• Aucun résultat trouvé

Influence of boat noises on escape behaviour of white-spotted eagle ray Aetobatus ocellatus at Moorea Island (French Polynesia)

N/A
N/A
Protected

Academic year: 2021

Partager "Influence of boat noises on escape behaviour of white-spotted eagle ray Aetobatus ocellatus at Moorea Island (French Polynesia)"

Copied!
6
0
0

Texte intégral

(1)

HAL Id: hal-01297683

https://hal-univ-perp.archives-ouvertes.fr/hal-01297683

Submitted on 4 Apr 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative CommonsAttribution - NonCommercial - NoDerivatives| 4.0 International License

Influence of boat noises on escape behaviour of white-spotted eagle ray Aetobatus ocellatus at Moorea

Island (French Polynesia)

Cecile Berthe, David Lecchini

To cite this version:

Cecile Berthe, David Lecchini. Influence of boat noises on escape behaviour of white-spotted eagle ray Aetobatus ocellatus at Moorea Island (French Polynesia) . Comptes Rendus Biologies, Elsevier, 2016, 339 (2), p. 99-103. �10.1016/j.crvi.2016.01.001�. �hal-01297683�

(2)

Ethology/E´thologie

Influence of boat noises on escape behaviour of white-spotted eagle ray Aetobatus ocellatus at Moorea Island

(French Polynesia)

Influence des bruits de bateaux surle comportement de fuite

des raies-aigles Aetobatus ocellatus a` Moorea (Polyne´sie franc¸aise)

Cecile Berthea,David Lecchinia,b,*

aUSR3278CNRS–EPHE–UPVD,CRIOBE,98729Moorea,FrenchPolynesia

bLaboratoired’Excellence‘‘CORAIL’’,98729Moorea,FrenchPolynesia

ARTICLE INFO

Articlehistory:

Received7June2015

Acceptedafterrevision4January2016 Availableonline5February2016

Keywords:

Acousticcues Escapebehaviour Pearlfarming Predation

Motscle´s: Signauxacoustiques Comportementdefuite Culturedel’huıˆtreperlie`re Pre´dation

ABSTRACT

The present study tested different sounds that could disturb eagle rays (Aetobatus ocellatus)duringtheirforagingactivitiesatMoorea,FrenchPolynesia.Resultsshowedthat artificialwhitesoundandsingle-frequencytones(40Hz,600Hzor1kHz)didnothavean effectonrays(atleast90%ofrayscontinuedtoforageoversand),whileplaybacksofboat motorsoundsignificantlydisturbedraysduringforagingactivity(60%exhibitedanescape behaviour).Overall,ourstudyhighlightedthenegativeeffectofboatnoisesontheforaging activityofeaglerays.Thesenoisesproducedbyboattrafficcould,however,havesome positiveeffectsformarineaquacultureiftheycouldbeusedasadeterrenttorepelthe eaglerays,mainpredatorsofthepearloysters.

ß2016PublishedbyElsevierMassonSASonbehalfofAcade´miedessciences.Thisisan openaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/

by-nc-nd/4.0/).

RE´ SUM

Notree´tudetestediffe´rentstypesdesonsquipourraientperturberlesraies-aigles(Aetobatus ocellatus)pendantleurprisedenourrituredanslelagondeMoorea,enPolyne´siefranc¸aise.

Lesre´sultatsmontrentquelebruitartificielblancoudesfre´quencesuniques(40Hz,600Hz ou1kHz)n’ontaucuneffetsurlesraies(aumoins90%desraiescontinuentdesenourrirdans lesable),tandisquel’enregistrementd’unmoteurdebateaulesperturbesignificativement danscetteactivite´ (60%desindividusontuncomportementdefuite).Notree´tudemetainsi ene´videncel’effetne´gatifdesbruitsanthropoge´niquessurlesactivite´sdenourrissagedes raies-aigles.Cesbruitsproduitsparlesbateauxpourraientne´anmoinsavoiruneffetpositif pourl’aquaculturemarines’ilspouvaienteˆtreutilise´scommere´pulsifsdesraies,principaux pre´dateursdel’huıˆtreperlie`re.

ß2016Publie´ parElsevierMassonSASpourl’Acade´miedessciences.Cetarticleestpublie´

enOpenAccesssouslicenceCCBY-NC-ND(http://creativecommons.org/licenses/by-nc- nd/4.0/).

* Correspondingauthor.BP1013,Papetoai,98729Moorea,FrenchPolynesia.

E-mailaddress:lecchini@univ-perp.fr(D.Lecchini).

ContentslistsavailableatScienceDirect

Comptes Rendus Biologies

w ww . sc i e nce d i re ct . co m

http://dx.doi.org/10.1016/j.crvi.2016.01.001

1631-0691/ß2016PublishedbyElsevierMassonSASonbehalfofAcade´miedessciences.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

(3)

1. Introduction

Anthropogenic (human-made) noise is a form of pollution that is contributing increasingly to natural soundscapesonaglobalscale[1,2].Anthropogenicnoise causes physiological, neurological and endocrinological problems, increased risk of coronary disease, cognitive impairment and sleep disruption of many mammals, reptiles,fishesandinvertebratestaxa[3–6].Forexample, behaviouralimpactsonfishes(sharksandteleost)include lowerfeeding frequencies [7], increasedmovementand displacement[8,9],impairedorientationinlarvae[10],and slowerreactiontimes[7].However,anthropogenicnoises producedbyboattrafficcouldhavesomepositiveeffects formarineaquacultureifthesesoundscouldbeusedasa deterrent to repel the predators of oysters, mussels or otheraquaculturetaxa[11,12].

Formarineaquacultureindustries worldwide,depre- dation is an important and long-standing issue [11,13,14]. Farmers and researchers have been testing different techniques (e.g., magnetic or electric field, acousticbarrier,bubblecurtain,cages)toreducepredation onmarineaquaculture[11,14,15].For example,mussels areafavouritepreyitemfordivingducksinScotlandand Canada,andfarmersknowthattheycanuseboatstoscare thebirds.Rossetal.[12]reproducedtheboatmotorsound withanunderwaterplaybacksystemtoavoidusingreal boatsandtoreducecosts,thusdemonstratinganeffective alternativedeterrent when thefarmers wereabsent. In FrenchPolynesia,thepearlfarmingindustryisthesecond economic pillar of the country, representing 60% of all exports[16].However,theoysterfarmersconveythatthe industryhasbeenheavilyimpactedbypredationbyteleost fishes,raysandothertaxaforseveralyears.Althoughother animals,suchastriggerfish,turtles,andpufferfishpreyon the black-lipped pearl oyster Pinctada margaritifera in FrenchPolynesia,thewhite-spottedeagleray,Aetobatus ocellatus,isoneofthemostdetrimentalpredators[15].The eaglerayswerenotonlyeatingalargequantityofoysters, buttheywerealsodestroyingoysterlong-lines[15].

Asmanyoysterfarmersobservedthatthepresenceofa boatnearlong-linesdisturbedrays,inthepresentstudy, wefocussedontheuseofanacousticsystemtodetereagle raysfromoysterfarms.Specifically,ourfieldexperiments investigated behavioural responses of eagle rays to differentsounds: boat motor’s sound, white noise, and threesingle-frequencytones(40Hz,600Hz,1kHz).

2. Methods

Thepresentstudywas conducted onadultsofwhite- spotted eagle rays A. ocellatus (range size: 1.0 to1.3m) foragingunderanchoredboatsonthenorthcoastofMoorea Island, French Polynesia (17829023.0900S 14985106.0600W) fromOctober2012toNovember2013.Theacousticsystem usedinfieldexperimentsconsistedofa7Vbattery(Yuasa NP2.1-1)connectedtoanamplifier(FormulaF-102,CA,USA), connectedtoanmp3player(SansaClip1,SanDisk,Milpitas, CA,USA). All the equipment wasset up ina waterproof casing.Themp3playerwas connectedto anunderwater loudspeaker (UW-30, frequency response 0.1–10kHz,

UniversitySound,Columbus, USA)witha 4mlong cable toallowtheplacementofthespeakerasclosetotheraysas possible(about1mabovetheanimaldepthofsite:5m).

Theacousticsystemwassurroundedbyabuoy,forpositive buoyancy and pushed in the field by an observer. The observer playedsoundassoonasa raywas spotted.The soundswereplayedonlywhiletheraywasinfullviewand foragingoversand.Whenaneaglerayfinishedforaging,was waiting forprey,orwasresting, theexperimentwasnot conducted.Iftheraywasnotfeeding,itlefttheareaifan observerapproached[15,C.Berthe,unpublisheddata].

First, a control experiment was conducted on nine individualsinordertodetermineifthepresenceofthe acousticsystemand/orobserverelicitedflightbehaviour inwhite-spottedeaglerayswhentheyforagedoversand.

Thesystemwiththeloudspeakerswitchedoffwasplaced neartheray(about1mabovetheanimal)withoutplaying anysound,andtheobserverwaspositioned5mfromthe ray.Theray’sbehaviourwasnotedduring5minutes(i.e.

escapeorcontinuetoforage).Secondly,fivesoundswere tested: boat motor, white noise and three single- frequencytones(40Hz,600Hz,1kHzwhichcorrespond to, respectively, low, medium and high frequency perceivedbyelasmobranchfishes[17,18]).Theartificial whitenoise(signalofwhichitsfrequenciesarerandomly distributedwithinaspecifiedfrequencyrangeresultingin a constant power spectral density sound waves extending over a wide frequency range: 10 Hz to 22 kHz) and the three single-frequency tones were created withAvisoftSasLabPro[10,19].Ten 30-second replicateplaybackspersound(whitenoise,40Hz,600Hz, 1kHz)wereconstructed.

Fortheboatmotorsound,recordingsweremadeata depthof5moutsidethebarrierreefofMoorea(at2km awayfromthenearestreef)usingahydrophone(HiTech HTI-96-MINwithinbuiltpreamplifier;sensitivity165dB re1V/mPa;frequencyrange2Hz–10kHz;HighTechInc., GulfportMS)andasolid-staterecorder(EdirolR-09HR16- bit recorder; sampling rate 44.1kHz; Roland Systems Group,Bellingham WA).A boat witha 25 horse power Yamaha engine started 50mfrom thehydrophone and drove past in a straight line for 100m; passing the hydrophoneataclosestdistanceof10m.Therecorderwas fullycalibratedusingpuresinewavesignalsgeneratedin SASLab(Avisoft,Germany),playedonanmp3player,and measured inlinewithanoscilloscope[6,10].Recordings were clippedinto 30-ssamples sothat whenboat was present a whole pass was sampled. Ten 30-s replicate playbackswerethenconstructed.

Asambientnoiseattheexperimental sitewasnever above80dBre1mPa(acrossallfrequencybandsbetween 10and2000Hz[19]),thesoundlevelofourfivesound compositeswascalibratedat,atleast90dBre1mPaRMS byplacingahydrophoneat1mofhigh-speaker(Fig.1)to ensurethatitwasabovethelocalambientnoisefloor.To checkthequalityofboatsoundemittedbytheloudspeak- er, soundpressure and particle acceleration were mea- suredusingthehydrophone(describedabove)andaM30 accelerometer (sensitivity 0–3kHz, manufactured and calibrated by GeoSpectrum Technologies, Dartmouth, Canada; recorded on a laptop via a USB soundcard, C.Berthe,D.Lecchini/C.R.Biologies339(2016)99–103

100

(4)

MAYA44, ESI Audiotechnik GmbH,Leonberg, Germany).

Acoustic analyses performed in MATLAB v2010a were describedbyHollesetal.[10]andNedelecetal.[6].

Overall,59raysweretestedusingonlyonesoundper ray(i.e.10rayspersoundtypeand9raysforthecontrol experiment), and the duration of sound exposure was 5minutes.Twobehavioural responseswererecordedin real-timeforeacheagleray:noreaction(i.e.raycontinued toforageoversand)orescapebehaviour(i.e.swamaway fromtheforaging siteat,atleast,50m).Raysareeasily distinguishable due to the individual pattern on their dorsalside(C.Berthe,unpublisheddata).Thus,noraywas tested twice during theexperiment.A first x2 test was conductedonthefivesoundtypesinordertoassessifrays hada significanthomogeneousorheterogeneousbehav- iouraccordingtothetestedsounds.Then,asecondx2test wasconductedtocomparethenumberofraysshowing

escapebehaviourwithonesoundtypecomparedtothe control test (i.e. five x2 tests conducted) to determine whetheraparticularsoundhadasignificanteffect(escape behaviour) on the rays. The statistical analyses were conductedusingRsoftwarev2.11.1(RDevelopmentCore Team,2010).

3. Results

During the control experiment, rays did not exhibit escape behaviour. The 9 tested rays didnot moveand continuedto forage duringthe five-minute observation period(Fig.2).Thisresultconfirmedthatrayswerenot disturbedbythepresenceofanobserver.

During the sound tests, rays exhibited significant heterogeneousbehaviourdependingonthesoundtested (x20.05,4=18.2,P<0.001,Fig.2).Forexample,60%ofrays swamatleast50mawayfromtheforagingsitewhenthe boatmotorsoundwasplayed.Amongthesixraysthatfled, fourswanawayinthe10firstseconds,1between1and 4minand1duringthelastminuteofboatplayback.Onthe contrary, no ray exhibited escape behaviour when the 600Hzsound was played. Thus, none of thesounds at 40Hz,600Hz,1kHzorthewhitenoiseresultedinaltered raybehaviour(i.e.comparisonbetweensoundandcontrol testsx20.05,1<3.84,P>0.05),andtherayscontinuedto forageoversand(Fig.2).Incontrast,thesoundsoftheboat motorelicitedsignificantlymoreescapebehavioursduring foragingactivity(x20.05,1=37.7,P<0.001).But,nosignifi- cant relationship was highlighted between the sound intensitiesofboat(between90and120dBre1mPaRMS) andthetimefortheeagleraystoescape(i.e.66%ofrays exhibitedanescapebehaviourduringthe10firstseconds, corresponding to the lowest sound intensities of boat noise90and98dBre1mPaRMS,Fig.2).

Fig.2.Eaglerays(Aetobatusocellatus)behaviourrelatedtothecontroltest(withoutsound–switched-offloudspeaker)andthetestedsounds:aboatmotor sound,awhitenoiseandthreesingle-frequencytones(40Hz,600Hz,1kHz).Tenraysweretestedforeachsoundtypeandnineraysforcontroltest.Two possibleresponsesofeaglerayswereobserved:noreaction(i.e.continuetoforage)orescapebehaviour(i.e.swamawayfromtheforagingsiteat,atleast, 50m).Starsindicateasignificantdifferencebetweenthenumberofraysshowingescapebehaviourwithonesoundtypeandthecontroltest(x2test P<0.05).

Fig.1.Soundenvelopeofboatplayback,whitenoiseandthethreesingle- frequencytones(40Hz,6000Hz,1000Hz)during30secondswithall soundcalibratedat,atleast90dBre1mPaRMS.

(5)

4. Discussion

Ourstudyshowedthenegativeeffectofboatnoiseson theforagingactivityofeaglerays.Thus,60%oftherays testedstoppedforagingandfledtheareawhentheboat motorsoundwasplayed(Fig.2).LocalfarmersinFrench Polynesia observed that eagle rays exhibited escape behaviour when a boat approached, and our findings confirmedthisobservation.Moreover,ourfieldobserva- tions allowed us toidentifythat 66% of eaglerays fled between1to10secondsafterthebeginningofboatsound (soundcharacterized by lowfrequencies <350Hz–at thebeginningofrecording).Thesefieldobservationsare consistentwiththoseofCasper[17],whodemonstrated thatelasmobranchesmainlyperceivedtheparticlemotion, which is moreprevalent at low frequencies. Sharksare thought to be attracted to low frequencies because stressedpreysemitlowfrequencysounds[17,18,20].Eagle raysareafavouritepreyitemofthehammerheadshark [21]andcouldbemorereactivetolowfrequenciestoavoid shark’spredation.However,ourstudyshowednoescape behaviourwhenonlyasingle-frequencytonewasplayed (40Hz,600Hzor1kHz).Therefore,itmaynotbejusta specificlowfrequency(asthe40Hztestedinthepresent study)thatdisturbstheeagleraysduringtheirforaging activity,butratheracombinationofsoundlowfrequen- cies.Thishypothesisshouldbevalidatedbyfuturestudies onawholegroupofrays,asthebehavior,suchasescape,is oftendependentoftheschooldensity[22]andthatasocial organization was described in spotted eagle ray (same genusAetobatus)[23].

Worldwide, a lot of research has been done on aquaculturepredation[12,24–26],but asidefromuseof boatnoise,fewreliableandaffordablesolutionshavebeen found[12,27]. Our study confirmedthat anthropogenic noise, such as that produced by boat traffic could negatively affectthewhite-spotted eagleray, similarto othermarine speciesas indicated in earlier studies[1–

3,6].Thisnegativeeffectoneaglerayscouldbeusedby humanstobenefitmarineaquacultureifsuchsoundsdeter thepredatorsofpearloysters[11,12].Furtherexperiments mustbeconductedinsitu,nearoysterlong-linesandovera long-termperiodinordertodetermineifanunderwater playbacksystemcouldbeusedtoefficientlydetereagle rays fromoyster farmswithout negativeeffects on the growthofoystersandonthequalityoftheblackpearls.

Moreover,Newboroughetal.[28]showedtheproblemof habituation effects with acoustic repulse systems that removecetaceansfromfishnets.Toreducethelikelihood ofhabituationofeaglerays,localfarmerswouldneedto usedifferentrecordings,includingsounds fromdifferent boat types or by using irregular temporal and spatial patterns when playing back sounds. Overall, our study showed,forthefirsttime,thatboatnoiseisdetrimentalto theeaglerays,butthisnegativeeffectcouldbeusedby Humantodetertheraysfromoysterfarms.

Acknowledgements

This research was supported by a grant from the

‘‘Directiondesressourcesmarinesetminie`res’’ofFrench

Polynesia.TheauthorswouldliketoacknowledgeCe´drik Loforhishelptobuildthisstudy.

References

[1]C.R.Kight,J.P.Swaddle,Howandwhyenvironmentalnoiseimpacts animals: an integrative,mechanistic review, Ecol.Lett. 14 (2011) 1052–1061.

[2]C.D.Francis,J.R.Barber,Aframeworkforunderstandingnoiseimpacts onwildlife:anurgentconservationpriority,Front.Ecol.Environ.11 (2013)305–313.

[3]H.Slabbekoorn,N.Bouton,I.vanOpzeeland,A.Coers,C.tenCate,A.N.

Popper,Anoisyspring:theimpactofgloballyrisingunderwatersound levelsonfish,TrendsEcol.Evol.25(2010)419–427.

[4]C.G.LePrell,D.Henderson,R.R.Fay,A.N.Popper,Noise-inducedhearing loss:scientificadvances, Springer,NewYork,2012.

[5]E.L.Mora,G.Jones,A.N.Radford,Theimportanceofinvertebrateswhen consideringtheimpactsofanthropogenicnoise,Proc.R.Soc.B.:Biol.

Sci.281(2014)17–25.

[6]S.Nedelec,A.N.Radford,S.D.Simpson,B.Nedelec,D.Lecchini,S.C.Mills, Anthropogenicnoiseplaybackimpairsembryonicdevelopmentand increases mortality in a marine invertebrate, Sci. Rep. 4 (2014) 5891–5895.

[7]C.Bracciali,D.Campobello,C.Giacoma,S.Gianluca,Effectsofnautical trafficand noiseonforaging patternsofmediterraneandamselfish (Chromischromis),PLoSOne7(2012)e40582.

[8]G.Buscaino,F.Filiciotto,G.Buffa,Impactofanacousticstimulusonthe motilityandbloodparametersofEuropeanseabass(Dicentrarchus labraxL.)andgiltheadseabream(SparusaurataL.),Mar.Environ.Res.

69(2010)136–142.

[9]P.Cubero-Pardo,P.Herron,F.Gonzalez-Perez,Sharkreactionstoscuba diversintwomarineprotectedareasoftheEasternTropicalPacific, Aquat.Conserv.21(2011)239–246.

[10]S.Holles,S.D.Simpson,A.N.Radford,L.Berten,D.Lecchini,Boatnoise disruptsorientationbehaviourinacoralreeffish,Mar.Ecol.Prog.Ser.

485(2013)295–300.

[11]E.Nash,E.Colin,F.Iwamoto,N.Robert,V.W.Conrad,Aquaculturerisk managementandmarinemammalinteractionsinthePacificNorth- west,Aquaculture183(2000)307–323.

[12]B.P.Ross,J.Lien,R.W.Furness,Useofunderwaterplaybacktoreduce the impactofeidersonmusselfarms, ICESJ.Mar.Sci.58(2001) 517–524.

[13]F. Sanguinede,Contribution a` l’e´tude delapre´dation desmoules exploite´essurfilie`resenmerouverte, Universite´ deCorse,France, 2001,pp.1–75.

[14]T.Sˇegvic´-Bubic´, L.Grubisˇic´,N. Karaman,V.Ticˇina,K.M.Jelavic´,I.

Katavic´, Damages on mussel farms potentially caused by fish predation Self-service on the ropes? Aquaculture 319 (2011) 497–504.

[15]S.Planes,M.Schrimm,A.L.Roblin-Brieu,T.Lison,Y.Chancerelle,E´tude desphe´nome`nesdepre´dationsurl’huıˆtreperlie`rePinctadamargariti- fera,RA-144CRIOBE-Perliculture, 2006,p.56.

[16]PointsfortsdelaPolyne´siefranc¸aise,BilanLaPerleen2012,Institutde lastatistiquedelaPolyne´siefranc¸aise,2012,p.6.

[17]B.M.Casper,Thehearingabilitiesofelasmobranchfishes, (Graduate SchoolThesesandDissertations), UniversityofSouthFlorida,2006,p.

143.

[18]R.R.Fay,A.N.Popper,Evolutionofhearinginvertebrates:theinnerears andprocessing,HearingRes.149(2000)1–10.

[19]E.Parmentier,L.Berten,P.Rigo,F.Aubrun,S.Nedelec,S.D.Simpson,D.

Lecchini,Theinfluenceofvariousreefsoundsoncoralreeffishbehav- ior,J.FishBiol.86(2015)1507–1518.

[20]D.R.Nelson,S.H.Gruber,Sharks:attractionbylow-frequencysounds, Science142(1963)975–977.

[21]D.D.Chapman,S.H.Gruber,Afurtherobservationoftheprey-handling behaviorofthegreatHammerheadshark,Sphyrnamokarran:predation uponthespottedeaglerayAetobatusnarinari,Bull.Mar.Sci.7(2002) 947–953.

[22]G.Beauchamp,Flocksizeanddensityinfluencespeedofescapewaves insemipalmatedsandpipers,Anim.Behav.83(2012)1125–1129.

[23]J. Newby, T.Darden, K. Bassos-Hull,A.M.Shedlock,Kin structure and social organization in the spotted eagle ray, Aetobatus narinari, off coastal Sarasota, FL,, Environ. Biol. Fishes 97 (2014) 1057–1065.

[24]G.A.Littauer,J.F.Glahn,D.S.Reinhold,M.W.Brunson,ControlofBird PredationofAquaculture Facilities:Strategies and CostEstimates, SRACPublication,1991,p.87.

C.Berthe,D.Lecchini/C.R.Biologies339(2016)99–103 102

(6)

[25]E.Hutchings,Predatordamagecontrolinculturedfish, AlbertaAgri- cultureFoodandRuralDevelopment,AGDEX,1999,p.8.

[26]R.A.Fisher,G.C.Call,D.R.Grubbs,CownoseRay(Rhinopterabonasus) predationrelative tobivalveontogeny,J. ShellfishRes.30 (2011) 187–196.

[27]T.Pelton,Misunderstood:theCownoseRay, SavetheBaymagazine, 2011,pp.15–17.

[28]D.Newborough,A.D.Goodson,B.Woodward,Anacousticbeaconto reducetheby-catchofcetaceansinfishingnets,Int.J.Soc.Underwater 24(2000)105–114.

Références

Documents relatifs

Previous study indicates that wear resistance of high chromium cast iron is related to the microstructural parameters of the eutectic carbides, such as volume

Critical behaviour of second sound near the smectic A nematic phase transition.. L. Ricard,

6(a-d), the electric current density increases continuously in the capacitor electrodes in response to the DI water displacement and reaches its maximal value for the

Dans cette situation, le Conseil d’État a mis temporairement à disposition de la BCU deux halles à Romont, anciennement utilisées par l’entreprise Tetra Pak et acquises par

En régime permanent, le modèle d’état de la machine asyn- chrone peut être exprimé dans le domaine fréquentiel afin de dé- terminer les composantes oscillatoires des

In this study, we demonstrated that the combination of the 4Ts score, the HemosIL® AcuStar HIT and HIMEA with optimized thresholds may be useful for the rapid and accurate exclusion

If the postulated cross-protective antibodies are directed at deeper core structures, such as lipid A or the lipid A-KDO region, they may remain undetected when the whole J5

The effects of the control in the sound are studied investigating the coupling between this mode and the second partial of the A string of the guitar since its frequency is 220 Hz