• Aucun résultat trouvé

De l’inf´erence g´eom´etrique au transport optimal num´erique

N/A
N/A
Protected

Academic year: 2022

Partager "De l’inf´erence g´eom´etrique au transport optimal num´erique"

Copied!
165
0
0

Texte intégral

(1)

De l’inf´erence g´eom´etrique

au transport optimal num´erique

Quentin M´ erigot

Laboratoire Jean Kuntzmann, CNRS / Universit´e de Grenoble

Soutenance d’habilitation

(2)

Overview

1. Geometric inference from noisy data 2. Computational optimal transport

3. Far-Field Reflector Problem

4. Discretization of Functionals Involving the Monge-Amp` ere Operator.

(3)

1. Geometric inference from noisy data

(4)

PhD: Geometric Inference from Point Clouds

dK = distance function to K pK = projection on K

K ⊆ Rd

(5)

PhD: Geometric Inference from Point Clouds

dK = distance function to K pK = projection on K

K ⊆ Rd

KR = d−1K ([0, R])

(6)

PhD: Geometric Inference from Point Clouds

µK,R = pK# Hd

Kr dK = distance function to K

pK = projection on K K ⊆ Rd

KR = d−1K ([0, R])

Boundary measure:

(7)

PhD: Geometric Inference from Point Clouds

I Estimation of Federer’s curvature measures from Hausdorff approximation.

[Chazal, Cohen-Steiner, M. 2008]

µK,R = pK# Hd

Kr dK = distance function to K

pK = projection on K K ⊆ Rd

KR = d−1K ([0, R])

Boundary measure:

P =

(8)

PhD: Geometric Inference from Point Clouds

I Estimation of Federer’s curvature measures from Hausdorff approximation.

[Chazal, Cohen-Steiner, M. 2008]

µK,R = pK# Hd

Kr dK = distance function to K

pK = projection on K K ⊆ Rd

KR = d−1K ([0, R])

Boundary measure:

P =

(9)

PhD: Geometric Inference from Point Clouds

I Anisotropic version: Voronoi covariance measures

I Estimation of Federer’s curvature measures from Hausdorff approximation.

[Chazal, Cohen-Steiner, M. 2008]

[M., Ovsjanikov, Guibas 2009]

I Handling outliers −→ distance to a probability measure [Chazal, Cohen-Steiner, M. 2010]

µK,R = pK# Hd

Kr dK = distance function to K

pK = projection on K K ⊆ Rd

KR = d−1K ([0, R])

Boundary measure:

P =

(10)

Simplifying the Distance to a Measure

d2P,k(x) = minpi6=...6=pk∈P k1 Pk

i=1 kx − pik2 k-Distance: Let P ⊆ Rd, k ∈ {1, . . . , |P|}

(11)

Simplifying the Distance to a Measure

d2P,k(x) = minpi6=...6=pk∈P k1 Pk

i=1 kx − pik2

d2P,k(x) = minb∈Baryk

P kx − bk2 + wb k-Distance: Let P ⊆ Rd, k ∈ {1, . . . , |P|}

(12)

Simplifying the Distance to a Measure

d2P,k(x) = minpi6=...6=pk∈P k1 Pk

i=1 kx − pik2

d2P,k(x) = minb∈Baryk

P kx − bk2 + wb

−→ 1-semiconcave k-Distance: Let P ⊆ Rd, k ∈ {1, . . . , |P|}

−→ sublevel sets = ∪ balls

−→ exponential # of barycenters relation to weighted Voronoi diagrams

(13)

Simplifying the Distance to a Measure

d2P,k(x) = minpi6=...6=pk∈P k1 Pk

i=1 kx − pik2

d2P,k(x) = minb∈Baryk

P kx − bk2 + wb k-Distance: Let P ⊆ Rd, k ∈ {1, . . . , |P|}

Simplification problem: ∃ ”small” B ⊆ BarykP s.t. k dP,k −dBk is ”small” ? d2B(x) = minb∈B kx − bk2 + wb

(14)

Simplifying the Distance to a Measure

d2P,k(x) = minpi6=...6=pk∈P k1 Pk

i=1 kx − pik2

d2P,k(x) = minb∈Baryk

P kx − bk2 + wb k-Distance: Let P ⊆ Rd, k ∈ {1, . . . , |P|}

Simplification problem: ∃ ”small” B ⊆ BarykP s.t. k dP,k −dBk is ”small” ? d2B(x) = minb∈B kx − bk2 + wb

∀x ∈ K, ∀r ≤ diam(K), µK(B(x, r)) ≥ αKr` Ex: Area measure on a compact surface → ` = 2.

K := spt(µ ) x

B(x, r)

Assume µK is supported on K and ∃αK > 0 such that I Positive result:

[Guibas, M., Morozov, 2011]

(15)

Simplifying the Distance to a Measure

d2P,k(x) = minpi6=...6=pk∈P k1 Pk

i=1 kx − pik2

d2P,k(x) = minb∈Baryk

P kx − bk2 + wb k-Distance: Let P ⊆ Rd, k ∈ {1, . . . , |P|}

Simplification problem: ∃ ”small” B ⊆ BarykP s.t. k dP,k −dBk is ”small” ? d2B(x) = minb∈B kx − bk2 + wb

∀x ∈ K, ∀r ≤ diam(K), µK(B(x, r)) ≥ αKr` Assume µK is supported on K and ∃αK > 0 such that I Positive result:

K µK

P −→ if W2P , µK) is small, then one can construct a good approximation of dP,k involving only |P| barycenters.

”Witnessed k-distance”

[Guibas, M., Morozov, 2011]

(16)

Simplifying the Distance to a Measure

d2P,k(x) = minpi6=...6=pk∈P k1 Pk

i=1 kx − pik2

d2P,k(x) = minb∈Baryk

P kx − bk2 + wb k-Distance: Let P ⊆ Rd, k ∈ {1, . . . , |P|}

Simplification problem: ∃ ”small” B ⊆ BarykP s.t. k dP,k −dBk is ”small” ? d2B(x) = minb∈B kx − bk2 + wb

∀x ∈ K, ∀r ≤ diam(K), µK(B(x, r)) ≥ αKr` Assume µK is supported on K and ∃αK > 0 such that I Positive result:

µK

P −→ if W2P , µK) is small, then one can construct a good approximation of dP,k involving only |P| barycenters.

”Witnessed k-distance”

−→ Application to reconstruction and topological data analysis.

[Guibas, M., Morozov, 2011]

(17)

Simplifying the Distance to a Measure

d2P,k(x) = minpi6=...6=pk∈P k1 Pk

i=1 kx − pik2

d2P,k(x) = minb∈Baryk

P kx − bk2 + wb k-Distance: Let P ⊆ Rd, k ∈ {1, . . . , |P|}

Simplification problem: ∃ ”small” B ⊆ BarykP s.t. k dP,k −dBk is ”small” ? d2B(x) = minb∈B kx − bk2 + wb

∀x ∈ K, ∀r ≤ diam(K), µK(B(x, r)) ≥ αKr` Assume µK is supported on K and ∃αK > 0 such that I Positive result:

I Negative result: exponential lower bound when P is drawn randomly from Sd−1. K

µK

P −→ if W2P , µK) is small, then one can construct a good approximation of dP,k involving only |P| barycenters.

”Witnessed k-distance”

−→ Application to reconstruction and topological data analysis.

[Guibas, M., Morozov, 2011]

(18)

6

Sharp Feature Estimation

Input: 50k point set P

I Application of the witnessed k-distance to curvature estimation and edge recovery

(19)

6

Sharp Feature Estimation

Input: 50k point set P Output: estimated edges and directions I Application of the witnessed k-distance to curvature estimation and edge recovery

[Cuel, Lachaud, M., Thibert 2014]

(20)

6

Sharp Feature Estimation

Input: 50k point set P Output: estimated edges and directions I Application of the witnessed k-distance to curvature estimation and edge recovery

[Cuel, Lachaud, M., Thibert 2014]

From curvature estimation to the inverse problem: Monge-Amp`ere equations.

(21)

2. Computational optimal transport

(22)

Computational optimal transport

Hungarian algorithm linear programming

Discrete source and target

Bertsekas’ auction algorithm

αi βj

(23)

Computational optimal transport

Hungarian algorithm linear programming

Discrete source and target

Bertsekas’ auction algorithm

αi βj

Source and target with density:

Benamou-Brenier ’00 Loeper-Rapetti ’05

Benamou-Froese-Oberman ’12

(24)

Computational optimal transport

Hungarian algorithm linear programming

Discrete source and target

Bertsekas’ auction algorithm

αi βj

Source with density, discrete target:

Kitagawa ’12

Source and target with density:

Benamou-Brenier ’00 Loeper-Rapetti ’05

Benamou-Froese-Oberman ’12

Theoretical use: Alexandrov, Pogorelov, etc.

Aurenhammer, Hoffmann, Aronov ’98 Cullen ’89

(25)

Computational optimal transport

Hungarian algorithm linear programming

Discrete source and target

Bertsekas’ auction algorithm

αi βj

Source with density, discrete target:

Kitagawa ’12

Source and target with density:

Benamou-Brenier ’00 Loeper-Rapetti ’05

Benamou-Froese-Oberman ’12

Flexibility for the cost function but computationally expensive

Theoretical use: Alexandrov, Pogorelov, etc.

Aurenhammer, Hoffmann, Aronov ’98 Cullen ’89

(26)

Computational optimal transport

Hungarian algorithm linear programming

Discrete source and target

Bertsekas’ auction algorithm

αi βj

Source with density, discrete target:

Kitagawa ’12

Source and target with density:

Benamou-Brenier ’00 Loeper-Rapetti ’05

Benamou-Froese-Oberman ’12

Theoretical use: Alexandrov, Pogorelov, etc.

Aurenhammer, Hoffmann, Aronov ’98 Cullen ’89

(27)

Optimal transport: Monge problem

ρ ∈ Pac(X) X = d-manifold ν = P

y∈Y νyδy ∈ P(Y ) Y finite

y

prob. measure with density

X

Y

prob. measure

(28)

Optimal transport: Monge problem

ρ ∈ Pac(X) X = d-manifold ν = P

y∈Y νyδy ∈ P(Y ) Y finite

T−1(y) y

Transport map: T#ρ = ν iff

∀y ∈ Y, ρ(T−1({y})) = νy

T : X → Y

X

Y

(29)

Optimal transport: Monge problem

ρ ∈ Pac(X) X = d-manifold ν = P

y∈Y νyδy ∈ P(Y ) Y finite

T−1(y) y

Transport map: T#ρ = ν iff

∀y ∈ Y, ρ(T−1({y})) = νy

Cost function: c : X × Y → R T : X → Y

X

Y

(30)

Optimal transport: Monge problem

ρ ∈ Pac(X) X = d-manifold ν = P

y∈Y νyδy ∈ P(Y ) Y finite

Monge problem: Tc(ρ, ν) := min{R

c(x, T(x)) d ρ(x); T#ρ = ν}

T−1(y) y

Transport map: T#ρ = ν iff

∀y ∈ Y, ρ(T−1({y})) = νy

Cost function: c : X × Y → R T : X → Y

X

Y

(31)

Optimal transport: Monge problem

ρ ∈ Pac(X) X = d-manifold ν = P

y∈Y νyδy ∈ P(Y ) Y finite

Monge problem: Tc(ρ, ν) := min{R

X c(x, T(x)) d ρ(x); T#ρ = ν}

T−1(y) y

Transport map: T#ρ = ν iff

∀y ∈ Y, ρ(T−1({y})) = νy

Cost function: c : X × Y → R T : X → Y

X

Y

ex: X, Y ⊆ Rd, c = 12k.k2 Wasserstein distance W2 = Tc1/2

(32)

Weighted Voronoi and Optimal Transport

We assume (Twist): ∀x ∈ X, the map y ∈ Y 7→ ∇xc(x, y) is injective.

(33)

Weighted Voronoi and Optimal Transport

Generalized Voronoi diagram: Given ψ : Y → R,

We assume (Twist): ∀x ∈ X, the map y ∈ Y 7→ ∇xc(x, y) is injective.

Vorψc (y) = {x ∈ X; ∀z ∈ Y, c(x, y) + ψ(y) ≤ c(x, z) + ψ(z)}

y z

(34)

Weighted Voronoi and Optimal Transport

Generalized Voronoi diagram: Given ψ : Y → R,

We assume (Twist): ∀x ∈ X, the map y ∈ Y 7→ ∇xc(x, y) is injective.

Vorψc (y) = {x ∈ X; ∀z ∈ Y, c(x, y) + ψ(y) ≤ c(x, z) + ψ(z)}

y

z I the Voronoi cells partition X up to a negligible set

(35)

Weighted Voronoi and Optimal Transport

Generalized Voronoi diagram: Given ψ : Y → R,

Tcψ(x) = arg miny∈Y c(x, y) + ψ(y)

We assume (Twist): ∀x ∈ X, the map y ∈ Y 7→ ∇xc(x, y) is injective.

Vorψc (y) = {x ∈ X; ∀z ∈ Y, c(x, y) + ψ(y) ≤ c(x, z) + ψ(z)}

y z

is uniquely defined Hd-almost everywhere

I the Voronoi cells partition X up to a negligible set I the ”generalized nearest neighbor” map

(36)

Weighted Voronoi and Optimal Transport

Generalized Voronoi diagram: Given ψ : Y → R,

Tcψ(x) = arg miny∈Y c(x, y) + ψ(y)

We assume (Twist): ∀x ∈ X, the map y ∈ Y 7→ ∇xc(x, y) is injective.

Vorψc (y) = {x ∈ X; ∀z ∈ Y, c(x, y) + ψ(y) ≤ c(x, z) + ψ(z)}

y z

is uniquely defined Hd-almost everywhere

Lemma: Given ψ : Y → the map Tψ is a c-optimal transport map between I the Voronoi cells partition X up to a negligible set

I the ”generalized nearest neighbor” map

(37)

Optimal transport as concave maximization

Theorem: Finding a c-O.T between ρ with density and ν = P

Y νyδy

⇐⇒ finding ψ : Y → R such that Tc#ψ ρ = ν

⇐⇒ maximizing the concave function Φ

Aurenhammer, Hoffman, Aronov ’98

Φ(ψ) := P

y

R

Vorψc (y)[c(x, y) + ψ(y)] d ρ(x) − P

y ψ(y)νy

(38)

Optimal transport as concave maximization

Theorem: Finding a c-O.T between ρ with density and ν = P

Y νyδy

⇐⇒ finding ψ : Y → R such that Tc#ψ ρ = ν

⇐⇒ maximizing the concave function Φ

Aurenhammer, Hoffman, Aronov ’98

Φ(ψ) := P

y

R

Vorψc (y)[c(x, y) + ψ(y)] d ρ(x) − P

y ψ(y)νy

I Byproduct of Kantorovich duality.

(39)

Optimal transport as concave maximization

Theorem: Finding a c-O.T between ρ with density and ν = P

Y νyδy

⇐⇒ finding ψ : Y → R such that Tc#ψ ρ = ν

⇐⇒ maximizing the concave function Φ

Aurenhammer, Hoffman, Aronov ’98

Φ(ψ) := P

y

R

Vorψc (y)[c(x, y) + ψ(y)] d ρ(x) − P

y ψ(y)νy

I Byproduct of Kantorovich duality.

I ∇Φ(ψ) = (ρ(Vorψc (y)) − νy)y∈Y . Hence,

∇Φ = 0 ⇐⇒ discrete Monge-Amp`ere equation:

∀y ∈ Y, ρ(Vorψc (y)) = νy.

(40)

Optimal transport as concave maximization

Theorem: Finding a c-O.T between ρ with density and ν = P

Y νyδy

⇐⇒ finding ψ : Y → R such that Tc#ψ ρ = ν

⇐⇒ maximizing the concave function Φ

Aurenhammer, Hoffman, Aronov ’98

Φ(ψ) := P

y

R

Vorψc (y)[c(x, y) + ψ(y)] d ρ(x) − P

y ψ(y)νy

I Byproduct of Kantorovich duality.

I ∇Φ(ψ) = (ρ(Vorψc (y)) − νy)y∈Y . Hence,

∇Φ = 0 ⇐⇒ discrete Monge-Amp`ere equation:

I Existing numerical methods: coordinate-wise increment with minimum step,

N3

∀y ∈ Y, ρ(Vorψc (y)) = νy.

(41)

Optimal transport as concave maximization

Theorem: Finding a c-O.T between ρ with density and ν = P

Y νyδy

⇐⇒ finding ψ : Y → R such that Tc#ψ ρ = ν

⇐⇒ maximizing the concave function Φ

Aurenhammer, Hoffman, Aronov ’98

Φ(ψ) := P

y

R

Vorψc (y)[c(x, y) + ψ(y)] d ρ(x) − P

y ψ(y)νy

I Byproduct of Kantorovich duality.

I ∇Φ(ψ) = (ρ(Vorψc (y)) − νy)y∈Y . Hence,

∇Φ = 0 ⇐⇒ discrete Monge-Amp`ere equation:

I Existing numerical methods: coordinate-wise increment with minimum step,

[Oliker–Prussner]

with complexity O(Nε3 log(N)), ε = precision.

Contribution: Efficient heuristic to optimize Φ −→ quasi-Newton and multiscale

∀y ∈ Y, ρ(Vorψc (y)) = νy.

(42)

Multiscale Approach to Semi-discrete OT, c = 1 2 k.k 2

Φν(ψ) := P

y

R

Vorψc (y)[c(x, y) + ψ(y)] d ρ(x) − P

y ψ(y)νy I Single scale

−→ Evaluation of Φ: Voronoi cells (CGAL) + Exact integration

−→ low-storage quasi-Newton method

[M., Comput. Graph. Forum / SGP 2011]

(43)

Multiscale Approach to Semi-discrete OT, c = 1 2 k.k 2

I Multiscale. (A) Simplification of target measure using Lloyd’s algorithm

ν0

Φν(ψ) := P

y

R

Vorψc (y)[c(x, y) + ψ(y)] d ρ(x) − P

y ψ(y)νy I Single scale

−→ Evaluation of Φ: Voronoi cells (CGAL) + Exact integration

−→ low-storage quasi-Newton method

[M., Comput. Graph. Forum / SGP 2011]

(44)

Multiscale Approach to Semi-discrete OT, c = 1 2 k.k 2

I Multiscale. (A) Simplification of target measure using Lloyd’s algorithm

ν0 ν1

π01 Φν(ψ) := P

y

R

Vorψc (y)[c(x, y) + ψ(y)] d ρ(x) − P

y ψ(y)νy I Single scale

−→ Evaluation of Φ: Voronoi cells (CGAL) + Exact integration

−→ low-storage quasi-Newton method

[M., Comput. Graph. Forum / SGP 2011]

(45)

Multiscale Approach to Semi-discrete OT, c = 1 2 k.k 2

I Multiscale. (A) Simplification of target measure using Lloyd’s algorithm

ν0 ν1 ν2

π01 π12

Φν(ψ) := P

y

R

Vorψc (y)[c(x, y) + ψ(y)] d ρ(x) − P

y ψ(y)νy I Single scale

−→ Evaluation of Φ: Voronoi cells (CGAL) + Exact integration

−→ low-storage quasi-Newton method

[M., Comput. Graph. Forum / SGP 2011]

(46)

Multiscale Approach to Semi-discrete OT, c = 1 2 k.k 2

I Multiscale. (A) Simplification of target measure using Lloyd’s algorithm

ν0 ν1 ν2

π01 π12

ψ2 = arg max Φν2 starting from ψ20 = 0

(B) Coarse-to-fine

Φν(ψ) := P

y

R

Vorψc (y)[c(x, y) + ψ(y)] d ρ(x) − P

y ψ(y)νy I Single scale

resolution:

−→ Evaluation of Φ: Voronoi cells (CGAL) + Exact integration

−→ low-storage quasi-Newton method

[M., Comput. Graph. Forum / SGP 2011]

(47)

Multiscale Approach to Semi-discrete OT, c = 1 2 k.k 2

I Multiscale. (A) Simplification of target measure using Lloyd’s algorithm

ν0 ν1 ν2

π01 π12

ψ2 = arg max Φν2 ψ1 = arg min Φν1

w. ψ10 = π12−1 ψ2 starting from ψ20 = 0

(B) Coarse-to-fine

Φν(ψ) := P

y

R

Vorψc (y)[c(x, y) + ψ(y)] d ρ(x) − P

y ψ(y)νy I Single scale

resolution:

−→ Evaluation of Φ: Voronoi cells (CGAL) + Exact integration

−→ low-storage quasi-Newton method

[M., Comput. Graph. Forum / SGP 2011]

(48)

Multiscale Approach to Semi-discrete OT, c = 1 2 k.k 2

I Multiscale. (A) Simplification of target measure using Lloyd’s algorithm

ν0 ν1 ν2

π01 π12

ψ2 = arg max Φν2 ψ1 = arg min Φν1

w. ψ10 = π12−1 ψ2 starting from ψ20 = 0 ψ0 = arg min Φν0

w. ψ00 = π01−1 ψ1

(B) Coarse-to-fine

Φν(ψ) := P

y

R

Vorψc (y)[c(x, y) + ψ(y)] d ρ(x) − P

y ψ(y)νy I Single scale

resolution:

−→ Evaluation of Φ: Voronoi cells (CGAL) + Exact integration

−→ low-storage quasi-Newton method

[M., Comput. Graph. Forum / SGP 2011]

(49)

Multiscale Approach to Semi-discrete OT, c = 1 2 k.k 2

I Multiscale. (A) Simplification of target measure using Lloyd’s algorithm

ν0 ν1 ν2

π01 π12

ψ2 = arg max Φν2 ψ1 = arg min Φν1

w. ψ10 = π12−1 ψ2 starting from ψ20 = 0 ψ0 = arg min Φν0

w. ψ00 = π01−1 ψ1

(B) Coarse-to-fine

Φν(ψ) := P

y

R

Vorψc (y)[c(x, y) + ψ(y)] d ρ(x) − P

y ψ(y)νy I Single scale

resolution:

−→ Evaluation of Φ: Voronoi cells (CGAL) + Exact integration

First numerical method able to handle large semi-discrete OT problems

−→ low-storage quasi-Newton method

[M., Comput. Graph. Forum / SGP 2011]

(50)

Some Pictures of Optimal Transport Plans, c = 1 2 k.k 2

Source: picture ”Cameraman”

Target: Lloyd sampling of picture ”Peppers” (k = 625)

McCann ’97 Displacement interpolation

[M., Comput. Graph. Forum / SGP 2011]

(51)

Some Pictures of Optimal Transport Plans, c = 1 2 k.k 2

The mass of Dirac at p is spread onto Vorψc (p)

Source: picture ”Cameraman”

Target: Lloyd sampling of picture ”Peppers” (k = 625)

McCann ’97 Displacement interpolation

ψ = (1 − t) · ψsol + t · 0 t = 14

[M., Comput. Graph. Forum / SGP 2011]

(52)

Some Pictures of Optimal Transport Plans, c = 1 2 k.k 2

Source: picture ”Cameraman”

Target: Lloyd sampling of picture ”Peppers” (k = 625)

McCann ’97 Displacement interpolation

[M., Comput. Graph. Forum / SGP 2011]

(53)

Some Pictures of Optimal Transport Plans, c = 1 2 k.k 2

The mass of Dirac at p is spread onto Vorψc (p)

Source: picture ”Cameraman”

Target: Lloyd sampling of picture ”Peppers” (k = 625)

McCann ’97 Displacement interpolation

ψ = (1 − t) · ψsol + t · 0 t = 34

[M., Comput. Graph. Forum / SGP 2011]

(54)

Some Pictures of Optimal Transport Plans, c = 1 2 k.k 2

Source: picture ”Cameraman”

Target: Lloyd sampling of picture ”Peppers” (k = 625)

McCann ’97 Displacement interpolation

[M., Comput. Graph. Forum / SGP 2011]

(55)

Some Pictures of Optimal Transport Plans, c = 1 2 k.k 2

k = 625

k = 15000

[M., Comput. Graph. Forum / SGP 2011]

(56)

Some Pictures of Optimal Transport Plans, c = 1 2 k.k 2

k = 625

k = 15000

[M., Comput. Graph. Forum / SGP 2011]

(57)

Some Pictures of Optimal Transport Plans, c = 1 2 k.k 2

k = 625

k = 15000

[M., Comput. Graph. Forum / SGP 2011]

3D version of the algorithm by B. L´evy (2014), with k up to 1M points.

(58)

Hessian of Kantorovich functional, c = 1 2 k.k 2

∇Φ(ψ) = (ρ(Vorψc (y)) − νy)y∈Y

Assume X ⊆ Rd is open, bounded and connected / ρ ∈ Pac(X) ∩ C0(Ω), ρ ≥ ε.

(59)

Hessian of Kantorovich functional, c = 1 2 k.k 2

Proposition: Φ is twice differentiable almost everywhere and

2Φ

∂z∂y (ψ) = R

Vorψc (y,z)

ρ(x) dx ky−zk

2Φ

∂y2 (ψ) = − P

z6=y

2Φ

∂y∂z (ψ)

∇Φ(ψ) = (ρ(Vorψc (y)) − νy)y∈Y

Assume X ⊆ Rd is open, bounded and connected / ρ ∈ Pac(X) ∩ C0(Ω), ρ ≥ ε.

Vorψc (y, z) := Vorψc (y) Vorψc (z)

(60)

Hessian of Kantorovich functional, c = 1 2 k.k 2

Proposition: Φ is twice differentiable almost everywhere and

2Φ

∂z∂y (ψ) = R

Vorψc (y,z)

ρ(x) dx ky−zk

2Φ

∂y2 (ψ) = − P

z6=y

2Φ

∂y∂z (ψ)

∇Φ(ψ) = (ρ(Vorψc (y)) − νy)y∈Y

Assume X ⊆ Rd is open, bounded and connected / ρ ∈ Pac(X) ∩ C0(Ω), ρ ≥ ε.

(y, z) ∈ G ⇐⇒ ∂z∂y2Φ (ψ) > 0

Vorψc (y, z) := Vorψc (y) Vorψc (z)

I D2Φ(ψ) is the Laplacian of a weighted graph G

(61)

Hessian of Kantorovich functional, c = 1 2 k.k 2

Proposition: Φ is twice differentiable almost everywhere and

2Φ

∂z∂y (ψ) = R

Vorψc (y,z)

ρ(x) dx ky−zk

2Φ

∂y2 (ψ) = − P

z6=y

2Φ

∂y∂z (ψ)

∇Φ(ψ) = (ρ(Vorψc (y)) − νy)y∈Y

Assume X ⊆ Rd is open, bounded and connected / ρ ∈ Pac(X) ∩ C0(Ω), ρ ≥ ε.

(y, z) ∈ G ⇐⇒ ∂z∂y2Φ (ψ) > 0 ⇐⇒ Vorψc (y, z) ∩ X 6= ∅.

Vorψc (y, z) := Vorψc (y) Vorψc (z)

i.e. G = 1-skeleton of restricted regular triangulation I D2Φ(ψ) is the Laplacian of a weighted graph G

(62)

Hessian of Kantorovich functional, c = 1 2 k.k 2

Proposition: Φ is twice differentiable almost everywhere and

2Φ

∂z∂y (ψ) = R

Vorψc (y,z)

ρ(x) dx ky−zk

2Φ

∂y2 (ψ) = − P

z6=y

2Φ

∂y∂z (ψ)

∇Φ(ψ) = (ρ(Vorψc (y)) − νy)y∈Y

Assume X ⊆ Rd is open, bounded and connected / ρ ∈ Pac(X) ∩ C0(Ω), ρ ≥ ε.

(y, z) ∈ G ⇐⇒ ∂z∂y2Φ (ψ) > 0 ⇐⇒ Vorψc (y, z) ∩ X 6= ∅.

Vorψc (y, z) := Vorψc (y) Vorψc (z)

i.e. G = 1-skeleton of restricted regular triangulation I D2Φ(ψ) is the Laplacian of a weighted graph G

I miny∈Y ρ(Vorψc (y) ∩ X) > 0 =⇒ G is connected

(63)

Hessian of Kantorovich functional, c = 1 2 k.k 2

Proposition: Φ is twice differentiable almost everywhere and

2Φ

∂z∂y (ψ) = R

Vorψc (y,z)

ρ(x) dx ky−zk

2Φ

∂y2 (ψ) = − P

z6=y

2Φ

∂y∂z (ψ)

∇Φ(ψ) = (ρ(Vorψc (y)) − νy)y∈Y

Assume X ⊆ Rd is open, bounded and connected / ρ ∈ Pac(X) ∩ C0(Ω), ρ ≥ ε.

(y, z) ∈ G ⇐⇒ ∂z∂y2Φ (ψ) > 0 ⇐⇒ Vorψc (y, z) ∩ X 6= ∅.

Vorψc (y, z) := Vorψc (y) Vorψc (z)

−→ local quadratic convergence of Newton’s method i.e. G = 1-skeleton of restricted regular triangulation I D2Φ(ψ) is the Laplacian of a weighted graph G

=⇒ KerD2Ψ(ψ) = {cst}

I miny∈Y ρ(Vorψc (y) ∩ X) > 0 =⇒ G is connected

(64)

Future work: Newton’s Method and Other Costs

I Quantitative lower bound on λ1(−D2Φ) using a discrete Cheeger inequality:

λ1(X) ≥ 14h(X)2 h(X) := minA min(HHdd−1(A),H(∂A)d(X\A)

where A ⊆ X and ∂A smooth

[ongoing work with Kitagawa and Thibert]

(65)

Future work: Newton’s Method and Other Costs

I Quantitative lower bound on λ1(−D2Φ) using a discrete Cheeger inequality:

λ1(X) ≥ 14h(X)2 h(X) := minA min(HHdd−1(A),H(∂A)d(X\A)

where A ⊆ X and ∂A smooth

I Possible improvement if one is able to control maxy diam(Vorψc (y))

[ongoing work with Kitagawa and Thibert]

' regularity result for discrete solutions.

(66)

Future work: Newton’s Method and Other Costs

I Quantitative lower bound on λ1(−D2Φ) using a discrete Cheeger inequality:

λ1(X) ≥ 14h(X)2 h(X) := minA min(HHdd−1(A),H(∂A)d(X\A)

where A ⊆ X and ∂A smooth

I Possible improvement if one is able to control maxy diam(Vorψc (y))

I Extension to Ma-Trudinger-Wang costs, using work from Kitagawa? [Kitagawa ’12]

[ongoing work with Kitagawa and Thibert]

' regularity result for discrete solutions.

(67)

Future work: Newton’s Method and Other Costs

Towards the global convergence of a damped Newton method for MTW costs ? I Quantitative lower bound on λ1(−D2Φ) using a discrete Cheeger inequality:

λ1(X) ≥ 14h(X)2 h(X) := minA min(HHdd−1(A),H(∂A)d(X\A)

where A ⊆ X and ∂A smooth

I Possible improvement if one is able to control maxy diam(Vorψc (y))

I Extension to Ma-Trudinger-Wang costs, using work from Kitagawa? [Kitagawa ’12]

[ongoing work with Kitagawa and Thibert]

' regularity result for discrete solutions.

(68)

3. Far-Field Reflector Problem

c(x, y ) = − log(1 − hx|y i) on S

2

in collaboration with P. Machado and B. Thibert

(69)

Far-Field Reflector Problem

S2 Punctual light at origin o, density f on So2 Prescribed far-field: density g on S2

So2 o

o f

g

(70)

Far-Field Reflector Problem

S2 Punctual light at origin o, density f on So2 Prescribed far-field: density g on S2

So2

Goal: Find a surface R which sends (So2, f) to (S, g) under reflection by Snell-Descartes law.

o o

R

f

g

(71)

Far-Field Reflector Problem

S2 Punctual light at origin o, density f on So2 Prescribed far-field: density g on S2

So2

Goal: Find a surface R which sends (So2, f) to (S, g) under reflection by Snell-Descartes law.

o o

R

Generalized Monge-Amp`ere equation: g(TR(u)) det(DTR(u)) = f(u) f

g

TR maps the direction of an emmited ray in So2 to the direction of the reflected ray in S2 .

(72)

Far-Field Reflector Problem

S2 Punctual light at origin o, density f on So2 Prescribed far-field: density g on S2

So2

Goal: Find a surface R which sends (So2, f) to (S, g) under reflection by Snell-Descartes law.

o o

R

Generalized Monge-Amp`ere equation: g(TR(u)) det(DTR(u)) = f(u) f

g

TR maps the direction of an emmited ray in So2

I Fully non linear PDE over the sphere with BV2 boundary conditions

to the direction of the reflected ray in S2 .

(73)

Far-Field Reflector Problem: Semi-discrete case

S2 y1

y2

y3

Punctual light at origin o, µ ∈ Pac(So2) Prescribed far-field: ν = P

i νiδyi ∈ P(S2 )

So2 o

(74)

Far-Field Reflector Problem: Semi-discrete case

S2 y1

y2

y3

Punctual light at origin o, µ ∈ Pac(So2) Prescribed far-field: ν = P

i νiδyi ∈ P(S2 )

So2

Goal: Find a surface R which sends (So2, µ) to (S, ν) under reflection by Snell’s law.

o

R

(75)

Far-Field Reflector Problem: Semi-discrete case

y1

y2

y3

Punctual light at origin o, µ ∈ Pac(So2) Prescribed far-field: ν = P

i νiδyi ∈ P(S2 )

−→ Pii) = solid paraboloid of revolution with

focal o, direction yi and focal distance κi Goal: Find a surface R which sends (So2, µ) to

(S, ν) under reflection by Snell’s law.

o P3

P2

µ

P1

So2

(76)

Far-Field Reflector Problem: Semi-discrete case

Punctual light at origin o, µ ∈ Pac(So2) Prescribed far-field: ν = P

i νiδyi ∈ P(S2 )

−→ Pii) = solid paraboloid of revolution with

focal o, direction yi and focal distance κi

−→ PIκi = πS2

oNj=1Pjj)

∩ ∂Pii)

Goal: Find a surface R which sends (So2, µ) to (S, ν) under reflection by Snell’s law.

PIκ3

o P3

P2

µ

= partition of So2 So2

(77)

Far-Field Reflector Problem: Semi-discrete case

Punctual light at origin o, µ ∈ Pac(So2) Prescribed far-field: ν = P

i νiδyi ∈ P(S2 )

−→ Pii) = solid paraboloid of revolution with

focal o, direction yi and focal distance κi

−→ PIκi = πS2

oNj=1Pjj)

∩ ∂Pii)

Discrete Monge-Amp`ere equation: Find ~κ such that ∀i, µ(PIκi ) = νi.

Goal: Find a surface R which sends (So2, µ) to (S, ν) under reflection by Snell’s law.

PIκ3

amount of light reflected in direction yi.

o P3

P2

µ

= partition of So2 So2

Caffarelli-Kochengin-Oliker ’99

(FF)

(78)

Semi-Discrete Far-Field Reflector Problem as OT

Lemma: With c(x, y) = − log(1 − hx|yi), and ψi := log(κi), PIκi = Vorψc (yi).

PIκ3

o

P33)

Wang ’04

Glimm-Oliker ’03 [Machado, M., Thibert, Symp. Comp. Geom 2014]

(79)

Semi-Discrete Far-Field Reflector Problem as OT

Lemma: With c(x, y) = − log(1 − hx|yi), and ψi := log(κi), PIκi = Vorψc (yi).

PIκ3

o

P33)

Wang ’04

Glimm-Oliker ’03 [Machado, M., Thibert, Symp. Comp. Geom 2014]

(FF) Find κ such that ∀i, µ(PIκi ) = νi. Corollary:

(80)

Semi-Discrete Far-Field Reflector Problem as OT

Lemma: With c(x, y) = − log(1 − hx|yi), and ψi := log(κi), PIκi = Vorψc (yi).

PIκ3

o

P33)

Wang ’04

Glimm-Oliker ’03 [Machado, M., Thibert, Symp. Comp. Geom 2014]

(FF) Find κ such that ∀i, µ(PIκi ) = νi.

⇐⇒

(OT) Find ψ such that µ(Vorψc (yi)) = νi Corollary:

(81)

Semi-Discrete Far-Field Reflector Problem as OT

Lemma: With c(x, y) = − log(1 − hx|yi), and ψi := log(κi), PIκi = Vorψc (yi).

PIκ3

o

P33)

Wang ’04

Glimm-Oliker ’03 [Machado, M., Thibert, Symp. Comp. Geom 2014]

I (FF) is a semi-discrete OT problem with c(x, y) = − log(1 − hx|yi)

(FF) Find κ such that ∀i, µ(PIκi ) = νi.

⇐⇒

(OT) Find ψ such that µ(Vorψc (yi)) = νi Corollary:

(82)

Semi-Discrete Far-Field Reflector Problem as OT

Lemma: With c(x, y) = − log(1 − hx|yi), and ψi := log(κi), PIκi = Vorψc (yi).

PIκ3

o

P33)

Wang ’04

Glimm-Oliker ’03 [Machado, M., Thibert, Symp. Comp. Geom 2014]

I (FF) is a semi-discrete OT problem with c(x, y) = − log(1 − hx|yi)

(FF) Find κ such that ∀i, µ(PIκi ) = νi.

⇐⇒

(OT) Find ψ such that µ(Vorψc (yi)) = νi Corollary:

(83)

Computation of the generalized Voronoi cells

Lemma: With ψi = log(κi), pi := −yi

i and ωi := −kyi

i k2κ1

i , PIκi = Vorψc (yi) = VorωP,k.k2(pi) ∩ S2

[Machado, M., Thibert, Symp. Comp. Geom 2014]

(84)

Computation of the generalized Voronoi cells

Lemma: With ψi = log(κi), pi := −yi

i and ωi := −kyi

i k2κ1

i , PIκi = Vorψc (yi) = VorωP,k.k2(pi) ∩ S2

I Computation combines Regular triangulation 3 from

[Machado, M., Thibert, Symp. Comp. Geom 2014]

CGAL with custom filtered predicates and data structures.

(85)

Computation of the generalized Voronoi cells

Lemma: With ψi = log(κi), pi := −yi

i and ωi := −kyi

i k2κ1

i , PIκi = Vorψc (yi) = VorωP,k.k2(pi) ∩ S2

I Computation combines Regular triangulation 3 from

[Machado, M., Thibert, Symp. Comp. Geom 2014]

I Applies to other geometric constructions involving confocal CGAL with custom filtered predicates and data structures.

quadrics of revolution appearing in geometric optics.

Références

Documents relatifs

Si l’on calcule l’angle de diffraction de la radiation bleue pour k = 2, on obtient 33,50˚, qui est sup´erieur `a 22,32˚ (angle de diffraction pour le rouge dans l’ordre 1)..

R´epondre exactement aux pr´edicats mais pas forc´ement du calcul exact.. Algorithmes

Syst`eme de coordonn´ee pour un nuage de points Dessin de graphes et similarit´es mol´eculaires.. 1998

Autres probl`emes en g´eom´etrie algorithmique G´en´eralisations (puissance, contraint. ) Enveloppes convexes...

En pratique, l’Analyse Num´ erique se propose d’´ etudier les propri´ et´ es math´ ematiques des algorithmes et leur mise en oeuvre (programmation).... Ainsi le r´ esultat

Trouver des relations de d´ependance lin´eaire entre des vecteurs donn´es g´eom´etriquement. Voir que l’image d’une base d´etermine

Pour mettre au point (obtenir une image nette) sur un objet situ´e ` a distance finie D de O, on doit ´ecarter l’objectif de cette position d’une distance t (tirage).. Lorsque la

D´eterminer les ´equations r´eduites des droites (AB) et