• Aucun résultat trouvé

Montage expérimental pour la détection du signal seul

Le montage expérimental est le même que dans le cas où on fait une détection combinée du signal et de l’idler, sauf que cette fois-ci, on filtre la pompe résiduelle par l’interme-diaire d’un filtre notch. Le signal et l’idler sont ensuite amplifiés avec un EDFA2 et filtrés avec deux filtres. Le premier filtre permet de supprimer une bonne partie de l’ASE et le deuxième permet de ne détecter que le signal seul (voir figure D.3), comme dans l’expé-rience correspondante du chapitre 4.

Figure D.3 – Montage expérimental utilisé pour caracteriser le bruit du signal.

D.4 Résultats

Les mêmes mesures que précédemment ont été effectuées en ne détectant cette fois que le signal. La figure D.4 montre une comparaison entre les mesures expérimentales de puissance de bruit (courbe bleu) et la courbe théorique obtenue en calculant le bruit de grenaille qui correspond au photocourant détecté (équation D.1). A partir de la figure

D.4 a), nous remarquons pour la plage du photocourent qui nous intéresse (≤ 0.15 mA) que la puissance de bruit mesurée est supérieure à la puissance de bruit de grenaille calculée. Cette différence entre les deux courbes est de l’ordre de 7 dB.

Sur la figure D.4 b) nous présentons la variation de puissance de bruit en fonction du photocorant détecté en régime linéaire. Nous observons que même pour les faibles photocorants (≤ 0.15 mA), la variation de puissance de bruit n’est jamais linéaire en fonction du photocourant. Ceci montre que le signal et l’idler à l’entrée de l’amplificateur ne sont pas limités par le bruit de grenaille mais plutôt limités par le bruit introduit par l’EDFA2.

Figure D.4 – Courbe de variation de puissance de bruit à 300 MHz en fonction du photocourant détecté. a) En régime logarithmique : mesures expérimentales (courbe bleu) et calcul de bruit de grenaille correspond au photocourant détecté (courbe rouge). b) En régime linéaire : mesures expérimentales (courbe bleu) et calcul de bruit de grenaille correspond au photocourant détecté (courbe rouge).

La raison pour laquelle le bruit de l’EDFA domine toujours le bruit de grenaille dans cette configuration et non dans la précédente est liée à la position de cet EDFA par rapport aux pertes. Dans la configuration de la figure (D.1), l’EDFA est suivi par deux coupleurs et deux filtres passe bande qui introduisent des pertes considérables, ramenant ainsi le niveau de bruit au bruit de grenaille. Ce n’est pas le cas dans le montage de la figure (D.3).

[1] G.P. Agrawal. Fiber-optic communication systems. Wiley Series in Microwave and

Optical Engineering, 1997.

[2] A. Mussot. Parametric amplification in optical fiber for high bit rate

telecommuni-cation. Theses, Université de Franche-Comté, 2004.

[3] M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi. Silica-based highly nonlinear fibers and their application. IEEE Journal of Selected Topics in Quantum

Electro-nics, 15(1) :103–113, 2009.

[4] R. Tang, P. Devgan, J. Lasri, V. Grigoryan, and P. Kumar. Experimental investiga-tion of a frequency-nondegenerate phase-sensitive optical parametric amplifier. In

Optical Fiber Communication Conference, page OWN6. Optical Society of America,

2005.

[5] Z. Tong, A. Bogris, C. Lundström, C.J. McKinstrie, M. Vasilyev, M. Karlsson, and P.A. Andrekson. Modeling and measurement of the noise figure of a cascaded non-degenerate phase-sensitive parametric amplifier. Optics Express, 18(14) :14820– 14835, 2010.

[6] J. Yao. Microwave photonics. Journal of Lightwave Technology, 27(3) :314–335, 2009.

[7] A. Agarwal, T. Banwell, and T.K. Woodward. Optically filtered microwave pho-tonic links for rf signal processing applications. Journal of Lightwave Technology, 29(16) :2394–2401, 2011.

[8] J.A. Overbeck, M.S. Salisbury, M.B. Mark, and E.A. Watson. Required energy for a laser radar system incorporating a fiber amplifier or an avalanche photodiode.

Applied Optics, 34(33) :7724–7730, 1995.

[9] E. Udvary, T. Bánky, A. Hilt, and T. Marozsák. Noise and gain properties of semiconductor optical amplifiers. In Optical Wireless Workshop in the Framework

of the European MOIKIT project, volume 3, 2001.

[10] K. Keita, R. Frey, P. Delaye, D. Dolfi, J.P. Huignard, and G. Roosen. Stimulated raman scattering for variable gain amplification of small optically carried microwave signals. Optics communications, 263(2) :300–303, 2006.

[11] C.M. Caves. Quantum limits on noise in linear amplifiers. Physical Review D, 1982. [12] W. E. Stephens and T. R. Joseph. System characteristics of direct modulated and externally modulated rf fiber-optic links. Journal of Lightwave Technology, 5(3) :380–387, 1987.

[13] B.E. Saleh and M.C Teich. Fundamentals of photonics, volume 22. Wiley New York, 1991.

[14] E.I. Ackerman and C.H. Cox. Rf fiber-optic link performance. IEEE Microwave

Magazine, 2(4) :50–58, 2001.

[15] J. Darricau. Radars : Principes et éléments de base. Techniques de l’ingénieur.

Télécoms, (E6650) :E6650–1, 1996.

[16] T. Hosaka T . Miya, Y. Terunuma and T. Miyashita. Ultimate low-loss single-mode fibre at 1.55 µm. Electron Letters, 15(4) :106–108, 1979.

[17] F.P. Kapron, D.B. Keck, and R.D. Maurer. Radiation losses in glass optical wave-guides. Applied Physics Letters, 17(10) :423–425, 1970.

[18] S. Makovejs, C. Roberts, F. Palacios, H.B. Matthews, D.A. Lewis, D.T. Smith, P.G. Diehl, J.J. Johnson, J.D. Patterson, and C. Towery. Record-low (0.1460 db/km) attenuation ultra-large aeff optical fiber for submarine applications. In Optical Fiber

[19] H. Zmuda and E. Toughlian. Photonics aspects of modern radars. Artech House, 1994.

[20] P. Goldgeier and G. Eisenstein. Broad-band microwave-optical fiber links transmit-ting over long distances with optical amplification. IEEE Microwave and Guided

Wave Letters, 9(1) :40–42, 1999.

[21] R. Laming, M.N. Zervas, and D.N. Payne. Erbium-doped fiber amplifier with 54 db gain and 3.1 db noise figures. IEEE Photonics Technology Letters, 4(12) :1345–1347, 1992.

[22] F. Demartini and J. Ducuing. Stimulated raman scattering in hydrogen : a measu-rement of the vibrational lifetime. Physical Review Letters, 17(3) :117–119, 1966. [23] G. Eckhardt, R.W. Hellwarth, F.J. McClung, S.E. Schwarz, D. Weiner, and E.J.

Woodbury. Stimulated raman scattering from organic liquids. Physical Review

Letters, 9(11) :455, 1962.

[24] V.V. Grigoryants, B.L. Davydov, M.E. Zhabotinski, V.F. Zolin, G.A. Ivanov, V.I. Smirnov, and Y.K. Chamorovski. Spectra of stimulated raman scattering in silica-fibre waveguides. Optical and Quantum Electronics, 9(4) :351–352, 1977.

[25] R.H. Stolen and E.P. Ippen. Raman gain in glass optical waveguides. Applied

Physics Letters, 22(6) :276–278, 1973.

[26] D.A. Chestnut and J.R. Taylor. Gain-flattened fiber raman amplifiers with nonlinearity-broadened pumps. Optics Letters, 28(23) :2294–2296, 2003.

[27] M.N. Islam and Ö. Boyraz. Fiber parametric amplifiers for wavelength band conver-sion. IEEE Journal of Selected Topics in Quantum Electronics, 8(3) :527–537, 2002. [28] H.P. Yuen. Amplification of quantum states and noiseless photon amplifiers. Physics

Letters A, 113(8) :405–407, 1986.

[29] E. Desurvire. Erbium doped fiber amplifiers : principles and applications. John

Wiley and Sons, Inc., New York, 2e edition, 2002.

[31] G. P. Agrawal. Nonlinear Fiber Optics. 3rd edition. 2001.

[32] A. Boskovic, L. Gruner-Nielsen, O.A. Levring, S.V. Chernikov, and J.R. Taylor. Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 µm. Optics Letters, 21(24) :1966–1968, 1996.

[33] R.H. Stolen and J.E. Bjorkholm. Parametric amplification and frequency conversion in optical fibers. IEEE Journal of Quantum Electronics, 18(7) :1062–1072, 1982. [34] Y. Aoki, K. Tajima, and I. Mito. Input power limits of single-mode optical fibers

due to stimulated brillouin scattering in optical communication systems. Journal of

Lightwave Technology, 6(5) :710–719, 1988.

[35] K. Shiraki, M. Ohashi, and M. Tateda. Suppression of stimulated brillouin scattering in a fibre by changing the core radius. Electronics letters, 31(8) :668–669, 1995. [36] M. Ohashi and M. Tateda. Design of strain-free-fiber with nonuniform dopant

concentration for stimulated brillouin scattering suppression. Journal of Lightwave

Technology, 11(12) :1941–1945, 1993.

[37] M. Takahashi, M. Tadakuma, and T. Yagi. Dispersion and brillouin managed hnlfs by strain control techniques. Journal of Lightwave Technology, 28(1) :59–64, 2010. [38] J. Hansryd, F. Dross, M. Westlund, P.A. Andrekson, and S.N. Knudsen. Increase

of the sbs threshold in a short highly nonlinear fiber by applying a temperature distribution. Journal of Lightwave Technology, 19(11) :1691, 2001.

[39] D. Cotter. Transient stimulated brillouin scattering in long single-mode fibres.

Elec-tronics Letters, 18(12) :504–506, 1982.

[40] A. Kobyakov, S. Kumar, D. Chowdhury, A.B. Ruffin, M. Sauer, S. Bickham, and R. Mishra. Design concept for optical fibers with enhanced sbs threshold. Optics

Express, 13(14) :5338–5346, 2005.

[41] T. Sylvestre, H. Maillotte, E. Lantz, and P. Tchofo Dinda. Raman-assisted parame-tric frequency conversion in a normally dispersive single-mode fiber. Optics Letters, 24(22) :1561–1563, 1999.

[42] F. Vanholsbeeck, P. Emplit, and S. Coen. Complete experimental characterization of the influence of parametric four-wave mixing on stimulated raman gain. Optics

Letters, 28(20) :1960–1962, 2003.

[43] B.J. Puttnam, D. Mazroa, S. Shinada, and N. Wada. Phase-squeezing properties of non-degenerate psas using ppln waveguides. Optics Express, 19(26) :B131–B139, 2011.

[44] K.J. Lee, F. Parmigiani, S. Liu, J. Kakande, P. Petropoulos, K. Gallo, and D. Ri-chardson. Phase sensitive amplification based on quadratic cascading in a periodi-cally poled lithium niobate waveguide. Optics Express, 17(22) :20393–20400, 2009. [45] J.A. Levenson, P. Grangier, I. Abram, and T. Rivera. Reduction of quantum noise in optical parametric amplification. Journal of the Optical Society of America B, 10(11) :2233–2238, 1993.

[46] R. H. Stolen. Phase-matched-stimulated four-photon mixing in silica-fiber wave-guides. IEEE Journal of Quantum Electronics, QE-11(3) :100–103, 1975.

[47] R. Stolen and J. Bjorkholm. Parametric amplification and frequency conversion in optical fibers. IEEE Journal of Quantum Electronics, 18(7) :1062–1072, 1982. [48] R. Neo, J. Schröder, Y. Paquot, D. Choi, S. Madden, B. Luther-Davies, and B.J.

Eggleton. Phase-sensitive amplification of light in a χ (3) photonic chip using a dispersion engineered chalcogenide ridge waveguide. Optics Express, 21(7) :7926– 7933, 2013.

[49] Z. Chen, L. Yan, W. Pan, B. Luo, A. Yi, J. Ye, H. Jiang, and Y. Guo. Phase sensitive amplifier for {PSK} signals based on non-degenerate four-wave-mixing in the optical fiber. Optics Communications, 285(9) :2445 – 2450, 2012.

[50] Z. Tong, C. Lundström, P. Andrekson, M. Karlsson, and A. Bogris. Ultralow noise, broadband phase-sensitive optical amplifiers, and their applications. IEEE Journal

of Selected Topics in Quantum Electronics, 18(2) :1016–1032, 2012.

[51] Z. Tong, C. Lundström, P.A. Andrekson, C.J. McKinstrie, M. Karlsson, D.J. Bles-sing, E. Tipsuwannakul, B.J. Puttnam, H. Toda, and L. Grüner-Nielsen. Towards

ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers. Nature

Photonics, 5(7) :430–436, 2011.

[52] R. Loudon. Theory of noise accumulation in linear optical-amplifier chains. IEEE

Journal of Quantum Electronics, 21(7) :766–773, 1985.

[53] J. Hansryd and P. A. Andrekson. Broad-band continuous wave pumped fiber optical parametric amplifier with 49-db gain and wavelength conversion efficiency. IEEE

Photonics Technology Letters, 13 :194–196, 2001.

[54] K. Inoue. Optical level equalisation based on gain saturation in fibre optical para-metric amplifier. Electronics Letters, 36(12) :1016–1017, 2000.

[55] A. Agarwal, J. M. Dailey, P. Toliver, and N.A. Peters. Entangled-pair transmission improvement using distributed phase-sensitive amplification. Physical Review X, 4 :041038, 2014.

[56] R.H. Stolen. Phase-matched-stimulated four-photon mixing in silica-fiber wave-guides. IEEE Journal of Quantum Electronics, 11(3) :100–103, 1975.

[57] R.H. Stolen and J.E. Bjorkholm. Parametric amplification and frequency conversion in optical fibers. IEEE Journal of Quantum Electronics, 18(7) :1062–1072, 1982. [58] D.F. Walls. Squeezed states of light. Nature, 306 :141–146, 1983.

[59] R.E. Slusher and B. Yurke. Squeezed light for coherent communications. Journal

of Lightwave Technology, 8(3) :466–477, 1990.

[60] M. C. Teich and B. E. Saleh. Squeezed states of light. Quantum Optics, 1(2) :153– 191, 1989.

[61] Z. Tong and S. Radic. Low-noise optical amplification and signal processing in parametric devices. Advances in Optics and Photonics, 5(3) :318–384, 2013.

[62] Y. Yamamoto and K. Inoue. Noise in amplifiers. Journal of Lightwave Technology, 21(11) :2895, 2003.

[63] Z. Tong, C. Lundström, P.A. Andrekson, M. Karlsson, and A. Bogris. Ultralow noise, broadband phase-sensitive optical amplifiers, and their applications. IEEE

Journal of Selected Topics in Quantum Electronics, 18(2) :1016–1032, March 2012.

[64] W. Imajuku, A. Takada, and Y. Yamabayashi. Inline coherent optical amplifier with noise figure lower than 3 db quantum limit. Electronics Letters, 36(1) :63–64, 2000.

[65] K. Croussore and G. Li. Phase and amplitude regeneration of differential phase-shift keyed signals using phase-sensitive amplification. IEEE Journal of Selected Topics

in Quantum Electronics, 14(3) :648–658, 2008.

[66] R. Slavík, A. Bogris, F. Parmigiani, J. Kakande, M. Westlund, M. Skold, L. GruÌner-Nielsen, R. Phelan, D. Syvridis, and P. Petropoulos. Coherent all-optical phase and amplitude regenerator of binary phase-encoded signals. IEEE Journal of Selected

Topics in Quantum Electronics, 18(2) :859–869, 2012.

[67] P. A. Andrekson Z. Tong M. Karlsson P. Petropoulos F. Parmigiani J. Kakande, C. Lundström and D. J. Richardson. Multilevel quantization of optical phase in a novel coherent parametric mixer architecture. Nature Photonics, 5(12) :748–752, October 2011.

[68] T. Umeki, M. Asobe, H. Takara, Y. Miyamoto, and H. Takenouchi. Multi-span transmission using phase and amplitude regeneration in ppln-based psa. Optics

Express, 21(15) :18170–18177, 2013.

[69] Nonlinear fiber optics. 5th ed. Academic press, 2012.

[70] M.E. Marhic, K.KY. Wong, and L.G. Kazovsky. Fiber optical parametric amplifiers with linearly or circularly polarized waves. Journal of the Optical Society of America

B, 20(12) :2425–2433, 2003.

[71] G. Cappellini and S. Trillo. Third-order three-wave mixing in single-mode fibers : exact solutions and spatial instability effects. Journal of the Optical Society of

[72] D. Lovering, J. Webjörn, P.S. Russell, J.A. Levenson, and P. Vidakovic. Noiseless optical amplification in quasi-phase-matched bulk lithium niobate. Optics Letters, 21(18) :1439–1441, 1996.

[73] E. Lantz and F. Devaux. Parametric amplification of images : from time gating to noiseless amplification. IEEE Journal of Selected Topics in Quantum Electronics, 14(3) :635–647, 2008.

[74] D. Levandovsky, M. Vasilyev, and P. Kumar. Amplitude squeezing of light by means of a phase-sensitive fiber parametric amplifier. Optics Letters, 24(14) :984–986, 1999. [75] K. Croussore, I. Kim, Y. Han, Ch. Kim, G. Li, and S. Radic. Demonstration of phase-regeneration of dpsk signals based on phase-sensitive amplification. Optics

Express, 13(11) :3945–3950, 2005.

[76] K. Croussore and G. Li. Phase regeneration of nrz-d signals based on symmetric-pump phase-sensitive amplification. IEEE Photonics Technology Letters, 11(19) :864–866, 2007.

[77] R. Tang, P. Devgan, P. Voss, and P. Grigoryan, V. et Kumar. In-line frequency-nondegenerate phase-sensitive fiber-optical parametric amplifier. IEEE Photonics

Technology Letters, 17(9) :1845–1847, 2005.

[78] K.J Lee, F. Parmigiani, S. Liu, J. Kakande, P. Petropoulos, K. Gallo, and D. Ri-chardson. Phase sensitive amplification based on quadratic cascading in a periodi-cally poled lithium niobate waveguide. Optics Express, 17(22) :20393–20400, 2009. [79] M. Marhic, N. Kagi, T. Chiang, and L.G. Kazovsky. Broadband fiber optical

para-metric amplifiers. Optics Letters, 21(8) :573–575, 1996.

[80] M. E Marhic, K. Wong, and L.G. Kazovsky. Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers. IEEE Journal of Selected Topics

in Quantum Electronics, 10(5) :1133–1141, 2004.

[81] C.J. McKinstrie, S. Radic, R.M. Jopson, and A.R. Chraplyvy. Quantum noise limits on optical monitoring with parametric devices. Optics Communications,

[82] C.J. McKinstrie, M. Yu, M.G. Raymer, and S. Radic. Quantum noise properties of parametric processes. Optics Express, 13(13) :4986–5012, 2005.

[83] M. Vasilyev. Phase-sensitive amplification in optical fibers. In Frontiers in Optics, page FThB1. Optical Society of America, 2005.

[84] Z. Tong, A. Bogris, M. Karlsson, and P.A. Andrekson. Full characterization of the signal and idler noise figure spectra in single-pumped fiber optical parametric amplifiers. Optics Express, 18(3) :2884–2893, 2010.

[85] Z. Tong, C.J. McKinstrie, C. Lundström, M. Karlsson, and P.A. Andrekson. Noise performance of optical fiber transmission links that use non-degenerate cascaded phase-sensitive amplifiers. Optics Express, 18(15) :15426–15439, 2010.

[86] J. Kakande, C. Lundström, P.A. Andrekson, Z. Tong, M. Karlsson, P. Petropoulos, F. Parmigiani, and D.J. Richardson. Detailed characterization of a fiber-optic para-metric amplifier in phase-sensitive and phase-insensitive operation. Optics Express, 18(5) :4130–4137, 2010.

[87] C. Lundström, J. Kakande, P.A. Andrekson, Z. Tong, M. Karlsson, P. Petropoulos, F. Parmigiani, and D.J. Richardson. Experimental comparison of gain and satura-tion characteristics of a parametric amplifier in phase-sensitive and phase-insensitive mode. ECOC 2009, 2009.

[88] R. Tang, J. Lasri, P.S. Devgan, V. Grigoryan, P. Kumar, and M. Vasilyev. Gain characteristics of a frequency nondegenerate phase-sensitive fiber-optic parametric amplifier with phase self-stabilized input. Optics Express, 13(26) :10483–10493, 2005.

[89] D. M. Baney, P. Gallion, and R.S. Tucker. Theory and measurement techniques for the noise figure of optical amplifiers. Optical Fiber Technology, 6(2) :122–154, 2000. [90] O. Lim, V. Grigoryan, M. Shin, and P. Kumar. Ultra-low-noise inline fiber-optic phase-sensitive amplifier for analog optical signals. In Optical Fiber Communication

[91] J. Kakande, R. Slavík, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R. Phelan, P. Petropoulos, and D.J. Richardson. Multilevel quantization of op-tical phase in a novel coherent parametric mixer architecture. Nature Photonics, 5(12) :748–752, 2011.

[92] Z. Tong, A.O. Wiberg, E. Myslivets, B.P. Kuo, N. Alic, and S. Radic. Broadband parametric multicasting via four-mode phase-sensitive interaction. Optics Express, 20(17) :19363–19373, 2012.

[93] M.E. Marhic, K.K Wong, and L.G. Kazovsky. Fiber optical parametric amplifiers with linearly or circularly polarized waves. Journal of the Optical Society of America

B, 20(12) :2425–2433, 2003.

[94] T. Tanemura and K. Kikuchi. Unified analysis of modulational instability induced by cross-phase modulation in optical fibers. Journal of the Optical Society of America

B, 20(12) :2502–2514, 2003.

[95] Q. Lin and G.P. Agrawal. Vector theory of four-wave mixing : polarization effects in fiber-optic parametric amplifiers. Journal of the Optical Society of America B, 21(6) :1216–1224, 2004.

[96] R. Malik, A. Kumpera, A. Lorences-Riesgo, P.A. Andrekson, and M. Karlsson. Frequency-resolved noise figure measurements of phase (in) sensitive fiber optical parametric amplifiers. Optics Express, 22(23) :27821–27832, 2014.

[97] Z. Tong, C. Lundström, M. Karlsson, M. Vasilyev, and P.A. Andrekson. Noise per-formance of a frequency nondegenerate phase-sensitive amplifier with unequalized inputs. Optics Letters, 36(5) :722–724, 2011.

[98] R. Loudon. Theory of noise accumulation in linear optical-amplifier chains. IEEE

Journal of Quantum Electronics, 21(7) :766–773, 1985.

[99] G. Ferrini, I. Fsaifes, T. Labidi, F. Goldfarb, N. Treps, and F. Bretenaker. Symplec-tic approach to the amplification process in a nonlinear fiber : role of signal-idler correlations and application to loss management. Journal of the Optical Society of

[100] P. Kumar. Quantum frequency conversion. Optics Letters, 15(24) :1476–1478, 1990. [101] Y. Yamamoto and K. Inoue. Noise in amplifiers. Journal of Lightwave Technology,

21(11) :2895, 2003.

[102] S.K. Korotky, P.B. Hansen, L. Eskildsen, and J.J. Veselka. Efficient phase modu-lation scheme for suppressing stimulated brillouin scattering. In Tech. Dig. Int.

Conf. Integrated Optics and Optical Fiber Communications, volume 2, pages 110–

111, 1995.

[103] M. Vasilyev. Distributed phase-sensitive amplification. Optics Express,

13(19) :7563–7571, 2005.

[104] Z. Tong, C. Lundström, A. Bogris, M. Karlsson, P. Andrekson, and D. Syvridis. Measurement of sub-1db noise figure in a non-degenerate cascaded phase-sensitive fibre parametric amplifier. ECOC 2009, 2009.

[105] A. Durecu-Legrand, A. Mussot, C. Simonneau, D. Bayart, T. Sylvestre, E. Lantz, and H. Maillotte. Impact of pump phase modulation on system performance of fibre-optical parametric amplifiers. Electronics Letters, 41 :83–84, 2005.

[106] R. Malik, A. Kumpera, M. Karlsson, and P.A. Andrekson. Demonstration of ul-tra wideband phase-sensitive fiber optical parametric amplifier. IEEE, Photonics

Technology Letters, 28(2) :175–177, 2016.

[107] G. Mingyi, I. Takashi, K. Takayuki, and N. Shu. Evolution of the gain extinction ratio in dual-pump phase sensitive amplification. Optics Letters, 37(9) :1439–1441, 2012.

[108] W. Xie, I.Fsaifes, T.Labidi, and F.Bretenaker. Investigation of degenerate dual-pump phase sensitive amplifier using multi-wave model. Optics Express,

23(25) :31896–31907, 2015.

[109] E. Ackerman. Photonic aspects of modern radar. Artech House, Inc., 1994.

[110] J. Schaffner and W. Bridges. Intermodulation distortion in high dynamic range microwave fiber-optic links with linearized modulators. Journal of Lightwave

[111] T. Labidi, I. Fsaifes, S. De, F. Goldfarb, and F. Bretenaker. Optical phase sensi-tive amplification for microwave photonics applications : intermodulation distortion analysis. In 12th International Conference on Fiber Optics and Photonics, page S4A.3. Optical Society of America, 2014.

[112] J. Li, Y. Zhang, S. Yu, T. Jiang, Q. Xie, and W. Gu. Third-order intermodulation distortion elimination of microwave photonics link based on integrated dual-drive dual-parallel mach–zehnder modulator. Optics Letters, 38(21) :4285–4287, 2013. [113] P. Li, L. Yan, T. Zhou, W. Li, Z. Chen, W. Pan, and B. Luo. Improvement of

linearity in phase-modulated analog photonic link. Optics Letters, 38(14) :2391– 2393, 2013.

Université Paris-Saclay

Espace Technologique / Immeuble Discovery

Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

Mots clés : Optique non linéaire, Amplificateur optique, Effet Kerr, Mélange à quatre ondes.

Résumé : Les liaisons opto-hyperfréquences sont appelées à jouer un rôle important dans les futurs systèmes micro-ondes. Elles permettent par exemple de transporter des signaux radars ou des oscillateurs locaux sur porteuse optique sur de longues distances. Elles permettent également de réaliser un certain nombre de fonctions comme des déphasages, l’introduction de retards vrais sur de larges bandes passantes, le filtrage reconfigurable des signaux, ou même des fonctions plus complexes comme de l’analyse spectrale ou de la corrélation de signaux hyperfréquences. Comme tous les systèmes opto-hyper, elles souffrent de pertes dues soit à la conversion opto-hyper, soit tout simplement à la propagation. Les amplificateurs classiques, par exemple à fibre dopée erbium, à semi-conducteur, ou à effet Raman dans les fibres, ne permettent pas de compenser ces pertes sans dégrader le rapport signal sur bruit. L’objectif de la thèse est l’étude et la réalisation expérimentale d’un amplificateur optique sensible à la phase basé sur des fibres hautement non linéaires (HNLF) pour

amplifier des signaux analogiques sans ajouter de bruit. La majeure partie de ce travail de thèse a été consacrée à la mise en œuvre d’une expérience qui porte sur l’amplification sensible à la phase avec une seule pompe. Notre étude a également porté sur l'investigation des performances de cet amplificateur en termes de linéarité et de bruit. La linéarité de l’amplificateur a été testée en comparant les produits d’intermodulation d’ordre 3 (IMD3) lorsque le PSA est activé et le PSA est désactivé. Nous avons montré à partir de ces mesures que l’introduction de l’amplificateur sensible à la phase dans la liaison n’a pas dégradé la dynamique libre de parasite (SFDR). De plus, nous avons étudié les performances de notre amplificateur sensible à la phase en termes de bruit en effectuant des mesures de son facteur de bruit (NF). Ainsi, nous avons mesuré un facteur de bruit de -2.07 dB dans le cas où l’on ne détecte que le signal, tandis qu’un facteur de bruit de 0.2 dB est obtenu lors de la détection de l’ensemble « signal et idler ».

.

Title : Phase sensitive amplification of optically carrier analog signals

Keywords :Nonlinear optics, Optical amplifier, Kerr effect, Four wave mixing.

Abstract: Microwave photonics links are expected to play an important role in future RF systems. Based on low loss optical fibers, analog photonic links (APLs) have become the heart of the emerging field of microwave photonics, in which various functionalities are explored such as the generation and distribution of radar signals and local oscillators, phase shifting, reconfigurable true time delays, or even more complex functions such as spectrum analysis or correlation of RF signals. Unavoidably, microwave photonics systems undergo losses due either to microwave-to-optical conversion or to propagation. Classical amplifiers based on erbium doped fibers, semiconductor amplification, or Raman scattering in fibers, do not allow to compensate for these losses without degrading the signal-to-noise ratio. The aim of this thesis is to address this issue and to study theoretically and experimentally an optical phase-sensitive amplifier based on highly nonlinear fiber