• Aucun résultat trouvé

Méthodes Numériques I

N/A
N/A
Protected

Academic year: 2022

Partager "Méthodes Numériques I"

Copied!
7
0
0

Texte intégral

(1)

ENER1A & AIR1 2013-2014

Méthodes Numériques I

a

Travaux Pratiques No 2

Polynômes d'interpolation de Lagrange

a. Version du 7 avril 2014

Table des matières

1 Rappels théoriques 2

2 Première approche matlab 2

3 Vectorisation 2

3.1 Un peu d'analyse numérique . . . . 3 3.2 Algorithme optimisé . . . . 3

4 Points de Tchebyche 4

5 Annexe 4

(2)

1 RAPPELS THÉORIQUES 2

1 Rappels théoriques

Soient n P N et pxi, yiqiPv0,nw avec pxi, yiq P R2 et les xi distincts deux à deux. Le polynôme d'interpolation de Lagrange associé auxn 1points pxi, yiqiPv0,nw, notéPn,est donné par

Pnptq

¸n i0

yiLiptq, @tPR (1)

avec

@iP v0, nw, Liptq

¹n j0 ji

txj xixj

, @tPR. (2)

Théorème 1 Le polynôme d'interpolation de Lagrange,Pn,associé auxn 1points pxi, yiqiPv0,nw, est l'unique polynôme de degré au plusn,vériant

Pnpxiq yi, @iP v0, nw. (3)

2 Première approche matlab

Exercice 1 (Matlab) Ecrire la fonction Lagrange permettant de calculerPn (polynôme d'interpola- tion de Lagrange associé auxn 1 points pxi, yiqiPv0,nw) au pointtPRbasée sur la formule (1).

Exercice 2 (Matlab) Soient n P N et pa, bq P R2 avec a   b. On note XXX pX1, . . . , Xn 1q la dicrétisation régulière de l'intervalle ra, bs avecn 1points etYYY PRn 1tel queYi fpXiq, @iP v1, n 1w. 1. Ecrire le programme prog1 permettant de représenter graphiquement le polynôme d'interpolation

de Lagrange associé à pX, Yq et la fonction f sur l'intervalle rα, βs.

2. Utiliser les jeux de données suivants pour reproduire les gures 1 et 2 données en annexe.

(a) a 1, b1, f :xÞÑ1{p1 25x2q, α 1, β1 et faire varier n5,11...

(b) a0, bπ, f :xÞÑcospxq, α 1, β4 et faire variern5,20,28...

3 Vectorisation

Exercice 3 (Algorithme) SoientPn le polynôme d'interpolation de Lagrange associé auxn 1points pxi, yiqiPv0,nw ettttun vecteur deRm.

1. Ecrire la fonction LagrangeVec permettant de calculer le vecteurzzzPRmtel que ziPnptiq, @iP v1, mw.

2. Evaluer le coût arithmétique de la fonction LagrangeVec en fonction de netm.

Exercice 4 (Matlab) Transformer le programme prog1 de l'exercice 2 en un nouveau programme prog2 utilisant la fonction LagrangeVec.

(3)

3 VECTORISATION 3

3.1 Un peu d'analyse numérique

Dans cette partie, on va regarder la possibilité d'améliorer les performances, en terme de coût arith- métique, de la fonction LagrangeVec.

Exercice 5 (Analyse numérique (facultatif)) 1. Soitv le polynôme de degrén 1 déni par vptq

¹n i0

ptxiq Montrer que,

v1pxiq

¹n j0 ji

pxixjq, @iP v0, nw. (4)

2. CalculerLiptq en fonction devptq etv1pxiq. En déduire que, @tPRztx0, x1, . . . , xnu, Pnptq vptq

¸n i0

yi ptxiqv1pxiq. 3. Démontrer que

¸n i0

Liptq 1, @tPR. En déduire que, @tPRztx0, x1, . . . , xnu,

Pnptq

°n i0

yi ptxiqv1pxiq

°n i0

1 ptxiqv1pxiq

. (5)

3.2 Algorithme optimisé

Exercice 6 (Algorithme) Soitttt un vecteur deRm.

1. Ecrire la fonction LagrangeVecOpt permettant de calculer le vecteurzzzPRm tel que zj Pnptjq, @jP v1, mw

en utilisant au mieux1 la formule (5).

2. Donner le coût arithmétique de la fonction LagrangeVecOpt en fonction de netm.

Exercice 7 (Matlab) 1. Ecrire la fonction LagrangeVecOpt correspondant à l'exercice 6.

2. Ecrire un programme prog3 similaire à prog2 mais utilisant la fonction LagrangeVecOpt.

3. Comparer les programmes prog2 et prog3 avec massez grand (m4000par exemple) en utilisant l'outil Matlab Proler. (Quelques captures d'écran sont fournies en Annexe : gures 3 et 4)

1. v1pxiq ne doit être calculé qu'une seule fois !

(4)

4 POINTS DE TCHEBYCHEFF 4

4 Points de Tchebyche

Soient a et b deux réels, a  b et n PN. Les n 1 points de Tchebyche de l'intervalle ra, bs sont donnés par

xi a b 2

ba 2 cos

p2i 1qπ 2pn 1q

, @iP v0, nw. (6)

Exercice 8 (Matlab) 1. Ecrire la fonction Tchebycheff permettant de calculer lesn 1 points de Tchebyche de l'intervalle ra, bs.

2. Ecrire le programme comparaison permettant de comparer les polynômes de Lagrange avec points distribués uniformément et points de Tchebyche. On peut prendre comme jeu de donnéesa 1, b 1, f :xÞÑ 1{p1 25x2q, α 1, β 1 et n 11. Des exemples de gures sont donnés en Annexe (gures 5 et 6).

5 Annexe

−1 −0.5 0 0.5 1

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

x

Polynome d’interpolation de Lagrange

P11(x) f(x)

Points d’interpolation

Figure 1: graphique obtenu à l'aide de prog1 (exercice 2)

(5)

5 ANNEXE 5

−1 0 1 2 3 4

−1

−0.8

−0.6

−0.4

−0.2 0 0.2 0.4 0.6 0.8 1

x

Polynome d’interpolation de Lagrange

P28(x) f(x)

Points d’interpolation

Figure 2: graphique obtenu à l'aide de prog1 (exercice 2)

Figure 3: Proler avec prog2 (non optimisé),m4000

(6)

5 ANNEXE 6

Figure 4: Proler avec prog3 (optimisé),m4000

−1 −0.5 0 0.5 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

Polynomes d’interpolation de Lagrange avec n=11

Points Uniformes Points Tchebycheff f(x)

Figure 5: prog3 avecn11

(7)

5 ANNEXE 7

−1 −0.5 0 0.5 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

Polynomes d’interpolation de Lagrange avec n=30

Points Uniformes Points Tchebycheff f(x)

Figure 6: prog3 avecn30

Références

Documents relatifs

ˆ Au cours d’un sondage réalisé dans plusieurs classes, la chanteuse Britney arrive largement en tête.. Dans quelle classe a-t-elle obtenu la plus grande proportion

On rajoute des zéros à chaque nombre pour qu’ils aient tous 4 chiffre après la virgule - comme

Jean et Mireille sont pareils, identiques, semblables, les mêmes.. Ils

[r]

[r]

Mais elle complète avec sa respiration cutanée : sa peau, extrêmement fine et très riche en vaisseaux sanguins est facilement traversée par les gaz dissous dans l’eau …*. Mais

2- Rajoute les nombres de ton choix pour que l’écriture soit juste. >

Attention, quand les élèves retournent la carte, il faut que le symbole soit dans le même sens que