• Aucun résultat trouvé

R ´eunion d’ ´et ´e de la SMC - Sask ato on, 5 juin 2001

N/A
N/A
Protected

Academic year: 2022

Partager "R ´eunion d’ ´et ´e de la SMC - Sask ato on, 5 juin 2001"

Copied!
18
0
0

Texte intégral

(1)

R ´eunion d’ ´et ´e de la SMC - Sask ato on, 5 juin 2001

P olylogarithms

and

Multiple Zeta V alues

by

Mic hel W ALDSCHMIDT

http : //www.math.jussieu.fr/ ∼ miw/articles/ps/saskatoon.ps

(2)

Sp ecial V alues of the Riemann Zeta F unction ζ ( s ) := 1 + 1 2 s + 1 3 s + ·· · + 1 n s + ·· · s ≥ 2 .

L. Euler:

ζ (2 m ) = − 1 2 · (2 π i ) 2 m B 2 m (2 m )! for m ≥ 1

with t e t − 1 = ∞ X

k =0 B k k ! · t k , | t | < 2 π .

In particular ζ (2 m ) π − 2 m ∈ Q for m ≥ 1 .

F. Lindemann: π is tr ansc endental.

R. Ap ´ery: ζ (3) 6∈ Q .

(3)

T. Riv oal: In finitely many ζ ( a ) with a odd ≥ 5 ar e irr ational.

K. Ball + T. Riv oal: The Q -ve ctor subsp ac e of R sp anne d by

ζ (3) ,ζ (5) , ·· · ,ζ ( a )

has dimension ≥ log a 1 + log 2 ¡ 1 + o (1) ¢ .

T. Riv oal, W. Zudilin: One at le ast of the 9 numb ers

ζ (5) ,ζ (7) , ·· · ,ζ (21)

is irr ational.

(4)

Exp ected : Euler’s relations are the only algebraic relation among the n um b ers ζ (2) ,ζ (3) ,ζ (4) ,. .. ,ζ ( s ) ,. ..

Conjecture. The n um b ers

π , ζ (3) , ζ (5) ,. .. ,ζ (2 n + 1) ,. ..

algebraically indep enden t.

In other terms: F or n ≥ 0 and P ∈ Q [ X 0 ,X 1 ,. .. ,X n ] \ { 0 } ,

P ¡ π ,ζ (3) ,ζ (5) ,. .. ,ζ (2 n + 1) ¢ 6 = 0 .

(5)

Definition. F or s = ( s 1 ,. .. ,s k ) in Z k with s 1 ≥ 2 and s j ≥ 1 ( 2 k ), ζ ( s 1 ,. .. ,s k ) := X

n

1

> ··· >n

k

≥ 1 n − s

1

1 ·· · n − s

k

k .

Examples of algebr aic relations

1 ζ (2) 2 = 2 ζ (2 , 2) + ζ (4)

Pr oof. X

n ≥ 1 1 n 2 X

m ≥ 1 1 m 2 = X

n>m ≥ 1 1 n 2 m 2 + X

m>n ≥ 1 1 n 2 m 2 + X

n ≥ 1 1 n 4 .

2 ζ (2) 2 = 2 ζ (2 , 2) + 4 ζ (3 , 1)

Corollary . ζ (3 , 1) = 1 4 ζ (4) .

3 ζ (3) = ζ (2 , 1)

EZ-Face b y J . Borw ein, P . Lisonek and P . Irvine

http://www.cecm.sfu.ca/projects/EZFace/index.html

(6)

Conjectures of Zagier, Drinfeld, Kon tsevic h, Gonc haro v, Ho ffman, Broadh urst, Cartier .. .

F or p ≥ 2 let Z p denote the Q -v ector subspace of R spanned b y the 2 p − 2

elemen ts ζ ( s ) for s = ( s 1 ,. .. ,s k ) of weight s 1 + ·· · + s k = p and s 1 ≥ 2 . Let d p b e the dimension of Z p .

Z 0 = Q with ζ ( s ) := 1 for k = 0 Z 1 = { 0 } Z 2 = h ζ (2) i Q Z 3 = h ζ (3) i Q since ζ (2 , 1) = ζ (3) Z 4 = h ζ (4) i Q = h ζ (2) 2 i Q = h π 4 i Q since

ζ (3 , 1) = 1 4 ζ (4) , ζ (2 , 2) = 3 4 ζ (4) , ζ (2 , 1 , 1) = ζ (4) = 2 5 ζ (2) 2 .

Hence d 0 = 1 , d 1 = 0 , d 2 = d 3 = d 4 = 1 .

(7)

Z 5 = h ζ (2) ζ (3) ,ζ (5) i Q , hence d 5 ≤ 2.

Pr oof. ζ (2 , 1 , 1 , 1) = ζ (5) ,

ζ (3 , 1 , 1) = ζ (4 , 1) = 2 ζ (5) − ζ (2) ζ (3) ,

ζ (2 , 1 , 2) = ζ (2 , 3) = 9 2 ζ (5) − 2 ζ (2) ζ (3) , ζ (2 , 2 , 1) = ζ (3 , 2) = 3 ζ (2) ζ (3) − 11 2 ζ (5) .

Conjecture (D. Zagier). W e ha ve

d p = d p − 2 + d p − 3 for p ≥ 4 .

Equiv alen t form ulation: X

p ≥ 0 d p X p = 1 1 − X 2 − X 3 ·

(8)

Conjecture (M. Hoffman). F or p ≥ 1 , a basis for the Q -v ector space Z p is giv en b y the n um b ers ζ ( s ) for ( s 1 ,. .. ,s k ) ∈ Z k ( k ≥ 1 ) satisfying

s 1 + ·· · + s k = p and s j ∈ { 2 , 3 } .

The subalgebra Z of R generated b y all ζ ( s ) is graded for the w eigh t:

Z p Z p

0

⊂ Z p + p

0

. The length k de fines a filtration on Z . Denote b y F k Z p the Q -v ector subspace of R spanned b y all ζ ( s ) of w eigh t p and length k . F urther, let d p k denote the dimension of F k Z p / F k − 1 Z p .

Conjecture (D. Broadh urst). W e ha v e 

 X

p ≥ 0 X

k ≥ 0 d pk X p Y k   − 1

= 1 − X 2 − X 3 + X Y 2 (1 − Y 2 ) (1 + X 2 )(1 − Y 6 ) ·

(9)

Conjecture (A.B. Gonc haro v). As a Q -algebra, Z is the direct of Z p for p ≥ 0 .

Example. An y ζ ( s ) with s of w eigh t p ≤ 12 is a homogeneous p olynomial in the follo wing 11 MZV:

k p 2 3 5 7 8 9 10 11 12

1 ζ (2) ζ (3) ζ (5) ζ (7) ζ (9) ζ (11)

2 ζ (6 , 2) ζ (8 , 2) ζ (10

3 ζ (8 , 2 , 1)

4 ζ (8 , 2

(10)

Classical p olylogarithms

Li s ( z ) := X

n ≥ 1 z n n s for | z | < 1 .

R ecursive de finition:

Li 1 ( z ) = X

n ≥ 1 z n n = − log (1 − z ) ,

z d dz Li s ( z ) = Li s − 1 ( z ) ( s ≥ 2)

with Li s (0) = 0 .

F or s ≥ 2, Li s (1) = ζ ( s ).

(11)

Multiple p olylogarithms in one v ariable

Li s ( z ) := X

n

1

>n

2

> ··· >n

k

≥ 1 z n

1

n s

1

1 ·· · n s

k

k ,

for s = ( s 1 ,. .. ,s k ) with s j ≥ 1 (1 ≤ j ≤ k ).

ζ ( s ) = Li s (1) for s 1 ≥ 2 .

R ecursive de finition:

z d dz Li ( s

1

,... ,s

k

) ( z ) = Li ( s

1

− 1 ,s

2

,... ,s

k

) ( z ) if s 1 ≥ 2

(1 − z ) d dz Li (1 ,s

2

,... ,s

k

) ( z ) = Li ( s

2

,... ,s

k

) ( z ) if s 1 = 1 .

Initial conditions Li s (0) = 0 . Pr oof: X

n

1

>n

2

z n

1

− 1 = z n

2

1 − z ·

(12)

Noncomm utativ e P olynomials

Let X := { x 0 ,x 1 } denote an alphab et with tw o letters. Let X ∗

denote the set of w ords on X .

The linear com binations of w ords with rational co efficien ts X

u c u u,

where { c u ; u ∈ X ∗ } is a set of rational n um b ers with finite supp ort, is the non-comm utativ e ring

H := Q h x 0 ,x 1 i .

The pro duct is concatenation, the unit is the empt y w ord e . An example of suc h a p olynomial is

3 e − 4 x 0 + 5 x 1 − x 0 x 1 + x 1 x 0 + 2 x 0 x 1 x 2 0 .

(13)

F or s ≥ 1 de fine x s := x s − 1 0 x 1 . F or s = ( s 1 ,. .. ,s k ) ∈ Z k with de fine y s := x s

1

·· · x s

k

. Hence

y s = x s

1

− 1 0 x 1 x s

2

− 1 0 x 1 ·· · x s

k

− 1 0 x 1 .

F or instance y 2 , 3 = x 0 x 1 x 2 0 x 1 .

The n um b er of letters in y s is the w eigh t p of s , while the n um b ers is the length k .

The set of w ords y s with s = ( s 1 ,. .. ,s k ) is nothing else than the X ∗ x 1 of w ords whic h end with x 1 . De fine b Li y

s

( z ) := Li s ( z )

for suc h a w ord.

F urther de fine ˆ ζ ( y s ) := ζ ( s ) if s 1 ≥ 2 . Hence ˆ ζ ( w ) is de fined for w ord w ∈ x 0 X ∗ x 1 whic h starts with x 0 and ends with x 1 . F urthermore ˆ ζ ( w ) = b Li w (1) for w ∈ x 0 X ∗ x 1 .

(14)

F or a p olynomial w = X

u c u u de fine

b Li w ( z ) := X

u c u b Li u ( z )

if eac h u with u 6∈ { e } ∪ X ∗ x 1 has c u = 0. Hence b Li w ( z ) is de fined for

w ∈ H 1 := Q e + H x 1

Similarly set ˆ ζ ( w ) := X

u c u ˆ ζ ( u )

if eac h u with u 6∈ { e } ∪ x 0 X ∗ x 1 has c u = 0. F or

w ∈ H 0 := Q e + x 0 H x 1

w e ha v e ˆ ζ ( w ) = b Li w (1) .

Hence ˆ ζ : H 0 → R is a Q -linear map.

(15)

Definition. Sh uffle pro duct of tw o w ords in X ∗ : elemen t in H defined inductiv ely b y:

e x u = u x e = u for u and u 0 in X ∗ , and ( x i u ) x ( x j v ) = x i ¡ u x ( x j v ) ¢ + x j ¡ ( x i u ) x v ¢

for u , v in X ∗ and i , j in { 0 , 1 } . Examples. F or i 1 , i 2 , j , j 1 , j 2 in { 0 , 1 } ,

( x i

1

x i

2

) x x j = x i

1

x i

2

x j + x i

1

x j x i

2

+ x j x i

1

x i

2

.

( x i

1

x i

2

) x ( x j

1

x j

2

) = x i

1

x i

2

x j

1

x j

2

+ x i

1

x j

1

x i

2

x j

2

+ x i

1

x j

1

x j

2

x i

2

x j

1

x i

1

x i

2

x j

2

+ x j

1

x i

1

x j

2

x i

2

+ x j

1

x j

2

x i

1

x i

2

Extending b y distributivit y with resp ect to the addition to H de comm utativ e and asso ciativ e algebras

H 0 x ⊂ H 1 x ⊂ H x

(16)

R adfor d’s The or em: H 0 x , H 1 x and H x are (comm utativ e) p olynomials algebras on the set of Lyndon w ords. Conse quenc e:

H 1 x = H 0 x [ x 1 ] , H x = H 1 x [ x 0 ] = H 0 x [ x 0 ,x 1 ] . Prop osition. F or u and u 0 in H 1 x ,

b Li u ( z ) b Li u

0

( z ) = b Li u x u

0

( z ) . Consequence. F or u and u 0 in H 0 x ,

ˆ ζ ( u

) ˆ ζ ( u 0 ) = ˆ ζ ( u x u 0 ) .

Prop osition.  

 z d dz b Li x

0

u ( z ) = b Li u ( z )

(1 − z ) d dz b Li x

1

u ( z ) = b Li u ( z )

(17)

Notation. ω 0 ( z ) := dz z , ω 1 ( z ) := dz 1 − z · Definition. Define b Li w ( z ) for an y w ∈ X ∗ as follo ws.

Li e ( z ) := 1 , b Li x

s0

( z ) := 1 s

! (log z ) s for s ≥ 1

and, for j ∈ { 0 , 1 } ,

b Li x

j

u ( z ) := Z z

0 b Li u ( z ) ω j ( z )

if the w ord x j u con tains a letter x 1 .

Generating series.

b Li ( z ) := X

w ∈ X

b Li w ( z ) w .

(18)

Knizhnik-Zamolo dc hik o v Differen tial Equation

d dz b Li ( z ) = ³ x 0 z + x 1 1 − z ´ b Li ( z ) . Initial condition: z 7→ b Li ( z ) z − x

0

is holomorphic near 0 in C \ © ( −∞ , 0] ∪ [1 , ∞ ) ª : 0 1

Theorem (H.N. Minh and M. P etitot). The functions b Li w ( z ) , for w in X ∗ are linearly indep enden t ov er C .

Drinfeld asso ciator:

Φ K Z = X

w ∈ X

ˆ ζ ( w ) w ∈ C hh x 0 ,x 1 ii .

Références

Documents relatifs

Pour les marchandises, le transport pourra se faire directement, sans aucun transbordement, de n'importe quel port européen aux docks aménagés spéciale- ment pour les services

Aussi bien n'est-ce pas le but excellent de cette société qui a provoque quelque inquiétude dans le petit commerce, mais bien les moyens qu'uti- lisera cette société, qui

Si elle est présentée pour être observée dans une classe supérieure, le certificat antérieur sera conservé jusqu'à la fin de l'observation et sera détruit ou rendu au

introduisirent sur le marché leurs verres de montres, qui nous offraient au point de vue du prix quel- ques avantages acceptables sur ceux de Stras- bourg, sur lesquels nous

L’objectif est d’assurer une rentabilité supérieure au taux sans risque sur le marché ( R F = 6% ) tout en prenant très peu de risque. Vous êtes chargé de réaliser les

ATTENDU QUE l’augmentation du coût de service de Gazifère résultant des modifications au Tarif 200 de Consumers’ Gas occasionne un ajustement subséquent unitaire à la

Le 7 juin 2001, Société en commandite Gaz Métropolitain (SCGM) a déposé une demande à la Régie de l’énergie (la Régie) afin d’obtenir l’autorisation préalable d’un projet

Pour tous les élèves, vous recevez les malices du Kangourou (magazine de 24 pages de mathématiques en couleurs édité en 3 versions : écoles, collèges et lycées) et, dans