• Aucun résultat trouvé

Ice loads on a rigid structure with a compliant foundation

N/A
N/A
Protected

Academic year: 2021

Partager "Ice loads on a rigid structure with a compliant foundation"

Copied!
14
0
0

Texte intégral

(1)

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Ice loads on a rigid structure with a compliant foundation

Frederking, R. M. W.; Timco, G. W.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=0c05cb0c-cc68-4e9f-950a-67ad1ecfdbb1

https://publications-cnrc.canada.ca/fra/voir/objet/?id=0c05cb0c-cc68-4e9f-950a-67ad1ecfdbb1

(2)

S e r

TH1

N 2 1 d

n o ,

1624

c.

2

1

B

LDG

Institute for lnstitut de

Research in recherche en

Construction construction

Ice Loads on a Rigid Structure with a

Compliant Foundation

by R. Frederking and G.W. Timco

Reprinted from

Proceedings

of

the

Nineth Conference

(POAC-87) University of Alaska Fairbanks, Fairbanks, Alaska August f 7-21, 1987

Port and Ocean Engineering

Under

Arctic Condftions Vol. 111, 1988. p. 409418.

(IRC Paper No. f 624)

Reprinted with permission

(3)

On a dalid une s6rie d'essais afin d'etudier le c o m m m e n t d'une structure rigide

reposant sur une fondation souple.

Le

&le,

un cylindre

&

60

mm de diamktre,

a Ct6

fix6

h

une base dont la souplessc pouvait

&re

modifik.

Les charges exercks par la glace

sur la strucm ont it6 mesdes en fonction de la

rigidid

&

la fondation (Mquences

naturelles

de

9 B

50 Hz) et

de

la vitesse (10 h 270 d s ) .

On

a etilis6 de la glace type

EG/DA/S

dont

la

dsistance en flexion et 19$aisseur nominales etaient respectivement de

50

kPa et

de

40

mm. On a m e s d les charges longitudinaies et transversales. Les

cmdristiques dynamiques du sys&me ono dt6 mesunks et la fonction de mmsfen a

Ctd

&termin&,

puis on l'a par la suite utilisk pour obtenir les charges de glace corrigdes

h

l'aide de techniques Fourier.

Il

a 6t6 constat6 que

le mode de

rupture de la glace Ctait

d'abord fonction

&

la vitcssc et, h

un

moindre

degd, de

la rigid.&

&

la fondation. Dans le

cas

de vitesses 6levdes et de fondations souples, la charge

de

glace transf6rde dans la

fondation etait augment&

de

pas

moins du tias.

(4)

ICE

LOADS ON A RIGID STRUCTURE WITH A COMPLIANT FOUNDATION

R. Frcderking G. W . Tirnco

National Research Council of Canada, Ottawa. Ontario, CANADA

A b s t r a c t

-

A t e s t s e r i e s h a s been c a r r i e d o u t t o s t u d y t h e b e h a v i o u r o f a r i g i d s t r u c t u r e o n a c o r e p l i a n t f o u n d a t i o n . The model, a 6 0 a m diam c y l i n d e r , w a s a t t a c h e d t o a b a s e vhose compliance c o u l d be v a r i e d . I c e l o a d s on t h e s t r u c t u r e were measured a s a f u n c t i o n o f f o u n d a t i o n s t i f f n e s s ( n a t u r a l f r e q u e n c i e s 9 t o 50

Hz)

and v e l o c i t y ( 1 0 t o 270 mm/s). EG/AD/S model i c e v i t h a n a v e r a g e f l e x u r a l s t r e n g t h o f 50 kPa and t h i c k n e s s 40 mm was used. Both l o n g i t u d i n a l and t r a n s v e r s e l o a d s v e r e measured. The dynamic c h a r a c t e r i s t i c s o f t h e s y s t e m were measured and t h e t r a n s f e r f u n c t i o n d e t e r m i n e d and s u b s e q u e n t l y used t o o b t a i n c o r r e c t e d i c e l o a d s u s i n g F o u r i e r t e c h n i q u e s . The mode of i c e f a i l u r e v a s f o u n d t o b e a f u n c t i o n p r i m a r i l y of v e l o c i t y and t o a l e s a e r e x t e n t f o u n d a t i o n s t i f f n e s s . For h i g h v e l o c i t i e s and c o m p l i a n t f o u n d a t i o n s t h e i c e l o a d t r a n s f e r r e d t h r o u g h t h e f o u n d a t i o n v a s m a g n i f i e d by a s much a s o n e t h i r d . I n t r o d u c t i o n The f l e x i b i l i t y of a s t r u c t u r e h a s been i d e n t i f i e d a s o n i m p o r t a n t f a c t o r i n c h a r a c t e r i z i n g i t s r e s p o n s e t o dynamic i c e l o a d s . O s c i l l a t o r y i c e l o a d s w e r e r e c o r d e d on a t e s t s t r u c t u r e i n Cook I n l e t , Alaska ( P e y t o n 1966). B l e n k a n ( 1 9 7 0 ) l a t e r s u g g e s t e d t h a t t h e p e r i o d i c i t y o f t h e m e a s u r e d f o r c e s r e s u l t e d from t h e r e s p o n s e c h a r a c t e r i s t i c s o f t h e s t r u c t u r e . S e v e r e v i b r a t i o n s r e s u l t i n g f r o m d y n a m i c i n t e r a c t i o n s b e t w e n moving i c e c o v e r s and l i g h t h o u s e s h a v e b e e n d o c u m e n t e d i n t h e B a l t i c ( M u t t k e n 1975; E n g l e b r e k t s o n 1978). More r e c e n t l y dynamic o s c i l l a t o r y i c e l o a d s have been o b s e r v e d a t a m a s s i v e o f f s h o r e s t r u c t u r e i n t h e B e a u f o r t Sea (Wright e t a l . 1986). I n a d d i t i o n t o f i e l d measurements and a n a l y s i s , t h e problem o f dynamic i c e l o a d s h a s been s t u d i e d u s i n g m o d e l l i n g t e c h - niques. m t t ' h e n (19811, Toyama e t a l . (19831, Tsuchiya e t a l . (1985) and S o d h i and Morris (1986) a l l c a r r i e d o u t model e x p e r i m e n t s i n which t h e e f f e c t s of s t r u c - t u r e d i a m e t e r , i c e t h i c k n e s s , r e l a t i v e v e l o c i t y and s t r u c t u r a l s t i f f n e s s w r e s t u d i e d . There a r e c e r t a i n c o n t r a d i c t i o n s

This is a reviewed and edited version of a paper presented i n t h e c o n c l u s i o n s o f t h e s t u d i e s , h o v e r

at the Ninth Infernational Con fmenn on Port and & a n e r , and, a s Daoud and Lee (1986) p o i n t

E n g i m ' n g Under Arctic Conditions, Fairtmnks, Alaska, o u t , e x p e r i m e n t a l d a t a f o r s t r u c t u r e s w i t h

USA. August 17-22. 1987. v a r i o u s s t i f f n e s s e s a n d i m p r o v e d a n a l y t i c a l models a r e s t i l l needed.

(5)

It would be d e s i r a b l e t o c a r r y o u t i n v e s t i g a t i o n s of a s t r u c t u r e v h e r e i c e l o a d s , i c e p r o p e r t i e s , i c e b e h a v i o u r and s t r u c t u r e r e s p o n s e c h a r a c t e r i s t i c s a r e known. One s u c h s i t e is t h e l i g h t p i e r a t Y a m c h i c h e i n t h e St. Lawrence River. The l i g h t p i e r i s i n s t r u m e n t e d t o measure i c e f o r c e s (Danys 1975; F r e d e r k i n g e t a l . 1 9 8 5 ) . I n f o r m a t i o n o n i t s r e s p o n s e c h a r a c t e r i s t i c s h a s been o b t a i n e d (Haynes 1986) and now s m a l l - s c a l e e x p e r i m e n t s a r e b e i n g c a r r i e d o u t t o i n v e s t i g a t e t h e e f f e c t of f o u n d a t i o n s t i f f n e s s o n ice l o a d s t r a n s m i t t e d t h r o u g h t h e s t r u c t u r e . Note t h a t t h e work t o be r e p o r t e d h e r e is n o t a d i r e c t model s t u d y o f t h e Y a m c h i c h e p i e r , b u t was i n s p i r e d by it. T h i s p a p e r w i l l p r e s e n t t h e r e s u l t s o f a n i n i t i a l test s e r i e s c a r r i e d o u t i n a n i c e model b a s i n t o i n v e s t i g a t e f o u n d a t i o n s t i f f n e s s e f f e c t s . The a n a l y s i s method used w i l l b e d e s c r i b e d a n d some o f t h e p i t f a l l s e n c o u n t e r e d w i l l be d i s c u s s e d . Theory A s t r u c t u r e s u c h a s a l i g h t p i e r o n a f l e x i b l e f o u n d a t i o n c a n be assumed t o b e h a v e a s a s i n g l e d e g r e e o f - f r e e d o m s y s t e m modelled by a m a s s d a m p e r s p r i n g o s c i l l a t o r . It c a n b e r e p r e s e n t e d by t h e f o l l o w i n g d i f f e r e n t i a l e q u a t i o n o f motion: where u ( t ) = time s e r i e s of d i s p l a c e m e n t o f s t r u c t u r e r e l a t i v e t o i t s b a s e

In11

k = s t i f f n e s s o f t h e s t r u c t u r e [N/m] m

-

mass o f t h e s t r u c t u r e

-

[kg1 f n = o n / 2 n = 1 1 2 % /

&

= n a t u r a l f r e q u e n c y [Hz] c = damping c o n s t a n t [Ns/ml

C

= ~ 1 2 % = c r i t i c a l damping r a t i o [-I f ( t ) = t i m e - s e r i e s of t h e i c e i n p u t f o r c e [Nl I n i c e e n g i n e e r i n g t h e i c e i n p u t f o r c e f ( t ) , t h e r e s p o n s e f o r c e r ( t ) a t t h e f o u n d a t i o n , t h e movement u ( t ) of t h e s t r u c t u r e r e l a t i v e t o t h e f o u n d a t i o n , and i t s f i r s t and second t i m e d e r i v a t i v e s S ( t ) and 3 ( t ) , a r e a l l of i n t e r e s t . The n a t u r e o f t h e r e s p o n s e i s dependent upon t h e d y n a a f c c h a r a c t e r i s t i c s o f t h e s t r u c t u r e and c a n be r e l a t e d t o t h e f o r c i n g f u n c t i o n by t h e impulse r e s p o n s e f u n c t i o n o f t h e s t r u c t u r e , h( t )

,

by t h e c o n v o l u t i o n i n t e g r a l To e s t a b l i s h t h e r e l a t i o n b e t v e e n t h e f o r c e and t h e r e s p o n s e i t i s more c o n v e n i e n t t o t r a n s f o r m t h e above r e l a t i o n i n t o t h e f r e q u e n c y domain: w h e r e o i s c i r c u l a r f r e q u e n c y . T h e f r e q u e n c y r e s p o n s e f u n c t i o n , H(o), c a n b e d e r i v e d from measured c h a r a c t e r i s t i c s of t h e s y s t e m . T h i s c a n b e d o n e by p e r f o r p i n g a ' p l u c k i n g ' o r s t e p u n l o a d i n g e x p e r i m e n t f r o m w h i c h f n a n d 5 a r e determined. Once t h e s e f a c t o r s a r e known f o r t h e s i n g l e d e g r e r o f - f reedom s y s t e m d e s c r i b e d by E q u a t i o n (11, t h e a m p l i t u d e o f t h e f r e q u e n c y r e s p o n s e f u n c t i o n , a l s o r e f e r r e d t o a s t h e ' t r a n s f e r f u n c t i o n , ' c a n be c a l c u l a t e d from t h e f o l l o w i n g e x p r e s s i o n (Thoaeon 1981): The F o u r i e r t r a n s f o r m method p r o v i d e s a means of c o n v e r t i n g f u n c t i o n s from t h e t i n e domain t o t h e f r e q u e n c y domain and v i c e versa. When s i g n a l s a r e r e c o r d e d i n d i g i t a l form a t e q u a l t i m e i n t e r v a l s , A t , t h e d i s c r e t e F o u r i e r t r a n s f o r m o f a t i m e series x(kAt) of N p o i n t s i n t o a f u n c t i o n X(nAf

1

i n t h e f r e q u e n c y domain i s f o r n = 0,1,2,... N-1. In a s i m i l a r m a n n e r , t h e i n v e r s e d i s c r e t e F o u r i e r t r a n s f o r m is I n a set o f e x p e r i m e n t s t h e r e s p o n s e i n t h e time domain, i n t h i s c a s e t h e f o r c e , r ( t ) , i s measured. The measured r e s p o n s e f u n c t i o n c o u l d a l s o be a t i m e

(6)

s e r i e s of t h e a c c e l e r a t i o n , B(t). The r e s p o n s e f u n c t i o n r ( t ) i n t h e t i m e domain i s c o n v e r t e d i n t o t h e f r e q u e n c y domain, R ( ~ ) , by a p p l y i n g t h e d i s c r e t e F o u r i e r transform- t o it. b o w i n g t h e t r a n s f e r f u n c t i o n A(w) from E q u a t i o n (51, t h e i c e f o r c i n g f u n c t i o n i n t h e f r e q u e n c y domain, F ( w ) , i s c a l c u l a t e d by t r a n s p o s i n g E q u a t i o n ( 4 )

me

i n v e r s e d i s c r e t e F o u r i e r t r a n s f o r m i s t h e n a p p l i e d t o F ( w ) t o o b t a i n a compensated time s e r i e s f o r t h e i c e f o r c e f ( t ) . The term compensated f o r c e v i l l b e used throughout t h i s p a p e r f o r f ( t ) , t h e c a l c u l a t e d i c e i n p u t f o r c e o n t h e t i m e domain. A s may be s e e n , t h e b a s i c methods f o r c a r r y i n g o u t t h i s a n a l y s i s a r e r e l a t i v e l y s t r a i g h t f o r w a r d , p a r t i c u l a r l y v i t h t h e r e a d y a v a i l a b i l i t y o f s o f t v a r e t o d i g i t i z e a n a l o g u e s i g n a l s a n d t o p e r f o r m t h e F o u r i e r t r a n s f o r m s . It must be k e p t i n mind, h w e v e r , t h a t t h e r e a r e c e r t a i n limitations i n a c t u a l a p p l i c a t i o n s ( R a i n e r 1 9 8 6 ) . The f i r s t i s t h e s a m p l i n g frequency. To a v o i d ' a l i a s i n g ' of a time

series s i g n a l i t must be sampled a t t h e N y q v i s t f r e q u e n c y

,

t v i c e t h e h i g h e s t f r e q u e n c y o f i n t e r e s t . To d e f i n e f r e q u e n c y response c u r v e s a d e q u a t e l y t h e s a m p l i n g frequency s h o u l d be a t l e a s t s i x t i m e s , and p r e f e r a b l y t e n times, t h e h i g h e s t f r e q u e n c y component i n t h e s i g n a l . T h e r e is a l s o t h e requirement t h a t t h e number o f samples N be e q u a l t o 2', v h e r e m i s a n i n t e g e r . I f t h e sample l e n g t h is l o n g e r t h a n N , t h e n i t may b e broken i n t o a number of o v e r l a p p i n g segments o f t h e r e q u i r e d length. A l t e r n a t i v e l y , i t c a n b e

augmented by adding zeros. The d i s c r e t e

F o u r i e r t r a n s f o r m i s a c i r c u l a r f u n c t i o n t h a t r e p e a t s i t s e l f e a c h N set of p o i n t s . I f t h e end and s t a r t v a l u e s of t h e r e c o r d a r e n o t t h e same, a f i c t i t i o u s i m p u l s e is imposed on t h e s i g n a l t h a t r e s u l t s i n a phenomenon known a s 'vrap-around.'

Apparatus

The t e s t s were conducted i n t h e i c e model b a s i n of t h e H y d r a u l i c s L a b o r a t o r y o f t h e N a t i o n a l Research Council o f Canada i n O t t a v a ( P r a t t e and Timco 1981). The b a s i n i s 2 1 m l o n g by 7 m wide by 1.2 m

d e e p and i s spanned by a t o v i n g c a r r i a g e t h a t c a n t r a v e l t h e l e n g t h o f t h e b a s i n . The model i c e used i n t h e t e s t s v a s

EG/AD/S (Timco 1986a).

A t e s t a p p a r a t u s was d e s i g n e d t o r e p r e s e n t a r i g i d s t r u c t u r e ( i n t h i s c a s e t h e Yamachiche l i g h t p i e r ) t h a t t r a n s l a t e s h o r i z o n t a l l y o n a c o m p l i a n t f o u n d a t i o n and b e h a v e s a s a s y s t e m w i t h a s i n g l e d e g r e e o f - f r e e d o m ( F i g u r e 1). The p i e r i s r e p r e s e n t e d by a 60-m diam s t e e l p i l e and i s r e s t r i c t e d t o move i n t h e h o r i z o n t a l p l a n e by a p a i r of p a r a l l e l h i n g e d l i n k s . A c a n t i l e v e r beam, f i x e d t o t h e u p p e r c a r r i e r and pinned t o t h e l o w e r c a r r i e r , i s u s e d a s t h e s p r i n g e l e m e n t . By c h a n g i n g t h e t h i c k n e s s of t h e beam and c l a t l p i n g it a t v a r i o u s e f f e c t i v e l e n g t h s , i t s s t i f f n e s s c a n be changed e a s i l y . Two thicknesses and f i v e e f f e c t i v e l e n g t h s o f t h e c a n t i l e v e r beam c o u l d b e s e l e c t e d . Knoving t h e v e i g h t o f t h e a p p a r a t u s and t h e dimenrions . o f t h e bearm,, n a t u r a l f r e q u e n c i e s c a n b e c a l c u l a t e d . Ten n a t u r a l f r e q u e n c i e s c o u l d be s e l e c t e d to r e p r e s e n t d i f f e r e n t d e g r e e s o f s t i f f n e s s o f t h e foundation. I n a c t u a l f a c t o n l y u w m c n r n t ~ m ~ l

\!!/_>I-

...

Y l ~ r n l I Y C I

_

F i g u r e 1. Schematic of t e s t s e t - u p .

(7)

f i v e f r e q u e n c i e s v e r e u s e d d u e t o zoo p r a c t i c a l l i m i t a t i o n s . No s p e c i a l 111 m e a s u r e s w e r e t a k e n t o p r e d e t e r m i n e r e l a t i v e damping. f

-

loo 50 d The test a p p a r a t u s v a s a t t a c h e d t o a 2 0 1 0 kN c a p a c i t y six-component l o a d c e l l d -50 h a v i n g a m i n i m a n a t u r a l f r e q u e n c y of Zz 320 Hz. The l o a d c e l l was a t t a c h e d by .n -100 means of a s t i f f b r a c k e t t o t h e f r o n t f a c e

=

-

130 o f t h e t o w i n g c a r r i a g e , v h i c h h a s a -200 o P Z a 4 n~ 1.0 LZ 1.4 minimum n a t u r a l f r e q u e n c y o f a b o u t 40 Hz. r ! H t I T e s t Procedure P l u c k i n g tests

An i n i t i a l set o f tests was c a r r i e d o u t t o e v a l u a t e t h e n a t u r a l f r e q u e n c i e s and r e l a t i v e damping o f t h e system i n v a r i o u s c o n f i g u r a t i o n s by means o f ' p l u c k i n g ' t e s t s . The a p p a r a t u s was a s shown i n F i g u r e 1, w i t h a s t a t i c l o a d a p p l i e d a t a p o i n t a b o u t 1 cm above t h e v a t e r l i n e by means o f a f i n e wire. The l o a d was t h e n r e l e a s e d q u i c k l y by c u t t i n g t h e wire, t h e r e b y a c h i e v i n g a s t e p u n l o a d i n g t h a t c a u s e s t h e s t r u c t u r e t o v i b r a t e a t i t s n a t u r a l f r e q u e n c y ( F i g u r e 2). A l l t e s t s were c a r r i e d o u t w i t h t h e p i l e immersed i n w a t e r a t t h e t e s t d e p t h b u t v i t h no i c e p r e s e n t . The time series s i g n a l o f t h e r e s p o n s e f o r c e , measured w i t h t h e l o a d c e l l , was d i g i t i z e d a t a f r e q u e n c y of 1000 Hz. I c e t e s t s A s e p a r a t e s h e e t of c o l u m n a r - g r a i n e d EG/AD/S i c e v a s g r o w f o r e a c h of t h e f i v e s t i f f n e s s c a s e s t e s t e d . The nominal i c e t h i c k n e s s v a s 40 mm and t h e f l e x u r a l s t r e n g t h 50 kPa. T h i s v o u l d c o r r e s p o n d t o a u n i a x i a l compressive s t r e n g t h of a b o u t

100 kPa (Timco 1986a). Average i c e s h e e t

t h i c k n e s s e s ranged from 37 t o 40 mm and a v e r a g e f l e x u r a l s t r e n g t h s from 49 t o

55 kPa. For e a c h s t i f f n e s s c a s e ( i c e s h e e t ) t e s t r u n s were made i n sequence a t f o u r d i f f e r e n t v e l o c i t i e s , namely, 3, 9, 27 and 1 cm/s. The l e n g t h o f t h e measured p a r t of e a c h test r u n was g e n e r a l l y 2 t o 3 m, a d i s t a n c e r e p r e s e n t i n g more t h a n 30 t i m e s t h e s t r u c t u r e d i a m e t e r . In a d d i t i o n t o t h e l o n g i t u d i n a l f o r c e , t r a n s v e r s e and v e r t i c a l f o r c e s , t h e t h r e e moments, and t h e a c c e l e r a t i o n o f t h e p i l e v e r e a l s o measured and r e c o r d e d , a l t h o u g h o n l y t h e loo0 100

-

f

r

u 600

-

"4 0 e E A00

-

-

% ZOO

-

C 0 5 I0 15 20 25 30 F R E O U E N C I f Hz F i g u r e 2. T i m e s e r i e s o f m e a s u r e d r e s p o n s e l o a d , r ( t ) , from p l u c k i n g t e s t and i t s power spectrum.

l o n g i t u d i n a l f o r c e s v i l l be p r e s e n t e d i n t h i s p a p e r . F o r t h e s e t e s t s t h e d i g i t i z i n g f r e q u e n c y was 100 Hz. T e s t R e s u l t s and D i s c u s s i o n P l u c k i n g tests A t y p i c a l r e s u l t from a p l u c k i n g t e s t i s i l l u s t r a t e d i n F i g u r e 2, showing t h e s t r u c t u r e v i b r a t i n g a t i t s n a t u r a l f r e q u e n c y f o l l o w i n g s t e p u n l o a d i n g o f t h e a p p l i e d f o r c e . The r a t e a t v h i c h t h e s i g n a l d e c a y s i s a measure o f t h e damping o f t h e s t r u c t u r e . T h u s , f r o m t h e s e p l u c k i n g t e s t s t h e n a t u r a l f r e q u e n c y and

,

r e l a t i v e damping c o u l d be d e t e r m i n e d by a p p l y i n g a s t a n d a r d a n a l y s i s program t o t h e d i g i t i z e d s i g n a l . The r e s u l t s o f t h e p l u c k i n g tests and t h e p r e d i c t e d n a t u r a l f r e q u e n c i e s a r e shown i n T a b l e 1. It may b e s e e n t h a t a t Lou f r e q u e n c i e s t h e p r e d i c t e d a n d m e a s u r e d v a l u e s o f f r e q u e n c i e s a g r e e q u i t e v e l l . The f i v e f o u n d a t i o n s t i f f n e s s c a s e s f o r v h i c h t e s t s

(8)

i n i c e were c a r r i e d o u t a r e marked by a s t e r i s k s . It was n o t p o s s i b l e t o c a r r y o u t tests a t t h e two lowest f r e q u e n c i e s because t h e i c e l o a d s would have caused p l a s t i c deformation of t h e c a n t i l e v e r - b e - a t t h o s e clamping lengths.

G i v e n t h e n a t u r a l f r e q u e n c y and r e l a t i v e damping and aesuming a l i n e a r system, t h e t r a n s f e r f u n c t i o n can be determined f o r each foundation s t i f f n e s s

by u s i n g Equation (5). The t r a n s f e r

f u n c t i o n s f o r a l l t h e test c o n f i g u r a t i o n s used i n t h e s e experiments a r e p l o t t e d i n F i g u r e 3. Note t h a t t h e v a l u e of t h e s i n g l e d e g r e e o f - f r e e d o a t r a n s f e r f u n c t i o n becomes less t h a n one once a p a r t i c u l a r v a l u e of frequency i s exceeded. Since t h e t r a n s f e r f u n c t i o n is deconvolved w i t h t h e f r e q u e n c y domain r e s p o n s e f u n c t i o n ( E q u a t i o n 81, i t may be s e e n t h a t t h e a m p l i t u d e o f t h e h i g h e r f r e q u e n c y components would be a m p l i f i e d i n t h i s region. A c u t - o f f frequency h a s t h e r e f o r e been s e l e c t e d beyond which t h i s e f f e c t c a n b e neglected. For t h e t h r e e lower n a t u r a l frequency c a s e s , t h i s i s t h e frequency a t which t h e v a l u e of t h e t r a n s f e r f u n c t i o n r e t u r n s t o one. The v a l u e of t h e t r a n s f e r f u n c t i o n i s a r b i t r a r i l y set a t one f o r f r e q u e n c i e s g r e a t e r t h a n t h e c u t - o f f frequency i n t h e t h r e e cases. Ihis p o i n t , which is marked on F i g u r e 3, i s about 413 o f t h e n a t u r a l frequency. For t h e two h i g h e r n a t u r a l f r e q u e n c i e s a c u t - o f f frequency of 36 Hz h a s been s e l e c t e d t o f i l t e r o u t t h e e f f e c t s of c a r r i a g e frequency. I n t h e s e c a s e s t h e v a l u e of t h e t r a n s f e r f u n c t i o n i s t a k e n t o be one f o r f r e q u e n c i e s h i g h e r t h a n 36 Hz. 2 0

-

t l - I 6

-

I I - C .ma- C.0.n

-

F R E Q U E N C Y . HZ F i g u r e 3. Amplitude of t r a n s f e r f u n c t i o n , H(v), f o r t h e f i v e f o u n d a t i o n s t i f f n e s s e s t e s t e d . F i g u r e 3 a l s o s h w s t h e e f f e c t of r e l a t i v e damping; l o v e r v a l u e s r e s u l t i n h i g h e r p e a k a m p l i t u d e s i n t h e t r a n s f e r f u n c t i o n s . Ice t e s t s R e p r e s e n t a t i v e s a m p l e s o f b o t h measured time series r e c o r d s , r ( t ) , and cogpensated time series r e c o r d s , f ( t ) , a r e s h o w n i n F i g u r e s 4 , 5 a n d 6 f o r

comparative purposes. Note t h a t t h e

samples a r e s e l e c t e d from w i t h i n t h e ( 3 t o 5 times) l o n g e r r e c o r d analyzed. F i g u r e 4 i l l u s t r a t e s t h e c a s e of l w v e l o c i t y ( 3 cmls) i c e breaking f o r ' both a s t i f f

( 5 0 Hz) and a more compliant ( 9 Hz)

foundation. It may be s e e n t h a t i n e a c h c a s e t h e measured and compensated v a l u e s

Table 1

C a l c u l a t e d and measured n a t u r a l f r e q u e n c i e s of t e s t a p p a r a t u s s i r a u l a t i n g f o u n d a t i o n s t i f f n e s s

S t i f f beam A F l e x i b l e beam

Frequency En [Hz] R e l a t i v e Frequency f n [Hz] R e l a t i v e

( p r e d i c t e d ) (measured) damping, C ( p r e d i c t e d ) (measured) damping, C

18.3 17.7* 0.025 3.1 4.0 0.28 37.5

-

6.3 5.8 0.056 6 5 31.8" 0.059 11.0 9.0* 0.043

.

157

-

26.5 16.8* 0.066 1760

-

296 50* 0.19 * S t i f f n e e s e e a c t u a l l y t e s t e d

(9)

of t h e i c e f o r c e i n t h e time domain a r e v i r t u a l l y i d e n t i c a l . The main e f f e c t of t h e compensation is t o e l i m i n a t e t h e s p u r i o u s ' n e g a t i v e ' response f o r c e s i n t h e time domain f o r t h e compliant ( 9 Hz) foundation. m e f o r c e s i n t h e time domain a l s o i n d i c a t e t h a t t h e more compliant f o u n d a t i o n e x h i b i t s h i g h e r f r e q u e n c i e s t h a n t h e s t i f f e r foundation, but t h e r e a r e no s i g n i f i c a n t frequency components above

about 5 Hz. For f r e q u e n c i e s less than

5 Hz ( F i g u r e 3) t h e t r a n s f e r f u n c t i o n i s one ( 5 0 Hz foundation) o r s l i g h t l y g r e a t e r t h a n o n e ( 9 Hz f o u n d a t i o n ) . T h e s i m i l a r i t y b e t w e e n t h e measured and compensated v a l u e s of t h e i c e f o r c e i n t h e time domain i s t h e r e f o r e n o t s u r p r i s i n g . The f a i l u r e behaviour of t h e i c e s h e e t c a n be d e s c r i b e d a s mixed mode, comprising b o t h c r u s h i n g and buckling w i t h a t t e n d a n t r a d i a l and c i r c u m f e r e n t i a l cracking. I n

t h e time series record of Figure 4 t h e

0 2 1 b 6 10 I ? 18 I6 18 10

TIME. I s

I I STIFF I50 Hz1 FOUNDATION

0 ? 4 6 8 10 I ? 14 16 I 8 20 TIME. I. s

b l COMPLIANT I( WIt FOUNDATION

F i g u r e 4. Comparison of measured response

f o r c e , r ( t ) , and compensated i c e f o r c e , f ( t ) , f o r s t i f f and compliant foundations, t e s t v e l o c i t y 3 cmls.

s e c t i o n w i t h l a r g e a m p l i t u d e l o a d v a r i a t i o n s r e p r e s e n t s a mixed c r u s h i n g and f i n a l buckling f a i l u r e , followed by a z e r o l o a d s e c t i o n d u r i n g which t h e buckled segments ;are r o t a t e d and t r a n s l a t e d o u t of t h e p a t h of t h e p i l e . The second peak i s

a p u r e buckling f a i l u r e , a g a i n followed by a z e r o load s e c t i o n . Very s i m i l a r f a i l u r e behaviour and time s e r i e s of f o r c e were observed f o r both 1 and 3 cm/s v e l o c i t i e s . F i g u r e 5 r e p r e s e n t s t h e h i g h v e l o c i t y ( 2 7 cm/s) c a s e f o r both s t i f f ( 5 0 Hz) and

compliant (9 RE) foundations. In t h i s

c a s e i t may be s e e n t h a t t h e r e a r e e i g n i f i c a n t d i f f e r e n c e s b e t w e e n t h e measured and compensated v a l u e s of f o r c e s

i n t h e time domain. For t h e compliant

( 9 Hz) foundation a measured maximum r e s p o n s e f o r c e peak h a s been s u b s t a n t i a l l y

reduced, almost by h a l f . The compensated

f o r c e a l s o shows a r e d u c t i o n f o r t h e s t i f f

TIME. I 5

a t STIFF I50 Hz1 FOUNOhTION

I

1 1 1 1 1 1 1 1 1 1 1 1 o ar an 1.2 1.b 2.0

TIME. t s

) I COMPLIANT 1 9 nzl F O U N O A T I O N

F i g u r e 5. Comparison of measured response

f o r c e , r ( t ) , and compensated i c e f o r c e , f ( t ) , f u r s t i f f and compliant f o u n d a t i o n s , t e s t v e l o c i t y 27 c m l s .

(10)

I

,

(50 Az) foundation, but i t i s n o t n e a r l y s o d r a m a t i c . A t t h i s h i g h v e l o c i t y ( 2 7 cmls) f a i r l y s i g n i f i c a n t peaks were observed i n t h e 2 t o 20 Hz range of t h e t i m e domain records. Thus, s u b s t a n t i a l r e d u c t i o n i n t h e maximum i c e f o r c e c o u l d b e e x p e c t e d , p a r t i c u l a r l y f o r t h e

compliant ( 9 Hz) foundation. The f a i l u r e

of t h e i c e a t v e l o c i t i e s of 9 and 27 cm/s can be d e s c r i b e d a s crushing. F i g u r e 6 is an example of t h e e f f e c t of t a k i n g a time s l i c e , f o r a n a l y s i s purposes, from d i f f e r e n t i n t e r v a l s of t h e tima dumain, i n t h i s c a s e f o r t h e s t i f f ( 5 0

Hz)

foundation ( F i g u r e 4a). In t h e f i r s t i n s t a n c e ( F i g u r e 6 a ) t h e s t a r t and end v a l u e s of t h e time s e r i e s , r ( t ) , a r e c l o s e t o zero. It may be s e e n t h a t t h e

measured and compensated tiam domains a r e

i d e n t i c a l . I n t h e s e c o n d i n s t a n c e ( F i g u r e 6 b ) t h e t i m e s l i c e h a s b e e n 0 2 4 6 8 10 12 14 16 18 20 TIME, f s I I TIME INTIRVAL 12.5 TO 90.5 I TIME. I. r b l TIME INlERVAL 10.5 10 88.5 s F i g u r e 6. Example of ' w r a p a r o u n d ' e f f e c t r e s u l t i n g from a s l i g h t s h i f t i n time i n t e r v a l s e l e c t e d f o r a n a l y s i s , s t i f f (50 Hz) foundation and 3 cmls v e l o c i t y . s e l e c t e d s o t h a t t h e r e i s a m a j o r d i s c o n t i n u i t y between t h e s t a r t and end o f t h e record. & r e i t may be s e e n t h a t t h e r e i s a - s i g n i f i c a n t d i f f e r e n c e between t h e two time s e r i e s . N o t h i n g h a s p h y s i c a l l y changed, o n l y a s l i g h t (1.5 s ) s h i f t i n t h e 18 s time i n t e r v a l s e l e c t e d f o r a n a l y s i s . T h i s i s a good example of t h e e f f e c t of wrap-around. The r e s u l t s of a l l t h e t e s t s a r e summarized i n Table 2, which p r e s e n t s t h e

maximum measured f o r c e , r ( t ) max, t h e

compensated maxima f o r c e , f ( t ) max, t h e mean c o m p e n s a t e d f o r c e ,

f(

t ) , a n d t h e s t a n d a r d d e v i a t i o n of t h e compensated f o r c e , S.D.[f ( t )

1.

E x a d n a t i o n r e v e a l s t h a t t h e mean and s t a n d a r d d e v i a t i o n s of t h e compensated i c e f o r c e f a l l i n t o two c a t e g o r i e s , c o r r e s p o n d i n g t o a low v e l o c i t y f a i l u r e mode (mixed b u c k l i n g and c r u s h i n g ) and a h i g h v e l o c i t y f a i l u r e mode ( c r u s h i n g ) . In t h e low v e l o c i t y mode t h e c o e f f i c i e n t of v a r i a t i o n ( r a t i o o f s t a n d a r d d e v i a t i o n t o mean) i s a b o u t one, v h i l e i n t h e h i g h v e l o c i t y mode i t is about 0.3. There i s a c o n s i s t e n t r e l a t i o n

f o r t h e maximum, mean and s t a n d a r d

d e v i a t i o n s aa follows: low v e l o c i t y high v e l o c i t y r n t t ' h e n (1983) found a r e l a t i o n s i m l l a r t o t h a t of Equation ( 9 ) o v e r t h e v e l o c i t y range 1 t o 10 cm/s. F i g u r e 7

coapares t h e measured and compensated

maxiam i c e f o r c e s f o r e a c h of t h e t e s t

cases. If foundation s t i f f n e s s h a s no

e f f e c t on i c e f o r c e s , t h e compensated maximum f o r c e s should a l l have t h e same

value. This is n o t t h e c a s e , b u t i t may b e s e e n t h a t t h e a p p l i c a t i o n o f t h e c o m p e n s a t i o n d o e s r e s u l t i n g r e a t e r c o n s i s t e n c y i n t h e maximum v a l u e s . E x a d n a t i o n of F i g u r e 7 r e v e a l s a p a t t e r n i n t h e r e s u l t s . For t h e l o v v e l o c i t y ( 1 and 3 cmls) regime t h e r e i s no s i g n i f i c a n t d i f f e r e n c e between t h e m e a s u r e d and

compensated maximum i c e f o r c e s ; i .e.

foundation s t i f f n e s s (frequency) d o e s n o t p l a y a r o l e because i t is r e l a t i v e l y high compared t o t h e f r e q u e n c i e s e x c i t e d i n t h e s t r u c t u r e by t h e ice.' For t h e h i g h

(11)

Table 2

Heasured r e s p o n s e f o r c e and compensated i c e f o r c e s , mean f o r c e and s t a n d a r d d e v i a t i o n s [ a ] f o r model t e s t s of a 60-mm d i a m e t e r p i l e i n EG/AD/S i c e V e l o c i t y , cmls Foundation s t i f f n e s s 1 3 9 2 7 f n = 9 Hz 790 710r 1065 1070 1495 1030 940 570 C 1 0.043 232 f 238 217 t 252 407 131 322 t 77 f = 17.7 Hz 850 850 970 970 825 810 1205 660

2

= 0.025 153 2 181 264 t 249 349 f 133 266 t 77 f = 16.8 Hz 675

+

660 1090 1090 1200 790 1270 800

2

= 0.065 154 2 189 252 2 264 331 t 96 304 t 110 f

-

32 Hz 975 t 810 1430 1430 1125 f 1130 835 640

2

= 0.059 178 f 215 325 t 354 481 f 174 360 t 87 t

-

50 Hz 625 620 1165 1170 980 980 630 530

2

-

0.19 164 2 176 232

+

249 428 f 168 303 f 77 *Format of d a t a r(t),,, f ( t),, T ( t ) S.D.[f(t)]

v e l o c i t y (9 and 27 cm/a) regime f o u n d a t i o n s t i f f n e s s i s a s i g n i f i c a n t f a c t o r f o r t h e more compliant c a s e s ( f r e q u e n c i e s less

t h a n about 20 Hz), b u t n o t s o f o r t h e s t i f f e r f o u n d a t i o n s ( f r e q u e n c i e s g r e a t e r t h a n 30 Hz). The compliant f o u n d a t i o n ( s t i f f n e s s less t h a n 20 Hz) i n t h i s c a s e m a g n i f i e s t h e i c e l o a d s t r a n s f e r r e d t o t h e foundation. h t h i s h i g h e r v e l o c i t y regime i c e f a i l u r e e x c i t e s f r e q u e n c i e s i n t h e s t r u c t u r e up t o about 20 Hz. F i g u r e 8 is a p l o t of t h e compensated maximum i c e f o r c e s (averaged f o r a l l f o u n d a t i o n s t i f f n e s s e e ) v e r s u s v e l o c i t y . F i r s t l y , i t may be s e e n t h a t t h e r e a r e tw, r e g i o n s of f a i l u r e behaviour. These f o l l o w a s i m i l a r p a t t e r n , i f n o t an e x a c t correspondence t o t h e f a i l u r w o d e map p r e s e n t e d by Timco (1986b) f o r fresh-water i c e ; i.e., f o r a g i v e n a s p e c t r a t i o one vould e x p e c t a t r a n s i t i o n from buckling t o c r u s h i n g a s v e l o c i t y i n c r e a s e s . It may be s e e n t h a t i n t h e l o v v e l o c i t y r e g i o n ,

Where f a i l u r e is by a mixed mode of

b u c k l i n g a n d c r u s h i n g , t h e maximum c o r r e c t e d i c e f o r c e a p p e a r s t o i n c r e a s e w i t h i n c r e a s i n g v e l o c i t y . I n t h e h i g h e r v e l o c i t y r e g i o n (9 and 27 c m l s ) t h e maximum c o m p e n s a t e d f o r c e a p p e a r s t o d e c r e a s e w i t h i n c r e a e i n g v e l o c i t y . It i s

1

I

I

n o t p o s s i b l e t o p l a c e a g r e a t d e a l of s i g n i f i c a n c e on t h e s e t r e n d s , b u t i t is c l e a r t h a t i n s e e k i n g e x p l a n a t i o n s f o r v e l o c i t y e f f e c t s on i c e l o a d s i t i s n o t r e a s o n a b l e t o e x p e c t t h e same p r o c e s s ( f a i l u r e behaviour) t o p r e v a i l o v e r a wide range of v e l o c i t i e s . D e t a i l e d r e s u l t s of t h e frequency c o n t e n t of t h e measured o r compensated i c e l o a d r e c o r d s a r e not p r e s e n t e d h e r e , b u t i t was g e n e r a l l y o b s e r v e d t h a t a t v e l o c i t i e s of 1 and 3 cm/s t h e peak

frequency was about 1 Hz, a t 9 cm/s about

3 Hz, and a t 27 cm/s about 15 Hz. No

s y s t e m a t i c v a r i a t i o n w i t h f o u n d a t i o n s t i f f n e s s was noted. The g e n e r a l t r e n d of i n c r e a s i n g f r e q u e n c y w i t h i n c r e a s i n g v e l o c i t y is s i m i l a r t o t h a t r e p o r t e d by Sodhi and P b r r i s (19861, a l t h o u g h t h e p r e s e n t r e s u l t s a r e n o t s u f f i c i e n t l y c o n s i s t e n t t o permit any c o n c l u s i o n s about a damage zone s i z e .

T r a n s v e r s e l o a d s were a l s o measured. Again, d e t a i l s of t h e s e measurements a r e n o t p r e s e n t e d h e r e , b u t t h e a v e r a g e maxinum t r a n s v e r s e load was found t o be a b o u t 25X of t h e maximum compensated i c e l o a d , and i n a few i n s t a n c e s i t exceeded .

30%.

i

(12)

F i g u r e 7. C o ~ p a r i s o n of maximum measured r e s p o n s e f o r c e , r ( t ) nax, and maximum compensated i c e f o r c e , f ( t ) max, a s a f u n c t i o n of f o u n d a t i o n s t i f f n e e s and test v e l o c i t y . 1500 BUCKLING

3

I I

5

./

$

CRUSWlNG

3

LPOO-

,'

0 ;

-

5

:

VI

t

'""I 0

-

9

0

-

0

S

1 0 za 3 0 T E S T V I L O C I T V . c m t s F i g u r e 8. I n f l u e n c e of t e s t v e l o c i t y o n a v e r a g e maximum compensated i c e f o r c e . Summary

1. Sempling r a t e s and time i n t e r v a l s f o r a n a l y s i s m a t be s e l e c t e d v i t h c a r e t o minimize t h e i n t r o d u c t i o n of a r t i f a c t s i n t o t h e r e s u l t s .

2. For l o v v e l o c i t i e s (1-3 cm/s) o r f o r a s t i f f ( 5 0 Hz) f o u n d a t i o n t h e maximum measured and compensated i c e f o r c e s a r e q u i t e s i m i l a r . These a r e c a s e s where f o u n d a t i o n f r e q u e n c y r u b e c a n t i a l l y e x c e e d s t h e o b s e r v e d primary i c e f a i l u r e f r e q u e n c y o f 1 Hz. 3. For h i g h v e l o c i t i e s (9-27 cm/s) and f o u n d a t i o n f r e q u e n c i e s l e s s t h a n 32 Hz t h e maximum C o m p e n s a t e d i c e f o r c e i s s u b s t a n t i a l l y l e s s t h a n t h e m e a s u r e d maximum. I n t h e s e c a s e s r e s p o n s e f o r c e o n t h e f o u n d a t i o n is m a g n i f i e d by s t r u c t u r e c h a r a c t e r i s t i c s . 4. Mode of f a i l u r e i s a n i m p o r t a n t f a c t o r i n d y n a m i c i n t e r a c t i o n l o a d i n g ; f o r b u c k l i n g , t h e i c e f o r c e a p p e a r s t o i n c r e a s e w i t h i n c r e a s i n g v e l o c i t y , and f o r c r u s h i n g i t a p p e a r s t o d e c r e a s e w i t h i n c r e a s i n g v e l o c i t y . Acknovledgement

The a u t h o r s would l i k e t o acknowledge t h e t e c h n i c a l a s s i s t a n c e of R. Bowen and

J. Neil i n p e r f o r n i n g t h e t e s t s and of E. Funke a n d G. P e r n i c a f o r h e l p f u l d i s c u s s i o n s c o n c e r n i n g t h e a n a l y s i s .

R e f e r e n c e s

Blenkarn, K.A. (1970). Measurement and

a n a l y s i s of i c e f o r c e s on Cook I n l e t s t r u c t u r e s . Proc. Off s h o r e Technology

Conference, Houston, Texas, OTC 1261,

Vol.

.XI,

pp. 365-378. Danys, J.V. (1975). O f f s h o r e i n s t a l l a t i o n s t o measure i c e f o r c e s o n t h e l i g h t p i e r i n L a c S t . P i e r r e . 9 t h I n t . Conf. o n L i g h t h o u s e s and O t h e r Aids t o N a v i g a t i o n , O t t a w a ( I n t e r n a t i o n a l A s s o c i a t i o n o f Lighthouse A u t h o r i t i e s , P a r i s . ) D a o u d , N. a n d L e e , F.C. ( 1 9 8 6 ) . Ice-induced dynamic l o a d s on o f f s h o r e s t r u c t u r e s . h o c . 5 t h I n t . O f f s h o r e Mechanics and A r c t i c E n g i n e e r i n g ( O W )

Symp., Tokyo, 1986, Val. 4 , pp. 212-218.

Engelbrekrson, A. (L978). Dynantle Ice

l o a d s on a l i g h t h o u s e s t r u c t u r e . POAC177, M e m o r i a l U n i v . o f N e v f o u n d l a n d , St. J o h n ' s , Vol. 2, pp. 654-663.

Frederking, R., Sayed, M., Hodgson, T. and

B e r t h e l e t , U. (1985). I c e f o r c e r e s u l t s f r o m t h e m o d i f i e d Y a m a c h i c h e B e n d

(13)

L i g h t p i e r , w i n t e r 1983-84. P r o c . Canadi an C o a s t a l Conference, St. J o h n ' s , ppe 319-331. Haynes, F.D. (1986). V i b r a t i o n a n a l y s i s of t h e Yamachiche L i g h t p i e r . I n t . J. A n a l y t i c a l a n d E x p e r i m e n t a l n o d e 1 Analysis, Vol. 1, No. 2, pp. 9-18.

MZitt'gnen, M. (1975). Experiences of i c e

f o r c e s a g a i n s t a s t e e l l i g h t h o u s e mounted on t h e seabed, and proposed c o n s t r u c t i o n a l

refinements. POAG75, Univ. of Alaska,

Fairbanks, Vol. 2, pp. 857-869.

M U t t g n e n , H. (1.981). I c e s t r u c t u r e dynamlc i n t e r a c t i o n

-

ice f o r c e s v e r s u s v e l o c i t y , i c c i n d u c e d damping. Proc. Quebec 1981 I n t . A s s o c i a t i o n of Hydraulic

Research, I n t . Symp. on I c e Problems,

27-31 J u l y , Lava1 U n i v e r s i t y , Quebec, pp. 783-796.

H ; Q l t t a n e n , M. ( 1 9 8 3 ) . D y n a m i c i c e - s t r u c t u r e i n t e r a c t i o n d u r i n g

continuous crushing. U.S. Army Cdld

R e g i o n s R e s e a r c h a n d E n g i n e e r i n g L a b o r a t o r y , H a n o v e r , NH 03755, CRREL Report 83-5. Peyton, H.R. (1966). Sea i c e s t r e n g t h . U n i v e r s i t y o f A l a s k a G e o p h y s i c a l I n s t i t u t e , Report 182.

P r a t t e , B.D. and Timco, G.U. (1981). A new m o d e l b a s i n f o r t h e t e s t i n g o f i c e s t r u c t u r e i n t e r a c t i o n s . POAC'8 1, Qwbec C i t y , Val. 11, pp. 857-866. Rainer, J.H. (1986). A p p l i c a t i o n s of t h e F o u r i e r t r a n s f o r m t o t h e p r o c e s s i n g of v i b r a t i o n s i g n a l s . N a t i o n a l Research

Council Canada, Ottawa, BRN 233, 24 pp.

Sodhi, D.S. and E b r r i s , C.E. (1986).

C h a r a c t e r i s t i c f r e q u e n c y o f f o r c e v a r i a t i o n e i n c o n t i n u o u s c r u s h i n g of s h e e t i c e a g a i n s t r i g i d c y l i n d r i c a l s t r u c t u r e s . Cold R e g i o n s S c i e n c e a n d T e c h n o l o g y , Vol. 12, pp. 1-12. Thomson, W.T. (1981). Theory of v i b r a t i o n s w i t h a p p l i c a t i o n s . London, George Al Len and Unwin, 467 p.

Timco, G.W. ( 1 9 8 6 b ) . I n d e n t a t i o n and p e n e t r a t i o n of e d g e l o a d e d f r e s h w a t e r i c e s h e e t s i n t h e b r i t t l e range. Proc. 5 t h

OMAE Symp., Tokyo, J a p a n , Vol. 4,

pp. 4 4 4 4 5 2 .

Toyama, Y., Sensu, T., Minami, M. and

Yashima, N. ( 1 9 8 3 ) . Model t e s t s on

i c e i n d u c e d s e l f - e x c i t e d v i b r a t i o n of c y l i n d r i c a l s t r u c t u r e s . POAC'83, P o r t and Ocean Engineering under A r c t i c C o n d i t i o n s , H e l s i n k i , F i n l a n d , Vol. 2, pp. 834-844.

Tsuchiya, M., Kanie, S. I k e j u i , K. and

Yoshida, A. (1985). An experimental s t u d y

o n i c e - s t r u c t u r e i n t e r a c t i o n . Proc.

O f f s h o r e Technology Conference (OTC)

,

Houston, Texas.

Wright, B., P i l k i n g t o n , G.R., Woolner,

K.S. and Wright, W.H. (1986). Winter i c e

i n t e r a c t i o n s w i t h a n a r c t i c o f f s h o r e s r r u c t u r e . Proc. IAHR I c e Symposium, Iowa C i t y , Iowa.

D i s c u s s i o n

D. SODHI: Did you r e l a t e t h e dominant

frequency i n t h e i c e f o r c e record from t e s t s conducted a t low v e l o c i t i e s t o v e l o c i t y - t o - t h i c k n e s s r a t i o ?

R. FREDERSCING: We examined t h i s r e l a t i o n but d i d not f i n d c o n s i s t e n t r e s u l t s . For both a v e l o c i t y of 1 cm/s and 3 cm/s, t h e dominant frequency was between 1 and 1.5

H

w i t h no s y s t e m a t i c c o r r e l a t i o n t o f%undation s t i f f n e s s . A t v e l o c i t i e s of 9 and 27 cm/s. p r o g r e s s i v e l y h i g h e r domi- nant f r e q u e n c i e s were observed. s o o u r r e s u l t s shoved t e n d e n c i e s s i m i l a r t o your

f i n d i n g s (Sodhi and Morris 1986). Our

v a l u e s of v / f h were i n t h e range 0.2 t o 0.8 and averaged 0.6, c o n s i d e r a b l y h i g h e r than your average v a l u e of 0.3.

Timco, G.U. (1986a). EG/AD/S: A new type

o f model i c e f o r r e f r i g e r a t e d towing t a n k s . C o l d R e g i o n s S c i . e n c e a n d Technology, vol. 12, pp. 175-195.

(14)

This paper is being distributed in reprint form by the Institute for

Research in Construction.

A

list of building practice and research

publications available from the Institute may

be

obtained

by

writing

to

the Publications Section, Institute for Research in Construction,

National Research Council of Canada, Ottawa, Ontario.

KIA

0R6.

Ce

document est disuibue sous forme de M-&part par I'Institut de

recherche en construction. On peut obtenir une liste des publications de

1'Institut portant sur

les

techniques ou les recherches en matikre de

bitiment en b i v a n t B

la Section des publications, Instiwt de recherche

en construction, Conseil national de recherches du Canada, Ottawa

(Ontario). K 1A 0R6.

Références

Documents relatifs

(a) The probability distribution that maximizes the Shannon entropy is the one where all possible elements have the same probability to occur.. Thus, we can construct it using

Le plus simple pour le prouver est de calculer son rang qui est

Renault, Examples of masas in C*-algebras, dans: Operator Structures and Dynamical Systems, AMS Contemporary Mathematics 503 (2009), 259-265.. Renault, C*-algebras and

Combien y-a-t-il de distributions de r´ ecompenses possibles..

Dans chaque exercice, remplir le tableau en utilisant

[r]

[r]

[r]