• Aucun résultat trouvé

Un théorème du calcul des probabilités

N/A
N/A
Protected

Academic year: 2022

Partager "Un théorème du calcul des probabilités"

Copied!
5
0
0

Texte intégral

(1)

N

OUVELLES ANNALES DE MATHÉMATIQUES

A. G ULDBERG

Un théorème du calcul des probabilités

Nouvelles annales de mathématiques 5e série, tome 1 (1922), p. 251-254

<http://www.numdam.org/item?id=NAM_1922_5_1__251_1>

© Nouvelles annales de mathématiques, 1922, tous droits réservés.

L’accès aux archives de la revue « Nouvelles annales de mathématiques » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions).

Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente men- tion de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques

http://www.numdam.org/

(2)

[J2a]

1 \ THÉOliÈWE DU CALCUL DES PROBABILITES ;

PAR M. A. GULDBERG, Professeur à l'Université de Christiania.

La probabilité d'un événement E est /?, celle de l'événement contraire est q\ on fait pi épreuves dans les mêmes conditions. Le nombre d'arrivées le plus pro- bable des E est, d'après le théorème de Bernoulli,

pp (voir J. BERTRAND, Calcul des Probabilités, p . 71)»

Dans un Mémoire (-1) intéressant, mais peu connu, M. T.-G. Simmons a établi le théorème :

« Si le nombre d'arrivées le plus probable de l'évé-

(l) Proceedings of the London Mathematical, Society, t. 26,

p. 290.

(3)

( 232 )

nement E, dont la probabilité est />, est dans JJL épreuves un, il est plus probable que le nombre d'arrivées de E soit plus petit que plus grand que un, »

M. Simmons énonce aussi son théorème de la maniere suivante :

« bi un événement doit a r m e r b fois et ne doit pas arriver a fois, <7 >> 6, dans les mêmes conditions, et si on fait ;J. épreuves, où JJL est un multiple de ( a + fr), la probabilité pour que l'événement arri\e un nombre de fois plus petit que JJL y est plus grande que la pro- babilité pour que l'événement arrive un nombre de fois plus «rand que ut T- »

M. Simmons a seulement réussi à établir ce théo- rème dans le cas où b •=. \. Son analyse est assez com- pliquée cl longue (3^ pages); il pense que le théorème est vrai pour toutes les valeurs de b << a. Le théorème de M. Simmons est, il me semble, intéressant et mérite d'être connu. Peut-être un jeune géomètre en pour- ra-t-il donner la démonstration complète.

Dans les lignes qui sunent, je me permets de faire quelques remarques qui se rattachent à ce problème.

Soit x une quantité pouvant prendre les valeurs dis- tinctes positives xs avec la probabilité ƒ?,, x2 avec la probabilité/?2, . . . , x^avec la probabilité />#, en sorte que

La \aleur moyenne m de la quantité x est définie par l'expression

Soient .r'j, ^'2, . . . , x't les valeurs de la quantité x

(4)

( » 5 3 )

qui sont plus petiles que m et ƒ/,, p't, ..., p'r les pro- babilités correspondantes, et soient x\, x\, ..., x\ les valeurs de la quantité x qui sont plus grandes que m

elP\iP%i —*iPt le s probabilités correspondantes. La valeur moyenne relative aux valeurs de la quantité x qui sont <[ m est définie par l'expression

P\ V'i + Pi* %-*---•-*-P'r V'r

//li = r - ; •

La valeur moyenne relative aux valeurs de la quan- tité x qui sont >> m est définie par l'expression

A x\ - + - P \x\ •+-- - -•+• />ï 171% ~ -

Soit

la sommation est étendue aux valeurs de #, qui sont

<[ w, et soit

la sommation est étendue aux valeurs de #, qui sont

> m . On a

M,= Mt

car

M2— Mj = ^Piixi— m) = 2^*?/— m = o.

i î

De Tégalité

. rfe Mathémat., 5e série, t. I. (Avril 1923.) 19

(5)

( 254 )

OU

1

on tire, si

(ï) m— m, < ni2—/»,

l'inégalité

t

On a ainsi la proposition suivante :

« Si la différence entre la valeur moyenne m de la quantité x et la \aleur moyenne relathe />*, aux valeurs de x plus petites que m est plus petite que la différence entre la valeur moyenne relative m2 aux valeurs de x plus grandes que m et la valeur moyenne m de x, la probabilité pour que la quantité x prenne une valeur plus petite que ni est plus grande que la probabilité que x prenne une valeur plus grande que m. »

Si le signe d'inégalité en (i) est renversé, le signe d'inégalité (2) est renversé. Si

m — ml = m2— ni

on a

Références

Documents relatifs

Lorsque le muscle grand droit sort de sa gaine fibreuse en dessus de l'arcade de Douglas, le gaz suit l'espace cellulo- graisseux pré péritonéal , puis le Retzius puis l'espace

[r]

En effet, selon la nature sémantique des éléments X et Y , la détermination peut être définie comme dans : Quelle est la différence entre le train et le café ?, ou

1- Variation de la courbe en fonction de l’essence (lumière et ombre) Une essence de lumière (pin d’Alep par exemple) a une distribution des tiges plus concentrée autour du

la partie supérieure est une pyramide régulière SABCD, de sommet S, de base carrée ABCD et de hauteur [SO] ;?. la partie inférieure est un pavé droit

[r]

On doit donc avoir 13 premiers distincts (ou une de leurs puissances), dont on prend les 13 qui minimisent l'écart entre le plus petit et le

Le courant moyen calculé sur un courant périodique variable est un courant constant qui transporte au cours du temps la même quantité d’électricité que le