• Aucun résultat trouvé

Chapitre 2 : Méthodologie

2.4 Méthodes théoriques

2.4.6 Moyens de calcul

Les calculs de chimie quantique sur les paires d’ions en phase gazeuse ont été réalisés avec le logiciel Turbomole 7.1 implémenté sur quatre serveurs de calcul locaux propres à l’équipe ; deux des serveurs sont composés de 12 processeurs chacun avec une mémoire de 4 Gb/processeur, les deux derniers possèdent 8 processeurs avec la même taille de mémoire par processeur.

58

Les études sur les systèmes modèles en solution ont été menées dans le cadre d’allocations d’heures sur les supercalculateurs nationaux au travers d’un projet TGIR GENCI (Grand Equipement National de Calcul Intensif). Trois supercalculateurs du TGCC/CCRT ont été utilisés pour réaliser les calculs : Curie, Airain et Cobalt [54]. Pour chacun des supercalculateurs, le logiciel Turbomole 7.1 a été installé et optimisé afin de mener les optimisations de géométrie et le calcul des fréquences de vibration.

59

2.5. Bibliographie :

1. Breen, P.J., J.A. Warren, E.R. Bernstein, and J.I. Seeman, A Study of Nonrigid Aromatic- Molecules by Supersonic Molecular Jet Spectroscopy .1. Toluene and the Xylenes. Journal of Chemical Physics, 1987. 87(4): p. 1917-1926.

2. Condon, E.U., The Franck-Condon Principle and Related Topics. American Journal of Physics, 1947. 15(5): p. 365-374.

3. Page, R.H., Y.R. Shen, and Y.T. Lee, Infrared-Ultraviolet Double-Resonance Studies of Benzene Molecules in a Supersonic Beam. Journal of Chemical Physics, 1988. 88(9): p. 5362-5376. 4. Strasser, D., F. Goulay, M.S. Kelkar, E.J. Maginn, and S.R. Leone, Photoelectron spectrum of

isolated ion-pairs in ionic liquid vapor. Journal of Physical Chemistry A, 2007. 111(17): p. 3191-3195.

5. Vyas, S., C. Dreyer, J. Slingsby, D. Bicknase, J.M. Porter, and C.M. Maupin, Electronic Structure and Spectroscopic Analysis of 1-Ethyl-3-methylimidazolium

Bis(trifluoromethylsulfonyl)imide Ion Pair. Journal of Physical Chemistry A, 2014. 118(34): p. 6873-6882.

6. Cooper, R., A.M. Zolot, J.A. Boatz, D.P. Sporleder, and J.A. Stearns, IR and UV Spectroscopy of Vapor-Phase Jet-Cooled Ionic Liquid [emim](+)[Tf2N](-): Ion Pair Structure and

Photodissociation Dynamics. Journal of Physical Chemistry A, 2013. 117(47): p. 12419-12428. 7. Obi, E.I., C.M. Leavitt, P.L. Raston, C.P. Moradi, S.D. Flynn, G.L. Vaghjiani, J.A. Boatz, S.D.

Chambreau, and G.E. Douberly, Helium Nanodroplet Isolation and Infrared Spectroscopy of the Isolated Ion-Pair 1-Ethyl-3methylimidazolium bis(trifluoromethylsulfonyl)imide. Journal of Physical Chemistry A, 2013. 117(37): p. 9047-9056.

8. Piuzzi, F., I. Dimicoli, M. Mons, B. Tardivel, and Q.C. Zhao, A simple laser vaporization source for thermally fragile molecules coupled to a supersonic expansion: application to the

spectroscopy of tryptophan. Chemical Physics Letters, 2000. 320(3-4): p. 282-288.

9. de Vries, M.S. and P. Hobza, Gas-phase spectroscopy of biomolecular building blocks. Annual Review of Physical Chemistry, 2007. 58: p. 585-612.

10. Mons, M., F. Piuzzi, and I. Dimicoli, Conformational landscape of short peptide chains: double resonance IR/UV laser spectroscopic studies. Actualite Chimique, 2007(314): p. 19-22. 11. Schermann, J.P., Spectroscopy and Modelling of Biomolecular Building Blocks. 2008: Elseiver.

Chapitre 3, 129-207.

12. Rijs, A. and J. Oomens, Gas-Phase IR Spectroscopy and Structure of Biological Molecules Preface, in Gas-Phase IR Spectroscopy and Structure of Biological Molecules. 2015, Springer. p. V-VII.

13. Mamyrin, B.A., Time-of-flight mass spectrometry (concepts, achievements, and prospects). International Journal of Mass Spectrometry, 2001. 206(3): p. 251-266.

14. Kinsel, G.R., J.M. Grundwuermer, and J. Grotemeyer, High-Resolution Mass-Spectrometry of Large Molecules in a Linear Time-of-Flight Mass-Spectrometer. Journal of the American Society for Mass Spectrometry, 1993. 4(1): p. 2-10.

15. Boesl, U.W., R. ; Schlag, E., Reflectron TOF-MS and laser excitation for the analysis of neutrals, ionized molecules and secondary fragments. International Journal of Mass Spectrometry and Ion Processes, 1992. 112: p. 121-166.

16. Wiley, W.C. and I.H. McLaren, Time-of-Flight Mass Spectrometer with Improved Resolution. Review of Scientific Instruments, 1955. 26(12): p. 1150-1157.

17. Système de développement professionnel de Labview version 8.1, développé par National Instruments, http://www.ni.com/labview/f/

18. ChemBio3D Ultra 14.0 from ChemOffice Professional, developped by CambridgeSoft Corporation, a subsidiary of PerkinElmer, 1998-2014, available from

http://www.cambridgesoft.com/Ensemble_for_Chemistry/ChemOffice/ChemOfficeProfessio nal.

60

19. Allinger, N.L., Conformational-Analysis .130. MM2. A Hydrocarbon Force Field Utilizing V1 and V2 Torsional Terms. Journal of the American Chemical Society, 1977. 99(25): p. 8127- 8134.

20. HyperChem 7.52, Hypercube. 2005.

21. Case, D.A., T.E. Cheatham, T. Darden, H. Gohlke, R. Luo, K.M. Merz, A. Onufriev, C.

Simmerling, B. Wang, and R.J. Woods, The Amber biomolecular simulation programs. Journal of Computational Chemistry, 2005. 26(16): p. 1668-1688.

22. Biswal, H.S., Y. Loquais, B. Tardivel, E. Gloaguen, and M. Mons, Isolated Monohydrates of a Model Peptide Chain: Effect of a First Water Molecule on the Secondary Structure of a Capped Phenylalanine. Journal of the American Chemical Society, 2011. 133(11): p. 3931- 3942.

23. Gloaguen, E., Y. Loquais, J.A. Thomas, D.W. Pratt, and M. Mons, Spontaneous Formation of Hydrophobic Domains in Isolated Peptides. Journal of Physical Chemistry B, 2013. 117(17): p. 4945-4955.

24. Piela, L., J. Kostrowicki, and H.A. Scheraga, The Multiple-Minima Problem in the

Conformational-Analysis of Molecules - Deformation of the Potential-Energy Hypersurface by the Diffusion Equation Method. Journal of Physical Chemistry, 1989. 93(8): p. 3339-3346. 25. Laury, M.L., L.P. Wang, V.S. Pande, T. Head-Gordon, and J.W. Ponder, Revised Parameters for

the AMOEBA Polarizable Atomic Multipole Water Model. Journal of Physical Chemistry B, 2015. 119(29): p. 9423-9437.

26. Ren, P.Y., C.J. Wu, and J.W. Ponder, Polarizable Atomic Multipole-Based Molecular

Mechanics for Organic Molecules. Journal of Chemical Theory and Computation, 2011. 7(10): p. 3143-3161.

27. Ren, P.Y. and J.W. Ponder, Polarizable atomic multipole water model for molecular mechanics simulation. Journal of Physical Chemistry B, 2003. 107(24): p. 5933-5947. 28. Shi, Y., Z. Xia, J.J. Zhang, R. Best, C.J. Wu, J.W. Ponder, and P.Y. Ren, Polarizable Atomic

Multipole-Based AMOEBA Force Field for Proteins. Journal of Chemical Theory and Computation, 2013. 9(9): p. 4046-4063.

29. TINKER V7.1, 2015, Software tools for molecular design, Jay Ponder Lab, Department of Chemistry, Washington University, Saint Louis, Missouri 63130 USA, available from

http://dasher.wustl.edu/tinker/.

30. Metropolis, N., A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller, Equation of State Calculations by Fast Computing Machines. Journal of Chemical Physics, 1953. 21(6): p. 1087-1092.

31. Grossfield, A., P.Y. Ren, and J.W. Ponder, Ion solvation thermodynamics from simulation with a polarizable force field. Journal of the American Chemical Society, 2003. 125(50): p. 15671- 15682.

32. Grimme, S., J. Antony, S. Ehrlich, and H. Krieg, A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. Journal of Chemical Physics, 2010. 132(15).

33. Morgado, C., M.A. Vincent, I.H. Hillier, and X. Shan, Can the DFT-D method describe the full range of noncovalent interactions found in large biomolecules? Physical Chemistry Chemical Physics, 2007. 9(4): p. 448-451.

34. Sierka, M., A. Hogekamp, and R. Ahlrichs, Fast evaluation of the Coulomb potential for electron densities using multipole accelerated resolution of identity approximation. Journal of Chemical Physics, 2003. 118(20): p. 9136-9148.

35. Kohn, W. and L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 1965. 140(4A): p. 1133-&.

36. Weigend, F. and A. Baldes, Segmented contracted basis sets for one- and two-component Dirac-Fock effective core potentials. Journal of Chemical Physics, 2010. 133(17).

61

37. Hellweg, A., C. Hattig, S. Hofener, and W. Klopper, Optimized accurate auxiliary basis sets for RI-MP2 and RI-CC2 calculations for the atoms Rb to Rn. Theoretical Chemistry Accounts, 2007. 117(4): p. 587-597.

38. TURBOMOLE V7.1, 2015, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007, available from

http://www.turbomole.com.

39. Klamt, A. and G. Schuurmann, Cosmo - a New Approach to Dielectric Screening in Solvents with Explicit Expressions for the Screening Energy and Its Gradient. Journal of the Chemical Society-Perkin Transactions 2, 1993(5): p. 799-805.

40. Sinnecker, S., A. Rajendran, A. Klamt, M. Diedenhofen, and F. Neese, Calculation of solvent shifts on electronic g-tensors with the conductor-like screening model (COSMO) and its self- consistent generalization to real solvents (Direct COSMO-RS). Journal of Physical Chemistry A, 2006. 110(6): p. 2235-2245.

41. Gloaguen, E. and M. Mons, Isolated Neutral Peptides, in Gas-Phase IR Spectroscopy and Structure of Biological Molecules. 2015. p. 225-270.

42. Boys, S.F. and F. Bernardi, The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors (Reprinted from Molecular Physics, vol 19, pg 553-566, 1970). Molecular Physics, 2002. 100(1): p. 65-73.

43. Kapota, C., J. Lemaire, P. Maitre, and G. Ohanessian, Vibrational signature of charge solvation vs salt bridge isomers of sodiated amino acids in the gas phase. Journal of the American Chemical Society, 2004. 126(6): p. 1836-1842.

44. Drayss, M.K., P.B. Armentrout, J. Oomens, and M. Schaefer, IR spectroscopy of cationized aliphatic amino acids: Stability of charge-solvated structure increases with metal cation size. International Journal of Mass Spectrometry, 2010. 297(1-3): p. 18-27.

45. Drayss, M.K., D. Blunk, J. Oomens, B. Gao, T. Wyttenbach, M.T. Bowers, and M. Schafer, Systematic Study of the Structures of Potassiated Tertiary Amino Acids: Salt Bridge Structures Dominate. Journal of Physical Chemistry A, 2009. 113(34): p. 9543-9550.

46. Bush, M.F., J. Oomens, R.J. Saykally, and E.R. Williams, Effects of alkaline earth metal ion complexation on amino acid zwitterion stability: Results from infrared action spectroscopy. Journal of the American Chemical Society, 2008. 130(20): p. 6463-6471.

47. Dunbar, R.C., J.D. Steill, and J. Oomens, Cationized phenylalanine conformations characterized by IRMPD and computation for singly and doubly charged ions. Physical Chemistry Chemical Physics, 2010. 12(41): p. 13383-13393.

48. Dunbar, R.C., N.C. Polfer, and J. Oomens, Gas-phase zwitterion stabilization by a metal dication. Journal of the American Chemical Society, 2007. 129(47): p. 14562-14563. 49. Dunbar, R.C., A.C. Hopkinson, J. Oomens, C.K. Siu, K.W.M. Siu, J.D. Steill, U.H. Verkerk, and

J.F. Zhao, Conformation Switching in Gas-Phase Complexes of Histidine with Alkaline Earth Ions. Journal of Physical Chemistry B, 2009. 113(30): p. 10403-10408.

50. Oomens, J., J.D. Steill, and B. Redlich, Gas-Phase IR Spectroscopy of Deprotonated Amino Acids. Journal of the American Chemical Society, 2009. 131(12): p. 4310-4319.

51. Steill, J.D. and J. Oomens, Action Spectroscopy of Gas-Phase Carboxylate Anions by Multiple Photon IR Electron Detachment/Attachment. Journal of Physical Chemistry A, 2009. 113(17): p. 4941-4946.

52. Handschuh, M., S. Nettesheim, and R. Zenobi, Is infrared laser-induced desorption a thermal process? The case of aniline. Journal of Physical Chemistry B, 1999. 103(10): p. 1719-1726. 53. Gloaguen, E., B. de Courcy, J.P. Piquemal, J. Pilme, O. Parisel, R. Pollet, H.S. Biswal, F. Piuzzi,

B. Tardivel, M. Broquier, and M. Mons, Gas-Phase Folding of a Two-Residue Model Peptide Chain: On the Importance of an Interplay between Experiment and Theory. Journal of the American Chemical Society, 2010. 132(34): p. 11860-11863.

54. Curie and Cobalt supercomputers, owned by GENCI and operated into the TGCC by CEA,