• Aucun résultat trouvé

Corrigé de la série 5

N/A
N/A
Protected

Academic year: 2022

Partager "Corrigé de la série 5"

Copied!
2
0
0

Texte intégral

(1)

EPFLAlgèbre linéaire 1ère année 2009-2010

Corrigé de la série 5

Exercice 1. 1. Siv= (x1, x2, x3)∈V, alorsx3 = 0estvpeut être écritv=x1(1,0,0) + x2(0,1,0). On a donc V = span

(1,0,0),(0,1,0)

et comme ces deux vecteurs sont linéairement indépendants, la liste est une base deV. On a doncdimV = 2.

2. Siv= (x1, x2, x3, x4)∈V, alorsx1=−2x2 etx4= 3x2+x3. On peut donc écrire v= (−2x2, x2, x3,3x2+x3) =x2·(−2,1,0,3) +x3·(0,0,1,1).

Commevest un élément quelconque deV, on a montré queV = span (−2,1,0,3),(0,0,1,1) . Soientα, β∈Ftels queα(−2,1,0,3)+β(0,0,1,1) = 0, alors on a(−2α, α, β,3α+β) = 0.

On obtientα=β= 0. Les deux vecteurs(−2,1,0,3)et(0,0,1,1)sont donc linéairement indépendants. La liste (−2,1,0,3),(0,0,1,1)

est donc une base deV etdimV = 2.

3. Soit p = P4

i=0aiXi ∈ V, a0, . . . , a4 ∈ R. On a alors 0 = p(0) = a0 et 0 = p(1) = a0+a1+a2+a3+a4. On obtient

p=a1X+a2X2+a3X3+ (−a1−a2−a3)X4=a1(X−X4) +a2(X2−X4) +a3(X3−X4).

Commmep∈V est un élément quelconque, on a montré queV = span X−X4, X2− X4, X3−X4

. On montre que les trois polynômes sont linéairement indépendants : si α, β, γ∈Rsont tels queα(X−X4) +β(X2−X4) +γ(X3−X4) = 0, alorsαX+βX2+ γX3+ (−α−β−γ)X4= 0et doncα=β=γ= 0. Donc X−X4, X2−X4, X3−X4 est une base deV etdimV = 3.

4. Soitp =Pn

j=0ajXj ∈ V avec a0, . . . , an ∈ C. On a alorsp(iX) =ip(X), c’est-à-dire Pn

j=0iajXj−Pn

j=0aj(iX)j= 0. On sait que

(iX)j=







iXj si j≡1 mod 4

−Xj si j≡2 mod 4

−iXj si j≡3 mod 4 Xj si j≡0 mod 4 ,

où, pourn, m∈N, on écritm≡j modnsij∈ {0, . . . , n−1}est le reste de la division euclidienne demparn. On obtient

X

j∈{0,...,n}

j≡0 mod 4

aj(i−1)Xj+ X

j∈{0,...,n}

j≡2 mod 4

aj(i+ 1)Xj+ X

j∈{0,...,n}

j≡3 mod 4

aj2iXj= 0.

Cela implique aj= 0pour tout les indicesj∈ {0, . . . , n}tels quej≡0 mod 4, j≡2 mod 4ouj≡3 mod 4. Doncp=a1X+a5X5+. . .+amXm oùm∈ {0, . . . , n}est le dernier nombre tel quem≡1 mod 4. La familleB={X4m+1|m∈N}satisfait donc span(B) =V. CommeBest linéairement indépendante, on trouve queBest une base de V. D’après le théorème de la borne,V est donc de dimension infinie.

1

5. Une matrice A = (aij)i,j=1,...,n ∈ Mat(n, n;F) est symétrique si A = At, c’est-à-dire aij=ajipouri, j= 1, . . . , n. On a alors

A=





a11 a12 · · · a1n

a21 a22 · · · a2n

... ... ... ...

an1 an2 · · · ann



=





a11 a12 · · · a1n

a12 a22 · · · a2n

... ... ... ...

a1n a2n · · · ann



= Xn

i=1

aiiEii+ X

1≤i<j≤n

aij(Eij+Eji),

oùEkl∈Mat(n, n;F)est la matrice ayant pour coefficients(Ekl)ij= 0si(i, j)6= (k, l)et (Ekl)kl= 1. Comme chaque matrice symétrique peut être écrite de cette façon, on trouve que B={E11, . . . , Enn} ∪ {Eij+Eji|i, j∈ {1, . . . , n}, i < j}

est une liste génératrice de V. On doit montrer queBest linéairement indépendante.

Soientαij∈Fpour1≤i≤j≤ntels que Xn

i=1

αiiEii+ X

1≤i<j≤n

αij(Eij+Eji) =On

(la matrice nulle,(On)ij= 0pouri, j= 1, . . . , n). On a alors





α11 α12 · · · α1n

α12 α22 · · · α2n

... ... ... ...

α1n α2n · · · αnn



=





0 0 · · · 0 0 0 · · · 0 ... ... ... ...

0 0 · · · 0



,

doncαij= 0pour1≤i≤j≤n.Best donc une base deV etdimV =n+Pn

i=1(n−i) = n+n2n(n+1)2 =2n+2n22−n2−n =n(n+1)2 .

Exercice 2. 1. On sait que(1, X, X2, X3)est une base deP3(R)car ces quatre polynômes sont linéairement indépendants et toutp∈P3(R)peut-être écritp=a+bX+dX2+dX3 aveca, b, c, d∈R. On a doncdimP3(R) = 4.

2. Pour montrer queBest une base deV, il suffit d’après le cours de montrer que ses quatre éléments sont linéairement indépendants. Soienta, b, c, d∈Rtels que

p:=a(X−1)(X+ 2)(X−3) +b(X+ 1)(X+ 2)(X−3) +c(X−1)(X+ 1)(X−3) +d(X−1)(X+ 1)(X+ 2) = 0.

Comme cela veut dire quep(x) = 0pour toutx∈R, on a alors en particulierp(1) = p(−2) =p(3) =p(−1) = 0. Cela implique0 =p(1) =b·2·3·(−2) =−12b,0 =p(−2) = c·(−3)·(−1)·(−5) =−15c,0 =p(3) =d·2·4·5 = 40det0 =p(−1) =a·(−2)·1·(−4) = 8a, et donca=b=c=d= 0.

3. Soitple polynôme cherché. CommeBest une base deP3(R), il existea, b, c, d∈Rtels que

p:=a(X−1)(X+ 2)(X−3) +b(X+ 1)(X+ 2)(X−3) +c(X−1)(X+ 1)(X−3) +d(X−1)(X+ 1)(X+ 2).

Comme plus haut, on a alorsp(1) =−12b,p(−2) =−15c,p(3) = 40detp(−1) = 8a.

Les conditionsp(−1) = 16,p(1) = 12,p(−2) = 5etp(3) =−10impliquent donca= 2, b=−1,c=−1/3etd=−1/4. On a donc trouvé

p=2(X−1)(X+ 2)(X−3)−(X+ 1)(X+ 2)(X−3)

−1/3(X−1)(X+ 1)(X−3)−1/4(X−1)(X+ 1)(X+ 2).

2

(2)

Exercice 3. 1. Soientα, β∈Ctels queα(i,−1, i,0,0) +β(0, i,−i,−1,0) = 0. On a alors (iα,−α+iβ, iα−iβ,−β,0) = 0et doncα=β= 0.Lest donc linéairement indépendante.

Soitv= (x1, x2, x3, x4, x5)∈C5, alorsvpeut être écrit

v=(x1, x2, x3, x4, x5) =−ix5·(0,0,0, i, i) + (x1, x2, x3, x4−x5,0)

=−ix5·(0,0,0, i, i)−ix1·(i,−1, i,0,0) + (0, x2−ix1, x3−x1, x4−x5,0)

=−ix5·(0,0,0, i, i)−ix1·(i,−1, i,0,0)−i(x2−ix1)·(0, i,−i,−1,0) + (0,0, x3−x1+x2−ix1, x4−x5−ix2−x1,0)

=−ix5·(0,0,0, i, i)−ix1·(i,−1, i,0,0)−i(x2−ix1)·(0, i,−i,−1,0)

+ (x3−x1+x2−ix1)·(0,0,1,1,0)−i(x4−x5−ix2−x3−x2+ix1)·(0,0,0, i,0).

Ceci montre quespan(S) =C5.

2. Les deux premiers vecteurs deSsont linéairement indépendants d’après la question pré- cédente. On ai·(i,−1, i,0,0) + (0, i,−i,−1,0) = (−1,0,−1−i,−1,0), et donc, d’après le lemme du vecteur superflu, on peut enlever le troisième vecteur de la liste. Ensuite, on trouve que les vecteurs(i,−1, i,0,0),(0, i,−i,−1,0),(0,0,0, i,0)et(0,0,1,1,0)sont linéairement indépendants. On a en effet

a(i,−1, i,0,0) +b(0, i,−i,−1,0) +c(0,0,0, i,0) +d(0,0,1,1,0) = 0

⇔ ai= 0, −a+bi= 0, ai−bi+d= 0, −b+ic+d= 0

⇔ a=b=c=d= 0.

On trouve(0, i,−i+ 1, i,0) = (0, i,−i,−1,0) + (0,0,0, i,0) + (0,0,1,1,0)et donc span(S) = span

(i,−1, i,0,0), (0, i,−i,−1,0), (0,0,0, i,0),(0,0,1,1,0),(0,0,0, i, i)

.

Comme ci-dessus, on peut montrer que ces cinq vecteurs sont linéairement indépendants.

La liste

B:=

(i,−1, i,0,0), (0, i,−i,−1,0), (0,0,0, i,0),(0,0,1,1,0),(0,0,0, i, i)

est donc la base cherchée.

3. Non. Par exemple,(0,0,0,1,1)∈C5n’est pas un élément despanR(B)car si

a(i,−1, i,0,0)+b(0, i,−i,−1,0)+c(0,0,0, i,0)+d(0,0,1,1,0)+e(0,0,0, i, i) = (0,0,0,1,1) alorse·i= 1et donce=−i6∈R.

La listeBR:= ((1,0),(i,0),(0,1),(0, i))est une base duR-espace vectorielC2. En effet, si (z1, z2)∈C2, alorsz1=x1+iy1etz2=x2+iy2avecx1, x2, y1, y2∈R. On a donc(z1, z2) = x1(1,0)+y1(i,0)+x2(0,1)+y2(0, i)∈spanR(BR)eta(1,0)+b(i,0)+c(0,1)+d(0, i) = (0,0) poura, b, c, d∈Rimpliquea=b=c=d= 0.

Noter que BR n’est pas linéairement indépendante dans le C-espace vectoriel C2 car (1,0) +i(i,0) + (0,1) +i(0, i) = (0,0).

La liste BC := ((1,0),(0,1)) est une base du C-espace vectoriel C2. On a (z1, z2) = z1(1,0) +z2(0,1)pour tout(z1, z2)∈C2eta(1,0) +b(0,1) = (0,0)aveca, b∈Cimplique a=b= 0.

Exercice 4. 1. Voir l’exercice 2 !

3

2. Admettons quespan(p0, . . . , pm) =Pm(R). Alors le polynôme constantp= 1peut être écritp=Pm

i=0aipiaveca0, . . . , am∈R. Mais on a alorsp(2) = 1etp(2) =Pm

i=0aipi(2) = Pm

i=0ai·0 = 0, une contradiction. Donc(p0, . . . , pm)ne peut pas être une base dePm(R).

Exercice 5. Si U et W sont des sous-espaces vectoriels deR4 de dimensions dimU = 3, dimW = 2et tels quedim(U∩W) =n, alorsU +W est un sous-espace vectoriel deR4de dimension

dim(U+W) = dimU+ dimW−dim(U∩W) = 5−n.

On obtientdim(U+W) = 5sin= 0. Ceci n’est pas possible car sidim(U+W) = 5, alors il existe une base deU+W composée de cinq vecteurs deR4qui vont en particulier être linéairement indépendants. D’après le théorème de la borne et le fait queR4= span(e1, e2, e3, e4), ceci n’est pas possible ! CommeU∩W⊆W, on adim(U∩W)≤dimW= 2. Il reste donc à déterminer s’il existeU etW comme demandé pourn= 1oun= 2.

Soient U1 = span(e1, e2, e3)et W1 = span(e3, e4). Alors on peut vérifier queU1∩W1 = span(e3). On adimU1= 3,dimW1= 2etdim(U1∩W1) = 1. Le casn= 1est donc possible.

Soient U2 = span(e1, e2, e3)et W2 = span(e2, e3). Alors on peut vérifier queU2∩W2 = span(e2, e3). On adimU2 = 3,dimW2= 2etdim(U2∩W2) = 2. Le casn= 2est donc aussi possible.

4

Références

Documents relatifs

Soit ABC un triangle équilatéral direct et ( Γ ) le cercle circonscrit au

Pour montrer que B est une base de V , il suffit d’après le cours de montrer que ses quatre éléments sont linéairement indépendants.. Soit p le

On supposera désormais &gt; 0: Montrer que la série converge alors ponctuellement sur [0;

[r]

2.. Une urne contient 6 boules blanches et 4 boules rouges indiscernables au toucher. Un essai consiste à tirer simultanément 3 boules de l'urne. Une partie comporte 7 essais

[r]

Soit K un convexe fermé d'un espace de Hilbert E3. (Indication : utiliser le théorème sur la somme

Dans ce qui suit, un anneau est toujours commutatif et possède un élément unité, noté en général 1..