• Aucun résultat trouvé

Méthodes Numériques I

N/A
N/A
Protected

Academic year: 2022

Partager "Méthodes Numériques I"

Copied!
7
0
0

Texte intégral

(1)

Energétique Alternance 2012-2013

Méthodes Numériques I

a

Travaux Pratiques No 2

Polynômes d'interpolation de Lagrange

a. Version du 7 janvier 2013

Table des matières

1 Rappels théoriques 2

2 Première approche matlab 2

3 Vectorisation 2

3.1 Un peu d'analyse numérique . . . . 3 3.2 Algorithme optimisé . . . . 3

4 Points de Tchebyche 4

5 Annexe 4

(2)

1 RAPPELS THÉORIQUES 2

Travail a rendre

Avant 17h00, rendre sur papier les réponses aux questions 3 et 6.

Avant 17h00, envoyer par mail à cuvelier@math.univ-paris13.fr une archive contenant l'intégralité des codes Matlab nécessaires à l'exécution des réponses aux questions 1, 2, 4, 7 et 8.

1 Rappels théoriques

Soient n P N et pxi, yiqiPv0,nw avec pxi, yiq P R2 et les xi distincts deux à deux. Le polynôme d'interpolation de Lagrange associé auxn 1points pxi, yiqiPv0,nw, notéPn,est donné par

Pnpxq

¸n i0

yiLipxq, @xPR (1)

avec

@iP v0, nw, Lipxq

¹n j0 ji

xxj xixj

, @xPR. (2)

Théorème 1 Le polynôme d'interpolation de Lagrange,Pn,associé auxn 1points pxi, yiqiPv0,nw, est l'unique polynôme de degré au plusn,vériant

Pnpxiq yi, @iP v0, nw. (3)

2 Première approche matlab

Exercice 1 (Matlab) Ecrire la fonction Lagrange permettant de calculerPn (polynôme d'interpola- tion de Lagrange associé auxn 1 points pxi, yiqiPv0,nw) au pointxPRbasée sur la formule (1).

Exercice 2 (Matlab) Soient n P N et pa, bq P R2 avec a   b. On note XXX pX1, . . . , Xn 1q la dicrétisation régulière de l'intervalle ra, bs avecn 1points etYYY PRn 1tel queYi fpXiq, @iP v1, n 1w. 1. Ecrire le programme prog1 permettant de représenter graphiquement le polynôme d'interpolation

de Lagrange associé à pX, Yq et la fonction f sur l'intervalle rα, βs. 2. Utiliser les jeux de données suivants :

(a) a 1, b1, f :xÞÑ1{p1 25x2q, α 1, β1 et faire varier n5,11...

(b) a0, bπ, f :xÞÑcospxq, α 1, β4 et faire variern5,20,28...

(Voir Annexe, gures 1 et 2)

3 Vectorisation

Exercice 3 (Algorithme) SoientPn le polynôme d'interpolation de Lagrange associé auxn 1points pxi, yiqiPv0,nw etXXX un vecteur deRm.

1. Ecrire la fonction LagrangeVec permettant de calculer le vecteurYYY PRm tel que YiPnpXiq, @iP v1, mw.

(3)

3 VECTORISATION 3

2. Evaluer le coût arithmétique de la fonction LagrangeVec en fonction de netm.

Exercice 4 (Matlab) Transformer le programme prog1 de l'exercice 2 en un nouveau programme prog2 utilisant la fonction LagrangeVec.

3.1 Un peu d'analyse numérique

Dans cette partie, on va regarder la possibilité d'améliorer les performances, en terme de coût arith- métique, de la fonction LagrangeVec.

Exercice 5 (Analyse numérique) 1. Soitv le polynôme de degrén 1 déni par vpxq

¹n i0

pxxiq Montrer que,

v1pxiq

¹n j0 ji

pxixjq, @iP v0, nw. (4)

2. CalculerLipxq en fonction devpxq etv1pxiq. En déduire que, @xPRztx0, x1, . . . , xnu, Pnpxq vpxq

¸n i0

yi

pxxiqv1pxiq. 3. Démontrer que

¸n i0

Lipxq 1, @xPR. En déduire que, @xPRztx0, x1, . . . , xnu,

Pnpxq

°n i0

yi pxxiqv1pxiq

°n i0

pxxi1qv1pxiq

. (5)

3.2 Algorithme optimisé

Exercice 6 (Algorithme) SoitXXX un vecteur deRm.

1. Ecrire la fonction LagrangeVecOpt permettant de calculer le vecteurYYY PRmtel que YiPnpXiq, @iP v1, mw

en utilisant au mieux1 la formule (5).

2. Donner le coût arithmétique de la fonction LagrangeVecOpt en fonction de netm.

Exercice 7 (Matlab) 1. Ecrire la fonction LagrangeVecOpt correspondant à l'exercice 6.

2. Ecrire un programme prog3 similaire à prog2 mais utilisant la fonction LagrangeVecOpt.

3. Comparer les programmes prog2 et prog3 avec massez grand (m4000par exemple) en utilisant l'outil Matlab Proler. (Quelques captures d'écran sont fournies en Annexe : gures 3 et 4)

1. v1pxiq ne doit être calculé qu'une seule fois !

(4)

4 POINTS DE TCHEBYCHEFF 4

4 Points de Tchebyche

Soient a et b deux réels, a  b et n PN. Les n 1 points de Tchebyche de l'intervalle ra, bs sont donnés par

xi a b 2

ba 2 cos

p2i 1qπ 2pn 1q

, @iP v0, nw. (6)

Exercice 8 (Matlab) 1. Ecrire la fonction Tchebycheff permettant de calculer lesn 1 points de Tchebyche de l'intervalle ra, bs.

2. Ecrire le programme comparaison permettant de comparer les polynômes de Lagrange avec points distribués uniformément et points de Tchebyche. On peut prendre comme jeu de donnéesa 1, b 1, f :xÞÑ 1{p1 25x2q, α 1, β 1 et n 11. Des exemples de gures sont donnés en Annexe (gures 5 et 6).

5 Annexe

−1 −0.5 0 0.5 1

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

x

Polynome d’interpolation de Lagrange

P11(x) f(x)

Points d’interpolation

Figure 1: graphique obtenu à l'aide de prog1 (exercice 2)

(5)

5 ANNEXE 5

−1 0 1 2 3 4

−1

−0.8

−0.6

−0.4

−0.2 0 0.2 0.4 0.6 0.8 1

x

Polynome d’interpolation de Lagrange

P28(x) f(x)

Points d’interpolation

Figure 2: graphique obtenu à l'aide de prog1 (exercice 2)

Figure 3: Proler avec prog2 (non optimisé),m4000

(6)

5 ANNEXE 6

Figure 4: Proler avec prog3 (optimisé),m4000

−1 −0.5 0 0.5 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

Polynomes d’interpolation de Lagrange avec n=11

Points Uniformes Points Tchebycheff f(x)

Figure 5: prog3 avecn11

(7)

5 ANNEXE 7

−1 −0.5 0 0.5 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

Polynomes d’interpolation de Lagrange avec n=30

Points Uniformes Points Tchebycheff f(x)

Figure 6: prog3 avecn30

Références

Documents relatifs

Ecrire une fonction (algorithmique ou Matlab) QuadCompNC permettant de retourner cette

Ecrire les fonctions Norme et NormeInf permettant de calculer respectivement la norme p et la norme inni d'un vecteur.. Ecrire un programme permettant de valider ces

1 Ecrire une fonction Mosaique02 permettant de créer un damier quelconque sachant que le pavé en haut à droite d'un quadrillage est noir.. La numérotation des lignes et des colonnes

Ecrire une fonction RSLC HOLESKY permettant de résoudre un système linéaire en utilisant la factorisation positive de Cholesky. On supposera les fonctions R ES T RI I NF et R ES T RI

Comparer les programmes prog2 et prog3 avec m assez grand ( m 4000 par exemple) en utilisant l'outil Matlab Proler... Ecrire le programme comparaison permettant de comparer

La méthode composite de Simpson 3/8 a pour degré d'exactitude 3 : elle est exacte pour les polynômes de degré inférieur ou égal à3. 2 Ecrire un programme permettant de vérier

Le graphe présenté est bien celui d'une fonction du second degré (parabole) dont le coecient de x 2 est strictement négatif.. Si la suite convergeait, comme f est continue, sa

Le graphe présenté est bien celui d'une fonction du second degré (parabole) dont le coecient de x 2 est strictement négatif.. Si la suite convergeait, comme f est continue, sa