion, migration and engraftment of human cord blood CD34+ cells. PLoS One, 7(12), e52564.

doi:10.1371/journal.pone.0052564

Bellone, G., Silvestri, S., Artusio, E., Tibaudi, D., Turletti, A., Geuna, M., . . . Rodeck, U. (1997).

Growth stimulation of colorectal carcinoma cells via the c-kit receptor is inhibited by TGF-beta 1. J Cell Physiol, 172(1), 1-11. doi:10.1002/(SICI)1097-4652(199707)172:1<1::AID-JCP1>3.0.CO;2-S

Beppu, K., Jaboine, J., Merchant, M. S., Mackall, C. L., & Thiele, C. J. (2004). Effect of imatinib mesylate on neuroblastoma tumorigenesis and vascular endothelial growth factor expression. J Natl Cancer Inst, 96(1), 46-55.

Besmer, P., Manova, K., Duttlinger, R., Huang, E. J., Packer, A., Gyssler, C., & Bachvarova, R. F.

(1993). The kit-ligand (steel factor) and its receptor c-kit/W: pleiotropic roles in gametogenesis and melanogenesis. Dev Suppl, 125-137.

Besmer, P., Murphy, J. E., George, P. C., Qiu, F. H., Bergold, P. J., Lederman, L., . . . Hardy, W.

D. (1986). A new acute transforming feline retrovirus and relationship of its oncogene v-kit with the protein kinase gene family. Nature, 320(6061), 415-421.

doi:10.1038/320415a0

Bignon, J. S., & Siminovitch, K. A. (1994). Identification of PTP1C mutation as the genetic defect in motheaten and viable motheaten mice: a step toward defining the roles of

protein tyrosine phosphatases in the regulation of hemopoietic cell differentiation and function. Clin Immunol Immunopathol, 73(2), 168-179.

Bischoff, S. C., & Dahinden, C. A. (1992). c-kit ligand: a unique potentiator of mediator release by human lung mast cells. J Exp Med, 175(1), 237-244.

Blume-Jensen, P., Janknecht, R., & Hunter, T. (1998). The kit receptor promotes cell survival via activation of PI 3-kinase and subsequent Akt-mediated phosphorylation of Bad on Ser136. Curr Biol, 8(13), 779-782.

Blume-Jensen, P., Jiang, G., Hyman, R., Lee, K. F., O'Gorman, S., & Hunter, T. (2000). Kit/stem cell factor receptor-induced activation of phosphatidylinositol 3'-kinase is essential for male fertility. Nat Genet, 24(2), 157-162. doi:10.1038/72814

Blume-Jensen, P., Siegbahn, A., Stabel, S., Heldin, C. H., & Ronnstrand, L. (1993). Increased Kit/SCF receptor induced mitogenicity but abolished cell motility after inhibition of protein kinase C. EMBO J, 12(11), 4199-4209.

Blume-Jensen, P., Wernstedt, C., Heldin, C. H., & Ronnstrand, L. (1995). Identification of the major phosphorylation sites for protein kinase C in kit/stem cell factor receptor in vitro and in intact cells. J Biol Chem, 270(23), 14192-14200.

Bodemer, C., Hermine, O., Palmerini, F., Yang, Y., Grandpeix-Guyodo, C., Leventhal, P. S., . . . Dubreuil, P. (2010). Pediatric mastocytosis is a clonal disease associated with D816V and other activating c-KIT mutations. J Invest Dermatol, 130(3), 804-815.

doi:10.1038/jid.2009.281

Boldrini, L., Ursino, S., Gisfredi, S., Faviana, P., Donati, V., Camacci, T., . . . Fontanini, G. (2004).

Expression and mutational status of c-kit in small-cell lung cancer: prognostic relevance.

Clin Cancer Res, 10(12 Pt 1), 4101-4108. doi:10.1158/1078-0432.CCR-03-0664

Bono, P., Krause, A., von Mehren, M., Heinrich, M. C., Blanke, C. D., Dimitrijevic, S., . . . Joensuu, H. (2004). Serum KIT and KIT ligand levels in patients with gastrointestinal stromal tumors treated with imatinib. Blood, 103(8), 2929-2935. doi:10.1182/blood-2003-10-3443

Bouchard, V., Harnois, C., Demers, M. J., Thibodeau, S., Laquerre, V., Gauthier, R., . . . Vachon, P. H. (2008). B1 integrin/Fak/Src signaling in intestinal epithelial crypt cell survival:

integration of complex regulatory mechanisms. Apoptosis, 13(4), 531-542.

doi:10.1007/s10495-008-0192-y

Bougherara, H., Georgin-Lavialle, S., Damaj, G., Launay, J. M., Lhermitte, L., Auclair, C., . . . Poul, M. A. (2013). Relocalization of KIT D816V to cell surface after dasatinib treatment:

potential clinical implications. Clin Lymphoma Myeloma Leuk, 13(1), 62-69.

doi:10.1016/j.clml.2012.08.004

Bougherara, H., Subra, F., Crepin, R., Tauc, P., Auclair, C., & Poul, M. A. (2009). The aberrant localization of oncogenic kit tyrosine kinase receptor mutants is reversed on specific inhibitory treatment. Mol Cancer Res, 7(9), 1525-1533. doi:10.1158/1541-7786.MCR-09-0138

Bowie, M. B., Kent, D. G., Copley, M. R., & Eaves, C. J. (2007). Steel factor responsiveness regulates the high self-renewal phenotype of fetal hematopoietic stem cells. Blood, 109(11), 5043-5048. doi:10.1182/blood-2006-08-037770

Brahimi-Adouane, S., Bachet, J. B., Tabone-Eglinger, S., Subra, F., Capron, C., Blay, J. Y., & transmembrane and cytoplasmic domains. Proc Natl Acad Sci U S A, 88(11), 4671-4674.

Brizzi, M. F., Blechman, J. M., Cavalloni, G., Givol, D., Yarden, Y., & Pegoraro, L. (1994). Protein kinase C-dependent release of a functional whole extracellular domain of the mast cell growth factor (MGF) receptor by MGF-dependent human myeloid cells. Oncogene, 9(6), 1583-1589.

Brizzi, M. F., Dentelli, P., Lanfrancone, L., Rosso, A., Pelicci, P. G., & Pegoraro, L. (1996).

Discrete protein interactions with the Grb2/c-Cbl complex in SCF- and TPO-mediated myeloid cell proliferation. Oncogene, 13(10), 2067-2076.

Brizzi, M. F., Dentelli, P., Rosso, A., Yarden, Y., & Pegoraro, L. (1999). STAT protein recruitment and activation in c-Kit deletion mutants. J Biol Chem, 274(24), 16965-16972.

Brizzi, M. F., Zini, M. G., Aronica, M. G., Blechman, J. M., Yarden, Y., & Pegoraro, L. (1994).

Convergence of signaling by interleukin-3, granulocyte-macrophage colony-stimulating factor, and mast cell growth factor on JAK2 tyrosine kinase. J Biol Chem, 269(50), 31680-31684.

Broudy, V. C. (1997). Stem cell factor and hematopoiesis. Blood, 90(4), 1345-1364.

Broudy, V. C., Lin, N. L., Buhring, H. J., Komatsu, N., & Kavanagh, T. J. (1998). Analysis of c-kit receptor dimerization by fluorescence resonance energy transfer. Blood, 91(3), 898-906.

Broudy, V. C., Lin, N. L., Liles, W. C., Corey, S. J., O'Laughlin, B., Mou, S., & Linnekin, D. (1999).

Signaling via Src family kinases is required for normal internalization of the receptor c-Kit. Blood, 94(6), 1979-1986.

Brown, M. C., & Turner, C. E. (2004). Paxillin: adapting to change. Physiol Rev, 84(4), 1315-1339. doi:10.1152/physrev.00002.2004

Buchdunger, E., Cioffi, C. L., Law, N., Stover, D., Ohno-Jones, S., Druker, B. J., & Lydon, N. B.

(2000). Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-kit and platelet-derived growth factor receptors. J Pharmacol Exp Ther, 295(1), 139-145.

Buchdunger, E., O'Reilly, T., & Wood, J. (2002). Pharmacology of imatinib (STI571). Eur J Cancer, 38 Suppl 5, S28-36.

Burchert, A., Wang, Y., Cai, D., von Bubnoff, N., Paschka, P., Muller-Brusselbach, S., . . . Neubauer, A. (2005). Compensatory PI3-kinase/Akt/mTor activation regulates imatinib resistance development. Leukemia, 19(10), 1774-1782. doi:10.1038/sj.leu.2403898 Butnor, K. J., Burchette, J. L., Sporn, T. A., Hammar, S. P., & Roggli, V. L. (2004). The spectrum

of Kit (CD117) immunoreactivity in lung and pleural tumors: a study of 96 cases using a single-source antibody with a review of the literature. Arch Pathol Lab Med, 128(5), 538-543. doi:10.1043/1543-2165(2004)128<538:TSOKCI>2.0.CO;2

Buttner, C., Henz, B. M., Welker, P., Sepp, N. T., & Grabbe, J. (1998). Identification of activating c-kit mutations in adult-, but not in childhood-onset indolent mastocytosis: a possible explanation for divergent clinical behavior. J Invest Dermatol, 111(6), 1227-1231.

doi:10.1046/j.1523-1747.1998.00414.x

Cable, J., Jackson, I. J., & Steel, K. P. (1995). Mutations at the W locus affect survival of neural crest-derived melanocytes in the mouse. Mech Dev, 50(2-3), 139-150.

Caceres-Cortes, J. R., Alvarado-Moreno, J. A., Waga, K., Rangel-Corona, R., Monroy-Garcia, A., Rocha-Zavaleta, L., . . . Hoang, T. (2001). Implication of tyrosine kinase receptor and steel factor in cell density-dependent growth in cervical cancers and leukemias. Cancer Res, 61(16), 6281-6289.

Cairoli, R., Beghini, A., Grillo, G., Nadali, G., Elice, F., Ripamonti, C. B., . . . Morra, E. (2006).

Prognostic impact of c-KIT mutations in core binding factor leukemias: an Italian retrospective study. Blood, 107(9), 3463-3468. doi:10.1182/blood-2005-09-3640 Calafiore, L., Amoroso, L., Della Casa Alberighi, O., Luksch, R., Zanazzo, G., Castellano, A., . . .

Garaventa, A. (2013). Two-stage phase II study of imatinib mesylate in subjects with refractory or relapsing neuroblastoma. Ann Oncol, 24(5), 1406-1413.

doi:10.1093/annonc/mds648

Campbell, I. D., & Humphries, M. J. (2011). Integrin structure, activation, and interactions.

Cold Spring Harb Perspect Biol, 3(3). doi:10.1101/cshperspect.a004994

Care, R. S., Valk, P. J., Goodeve, A. C., Abu-Duhier, F. M., Geertsma-Kleinekoort, W. M., Wilson, G. A., . . . Reilly, J. T. (2003). Incidence and prognosis of c-KIT and FLT3 mutations in core binding factor (CBF) acute myeloid leukaemias. Br J Haematol, 121(5), 775-777.

Carpenter, C. L., Duckworth, B. C., Auger, K. R., Cohen, B., Schaffhausen, B. S., & Cantley, L. C.

(1990). Purification and characterization of phosphoinositide 3-kinase from rat liver. J Biol Chem, 265(32), 19704-19711.

Caruana, G., Cambareri, A. C., & Ashman, L. K. (1999). Isoforms of c-KIT differ in activation of signalling pathways and transformation of NIH3T3 fibroblasts. Oncogene, 18(40), 5573-5581. doi:10.1038/sj.onc.1202939

Carvajal, R. D., Antonescu, C. R., Wolchok, J. D., Chapman, P. B., Roman, R. A., Teitcher, J., . . . Schwartz, G. K. (2011). KIT as a therapeutic target in metastatic melanoma. JAMA, 305(22), 2327-2334. doi:10.1001/jama.2011.746

Carvajal, R. D., Lawrence, D. P., Weber, J. S., Gajewski, T. F., Gonzalez, R., Lutzky, J., . . . Hodi, F. S. (2015). Phase II Study of Nilotinib in Melanoma Harboring KIT Alterations Following Progression to Prior KIT Inhibition. Clin Cancer Res, 21(10), 2289-2296.

doi:10.1158/1078-0432.CCR-14-1630

Chabot, B., Stephenson, D. A., Chapman, V. M., Besmer, P., & Bernstein, A. (1988). The proto-oncogene c-kit encoding a transmembrane tyrosine kinase receptor maps to the mouse W locus. Nature, 335(6185), 88-89. doi:10.1038/335088a0

Chaix, A., Arcangeli, M. L., Lopez, S., Voisset, E., Yang, Y., Vita, M., . . . De Sepulveda, P. (2014).

KIT-D816V oncogenic activity is controlled by the juxtamembrane docking site Y568-Y570. Oncogene, 33(7), 872-881. doi:10.1038/onc.2013.12

Chaix, A., Lopez, S., Voisset, E., Gros, L., Dubreuil, P., & De Sepulveda, P. (2011). Mechanisms of STAT protein activation by oncogenic KIT mutants in neoplastic mast cells. J Biol Chem, 286(8), 5956-5966. doi:10.1074/jbc.M110.182642

Chan, E. C., Bai, Y., Bandara, G., Simakova, O., Brittain, E., Scott, L., . . . Wilson, T. M. (2013).

KIT GNNK splice variants: Expression in systemic mastocytosis and influence on the activating potential of the D816V mutation in mast cells. Experimental hematology, 41(10), 10.1016/j.exphem.2013.1005.1005. doi:10.1016/j.exphem.2013.05.005

Chan, I. J., Kasprowicz, S., & Tharp, M. D. (2013). Distinct signalling pathways for mutated KIT(V560G) and KIT(D816V) in mastocytosis. Clin Exp Dermatol, 38(5), 538-544.

doi:10.1111/ced.12000

Chan, P. M., Ilangumaran, S., La Rose, J., Chakrabartty, A., & Rottapel, R. (2003).

Autoinhibition of the kit receptor tyrosine kinase by the cytosolic juxtamembrane region. Mol Cell Biol, 23(9), 3067-3078.

Chau, W. K., Ip, C. K., Mak, A. S., Lai, H. C., & Wong, A. S. (2013). c-Kit mediates chemoresistance and tumor-initiating capacity of ovarian cancer cells through activation of Wnt/beta-catenin-ATP-binding cassette G2 signaling. Oncogene, 32(22), 2767-2781. doi:10.1038/onc.2012.290

Chian, R., Young, S., Danilkovitch-Miagkova, A., Ronnstrand, L., Leonard, E., Ferrao, P., . . . Linnekin, D. (2001). Phosphatidylinositol 3 kinase contributes to the transformation of hematopoietic cells by the D816V c-Kit mutant. Blood, 98(5), 1365-1373.

Chiara, F., Bishayee, S., Heldin, C. H., & Demoulin, J. B. (2004). Autoinhibition of the platelet-derived growth factor beta-receptor tyrosine kinase by its C-terminal tail. J Biol Chem, 279(19), 19732-19738. doi:10.1074/jbc.M314070200

Chitu, V., Caescu, C. I., Stanley, E. R., Lennartsson, J., Rönnstrand, L., & Heldin, C.-H. (2015).

The PDGFR Receptor Family. In D. L. Wheeler & Y. Yarden (Eds.), Receptor Tyrosine Kinases: Family and Subfamilies (pp. 373-538). Cham: Springer International Publishing.

Cho, J. H., Kim, K. M., Kwon, M., Kim, J. H., & Lee, J. (2012). Nilotinib in patients with metastatic melanoma harboring KIT gene aberration. Invest New Drugs, 30(5), 2008-2014.

doi:10.1007/s10637-011-9763-9

Choudhary, C., Olsen, J. V., Brandts, C., Cox, J., Reddy, P. N., Bohmer, F. D., . . . Serve, H. (2009).

Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes.

Mol Cell, 36(2), 326-339. doi:10.1016/j.molcel.2009.09.019

Cochet, C., Gill, G. N., Meisenhelder, J., Cooper, J. A., & Hunter, T. (1984). C-kinase phosphorylates the epidermal growth factor receptor and reduces its epidermal growth factor-stimulated tyrosine protein kinase activity. J Biol Chem, 259(4), 2553-2558.

Cohen, P. S., Chan, J. P., Lipkunskaya, M., Biedler, J. L., & Seeger, R. C. (1994). Expression of stem cell factor and c-kit in human neuroblastoma. The Children's Cancer Group. Blood, 84(10), 3465-3472.

Colognato, H., & Yurchenco, P. D. (2000). Form and function: the laminin family of heterotrimers. Dev Dyn, 218(2), 213-234. doi:10.1002/(SICI)1097-0177(200006)218:2<213::AID-DVDY1>3.0.CO;2-R

Columbo, M., Horowitz, E. M., Botana, L. M., MacGlashan, D. W., Jr., Bochner, B. S., Gillis, S., . . . Lichtenstein, L. M. (1992). The human recombinant c-kit receptor ligand, rhSCF, induces mediator release from human cutaneous mast cells and enhances IgE-dependent mediator release from both skin mast cells and peripheral blood basophils.

J Immunol, 149(2), 599-608.

Connell, L. E., & Helfman, D. M. (2006). Myosin light chain kinase plays a role in the regulation of epithelial cell survival. J Cell Sci, 119(Pt 11), 2269-2281. doi:10.1242/jcs.02926 Copeland, N. G., Gilbert, D. J., Cho, B. C., Donovan, P. J., Jenkins, N. A., Cosman, D., . . .

Williams, D. E. (1990). Mast cell growth factor maps near the steel locus on mouse chromosome 10 and is deleted in a number of steel alleles. Cell, 63(1), 175-183.

Coppo, P., Flamant, S., De Mas, V., Jarrier, P., Guillier, M., Bonnet, M. L., . . . Turhan, A. G.

(2006). BCR-ABL activates STAT3 via JAK and MEK pathways in human cells. Br J Haematol, 134(2), 171-179. doi:10.1111/j.1365-2141.2006.06161.x

Corless, C. L., Barnett, C. M., & Heinrich, M. C. (2011). Gastrointestinal stromal tumours: origin and molecular oncology. Nat Rev Cancer, 11(12), 865-878. doi:10.1038/nrc3143

Corless, C. L., Fletcher, J. A., & Heinrich, M. C. (2004). Biology of gastrointestinal stromal tumors. J Clin Oncol, 22(18), 3813-3825. doi:10.1200/JCO.2004.05.140

Corless, C. L., & Heinrich, M. C. (2008). Molecular pathobiology of gastrointestinal stromal

sarcomas. Annu Rev Pathol, 3, 557-586.

doi:10.1146/annurev.pathmechdis.3.121806.151538

Cox, T. R., & Erler, J. T. (2011). Remodeling and homeostasis of the extracellular matrix:

implications for fibrotic diseases and cancer. Dis Model Mech, 4(2), 165-178.

implications for fibrotic diseases and cancer. Dis Model Mech, 4(2), 165-178.