• Aucun résultat trouvé

3Responsefunctionforidenticalparticles 2Conductivityoftheelectrongas e e e TDn 8:Outofequilibriumstatisticalphysics(quantum)linearresponsetheory1Quantumharmonicoscillator

N/A
N/A
Protected

Academic year: 2021

Partager "3Responsefunctionforidenticalparticles 2Conductivityoftheelectrongas e e e TDn 8:Outofequilibriumstatisticalphysics(quantum)linearresponsetheory1Quantumharmonicoscillator"

Copied!
2
0
0

Texte intégral

(1)

Master 2 ICFP – Physique Quantique December 2, 2016 Cours de physique statistique

TD n o 8 : Out of equilibrium statistical physics (quantum) linear response theory

1 Quantum harmonic oscillator

We study the dynamics of a quantum harmonic oscillator described by the Hamiltonian H 0 = 2m p

2

+ 1 2 m! 0 2 x 2 , submitted to the time dependent perturbation H pert (t) = x f (t) .

1/ Determine the time dependence of the annihilation operator in the interaction representa- tion a(t)

def

= e iH

0

t/ ~ a e iH

0

t/ ~ .

2/ Deduce the correlation function C(t) ⌘ C xx (t) = h x(t)x i, where h· · ·i denotes the canonical averaging. Analyze the classical (~ ! 0 ) and zero temperature limits.

3/ Check that the detailed balance relation C( e !) = C(!) e e ~ ! holds. Deduce the symmetrized correlation function S(t)

def

= 1 2 h{ x(t), x }i.

4/ Compute the spectral function ⇠(t)

def

= 2 1 ~ h [x(t), x] i and the response function (t) ⌘ xx (t) . Are these results dependent on the nature of the average h· · ·i ? Compute e (!) and ⇠(!) e . 5/ Compute the Kubo correlation function K(t) ⌘ K xx (t) = 1 R

0 d h x( i ~ )x(t) i. Check the relation with the response function.

6/ Verify that the response function coincides with the classical result. Give the origin of this observation.

Hint : Write the equation of motion in Heisenberg representation for x H (t) and p H (t) . Justify that the response of the quantum harmonic oscillator is purely linear.

7/ Check that the correlation functions satisfy the Fluctuation-Dissipation theorem.

2 Conductivity of the electron gas

We consider a gas of (non interacting) free electrons and study its response to an electric field. Perturbation takes the form H pert (t) = e E ~ (t) · ~ r (where ~ r is the position operator for one electron). The spatially averaged current density is ~ j = V e ~ v where ~ v is the speed operator for the electron. Conductivity (for ~ q = 0 ) is defined by h j i (t) i E = R

dt 0 ij (t t 0 ) E j (t 0 ) (with implicit summation over repeated index).

1/ Compute the conductivity (1 ij e ) (t) for a single electron.

2/ Deduce the conductivity for the Fermi gas of N electrons at temperature T . 3/ Compute the Fourier tansform e ij (!) . Interpret physically the ! ! 0 behaviour.

4/ Sum rule.– Give ij (t = 0) and then R

d! ˜ ij (!) .

3 Response function for identical particles

We introduce the basis of one particle stationary states {| ' i}. We denote h the one body Hamiltonian and H = P N

i=1 h (i) the many body Hamiltonian, acting in the N particle Hilbert space H N = H 1 N . We denote by a and a ↵ the annihilation/creation operators acting in the Fock space F = L 1

N =0 H N . They obey { a , a } = ↵, for fermions and [a , a ] = ↵, for

1

(2)

bosons. We consider two observables Q and P , sum of one body operators, Q = P

i q (i) and P = P

i p (i) . We recall that, in the Fock space, these operators can be represented as Q = X

↵,

q a a (1)

where q

def

= h ' | q | ' i is the matrix element of the one body operator.

We introduce the grand canonical averaging

h· · ·i

def

= Tr { ⇢ · · ·} with ⇢ = 1

Z e (H µN) (2)

where Tr {· · ·} is a trace in F and N the particle number operator.

1/ Compute h a ↵ a i. We introduce the notation f ⌘ f (" ) = e

("↵

1

µ)

± 1 where h | ' i =

" ↵ | ' ↵ i.

2/ Verify

[AB, CD] = A[B, C]D + [A, C ]BD + CA[B, D] + C[A, D]B (3) [AB, CD] = A { B, C } D { A, C } BD + CA { B, D } C { A, D } B (4) and deduce [a ↵ a , a µ a ⌫ ] .

3/ Show that the following relation

h [P, Q] i = Tr { ⇢ [P, Q] } = tr { f (h)[p, q] } (5) holds both for bosons and fermions, where tr {· · · } is a trace in the one body Hilbert space H 1 . 4/ Note that h P Q i 6 = tr { f (h)pq }.

5/ IMPORTANT : Deduce the spectral representation for the response function e P Q (!) in terms of one-body matrix elements q and p . Conclusion ?

4 Compressibility of the free fermionic gas

The operator “density of particle”’ is denoted n(r) ˆ and its Fourier component n ˆ q (I drop the arrows on vectors). We consider that the system is in a box of finite size V and study its response to an external scalar potential V ext (r, t) .

1/ Density-density response function (r, t; r 0 , 0) is defined by h ˆ n(r, t) i V

ext

=

mean density

z}|{ n + Z

dr 0 dt 0 (r, t; r 0 , t 0 ) V ext (r 0 , t 0 ) + · · · (6) Express H ˆ pert (t) in terms of n ˆ q . Deduce R

d(r r 0 ) e iq(r r

0

) (r, t; r 0 , 0) as a correlator of the density operator n ˆ q .

2/ We now consider the free fermion gas. One particle eigenstates are the plane waves ' k (r) =

p 1

V e ikr with energy " k . For one fermion, the density operator is n(r) = (r ˆ r) ˆ . Compute the matrix element h ' k | n ˆ q | ' k

0

i.

3/ Show that e (q, !) = R

d(r r 0 ) e iq(r r

0

) R dt e i!t (r, t; r 0 , 0) can be represented as a sum over one-particle eigenstates

e (q, !) = 1 V

X

k

f k f k+q

~ ! + " k " k+q + i0 + (7)

where f k ⌘ f (" k ) is the Fermi-Dirac distribution.

4/ Static case ! = 0 .– Compute e (q ⌧ k F , 0) . Interpret the result physically.

2

Références

Documents relatifs

l'étranger. En même temps elle lendit à l'inspec- leur son sac à main, contenant environ 50,000 shillings de joaillerie qu'elle avait emportée d'A- mérique en Europe et

c) Les rédacteurs de la presse du parti ; d) Les membres du groupe socialiste des Chambres fédérales. Les membres du Comité du parti sont indem- nisés pour leurs perles de temps

S'il a, comme tous les citoyens la liberté de parler et d'écrire, il est tenu, de plus qu'eux à être toujours maître de sa parole et de sa plume, non parce que les écarts de l'une

Vous voyez donc que nous avons fait notre possible pour ne pas léser l'industrie française ; nous ne sommes d'ailleurs pas le premiers qui avons élé obligés de faire appel

Les procédés de fabrication de fausses perles sont multiples et la plupart sont tenus secrets par leurs inventeurs, dans le but d'éviter la con- currence industrielle. Le procédé

Nicolet ne voit pas de bon œil la création d'une classe d'éleclrolechnique ; l'industrie élec- trique depuis 1900 subit une crise assez intense et ce n'est pas rendre service

Il ouvrit action à cette dernière société, et, par arrêt du 2d avril 1906, la cour de justice civile de Genève a ordonné la radiation de la raison sociale, fait défense à

Exemple de la pile Daniell : pour cette pile, la f´em est E = 1,1 V.Quand la pile fonctionne, le courant I circule dans le circuit du pˆole positif, ´electrode de cuivre, vers le