• Aucun résultat trouvé

Transfert thermique En311tc

N/A
N/A
Protected

Academic year: 2022

Partager "Transfert thermique En311tc "

Copied!
10
0
0

Texte intégral

(1)

IPSA | DS de transfert thermique n° 1 du 19 novembre 2016

1/10

I.P.S.A.

63 bis rue de Brandebourg 94200 Ivry Sur Seine

Date de l'Epreuve : 19 novembre 2016

Tél. : 01.56.20.62.60

Classe : AERO-3 : toute la promotion

Devoir Surveillé

Transfert thermique En311tc

Professeurs : Bouguechal / Bertossi / Gomit

Durée :

1h30 1 h 00 3 h 00

Notes de Cours Avec (1) Calculatrice NON

programmable

Sans (1) sans (1)

(1) Rayer la mention inutile NOM : Prénom : N° de Table :

ex /4 .5 /5 /5 /5.5 Bonus : / 2

TOTAL

:

/ 20

DEVOIR SURVEILLE DE TRANSFERT THERMIQUE I :

Si au cours de l’épreuve, vous repérez ce qui vous parait être une erreur ou un oubli dans l’énoncé, vous le signalez clairement dans votre copie et vous poursuivez l’examen en proposant une solution

.

Le barème est donné à titre indicatif.

Pour les QCM, chaque question comporte une ou plusieurs réponses.

Lorsque l’étudiant ne répond pas à une question ou si la réponse est fausse, il n’a pas de point de pénalité. La note attribuée sera donc égale à zéro.

Rédigez directement sur la copie.

Inscrivez vos nom, prénom et classe.

Justifiez vos affirmations si nécessaire.

Il sera tenu compte du soin apporté à la rédaction.

NOM :

PRENOM : :

CLASSE :

(2)

IPSA | DS de transfert thermique n° 1 du 19 novembre 2016

2/10

Exercice 1 : Les grandeurs fondamentales et dérivées ( 4.5 points ) Vous devez répondre dans le tableau de la page suivante.

A. La dimension des grandeurs fondamentales sont dans l’ordre :

1.□ L, M, T, I, θ, N, J 2.□ L, T, M, Q, θ, J 3.□ L, M,T, I, θ, J, N 4. □ L, M, T, θ, I, N, J 5. □ M, T, L, I, θ, J 6.□ Aucune réponse

B. La dimension d’une vitesse est :

1.□ L T-2 2.□ L -1 T 3.□ L T -1 4.□ L2T-2 5. □ (L T) -1 6.□ Aucune réponse

C. La dimension d’une accélération est :

1.□ L T -1 2.□ L -1 T 3.□ (L T) -1 4.□ L2T-2 5. □ L T-2 6.□ Aucune réponse

D. La dimension d’une force est :

1.□ L M T-2 2.□ L2MT-2 3.□ L M T-1 4.□ L2MT-1 5. □ L-2MT-2 6.□ Aucune réponse

E. La dimension d’une énergie est :

1.□ L M T-1 2.□ L2MT-2 3.□ L M T-2 4.□ L2MT-1 5. □ L-2MT-2 6.□ Aucune réponse

F. La dimension d’un angle est :

1.□ 0. 2.□ Le degré 3.□ L 4.□ 1. 5. □ Le radian 6.□ Aucune réponse

G. L’unité dans le système international de la longueur, de la masse et du temps sont respectivement :

1.□ kilomètre, kilogramme, heure 2.□ mètre, kilogramme, seconde 3.□ kilomètre, kilogramme, seconde, 5.□ mètre, gramme, seconde. 6.□ Aucune réponse

H. L’unité dans le système international de l’énergie est :

1.□ Le newton 2.□ Le watt 3.□ la calorie 4.□ le joule 5. □ le kilowattheure.

6.□ Aucune réponse

I. L’unité dans le système international d’un angle plan est :

1.□ Le degré 2.□ Le grade 3.□ le radian 4.□ le stéradian 5. □ pas d’unité.

6.□ Aucune réponse

J. L’unité dans le système international d’une force est le :

1.□ joule 2.□ newton 3.□ watt 4.□ kilowatt 5. □ kilogramme.

6.□ Aucune réponse

K. L’unité dans le système international de la température est le :

1.□ degré 2.□ degré Kelvin 3.□ le degré Celsius 4.□ le degré centigrade 5. □ Kelvin 6.□ Aucune réponse

Brouillon :

(3)

IPSA | DS de transfert thermique n° 1 du 19 novembre 2016

3/10

Cochez la ou les bonne(s) cases.

Exercice 1 1 2 3 4 5 6

A 0.50

B 0.50

C 0.50

D 0.50

E 0.50

F 0.50

G 0.25

H 0.25

I 0.25

J 0.25

K 0.50

ATTENTION : Si aucune case n’est cochée, la note attribuée est égale à Zéro.

Brouillon

(4)

IPSA | DS de transfert thermique n° 1 du 19 novembre 2016

4/10

Exercice 2 : Méthode des mélanges ( 5.0 points )

On considère un calorimètre contenant une masse m1=100 g d’eau à une température θ1= 20°C. On y ajoute une masse m2 = 100 g d’eau à une température θ2 = 50°C.

a) Etablir la formule donnant la température d’équilibre θe si on néglige la capacité thermique du calorimètre.

b) Calculer cette température à l’équilibre.

c) La température obtenue dépend-elle de la nature du liquide ? Expliquez.

d) La température d’équilibre observée est de 32 °C. Déterminer la capacité calorifique du calorimètre et calculer ensuite sa valeur en eau en grammes.

e) Dans ce calorimètre contenant 100 g d’eau à 15 °C, on plonge un échantillon métallique de masse 25g sortant d’une étuve à 95 °C. La température d’équilibre est de 16.7 °C. Calculer la capacité thermique du métal. On établira la formule d’abord et on fera l’application numérique ensuite.

Données : Ceau = 4.185 kJ kg-1 K-1 Réponse :

(5)

IPSA | DS de transfert thermique n° 1 du 19 novembre 2016

5/10

(6)

IPSA | DS de transfert thermique n° 1 du 19 novembre 2016

6/10

Exercice 3 : Chute d’une bille dans un fluide ( 5.0 points )

Dans un fluide, une bille de rayon r animée d’une vitesse v est soumise à une force de frottement donnée par

𝑭 = −𝟔 𝝅𝜼𝒓𝒗

, où 𝜼 est la viscosité dynamique du fluide.

1) Déterminer la dimension de 𝜼 ?

2) Montrer que la dimension de 𝜼 est la dimension d’une pression multiplié par un temps.

En déduire son unité dans le système international.

3) Lorsque la bille est lâchée dans le fluide sans vitesse initiale à l’instant t = 0, sa vitesse s’écrit pour t > 0 :

𝒗 = 𝒂 (𝟏 − 𝒆

𝒃𝒕

)

où a et b sont deux grandeurs qui dépendent des caractéristiques du fluide.

Quelles sont les dimensions de a et b ? Justifiez.

4) Si ρ désigne la masse volumique du fluide, on définit un nombre Re appelé nombre de Reynolds, c’est un nombre sans dimension donné par :

𝑹𝒆 = 𝝆

𝜶

𝒗

𝜷

𝒓

𝜸

𝜼

𝜹

Ecrire le système d’équations qui permet de déterminer α, β, γ, δ pour que Re soit sans dimension. Conclusion

5) Résoudre le système en prenant α = 1 et écrire la formule du nombre de Reynolds.

Remarque : Le nombre de Reynolds Re permet de caractériser le régime d’écoulement d’un fluide (laminaire ou turbulent).

Réponse :

(7)

IPSA | DS de transfert thermique n° 1 du 19 novembre 2016

7/10

(8)

IPSA | DS de transfert thermique n° 1 du 19 novembre 2016

8/10

Exercice 4 : Convection dans un tube cylindrique ( 5.5 points )

Dans un tube cylindrique de 4 cm de diamètre circule un fluide (air) à une certaine vitesse moyenne et à une température de 50°C, la température de la paroi du tube est de 10°C . Le fluide est caractérisé par :

Sa viscosité dynamique η = 1.9 10-5 Pa.s

Sa masse volumique ρ =1.2 kg m-3

Son coefficient de conductivité λ = 2.6 10-2 en W/m.°C

Sa chaleur massique ou capacité thermique c = 1. 103 en J/kg.°C

Et sa vitesse v = 26.5 m/s.

Le nombre de Reynolds, noté Re, est donné par :

𝑹𝒆 =

𝝆𝒗𝑫𝜼

Le nombre de Prandtl, noté Pr, ne comportant que des grandeurs caractéristiques du fluide est donné par :

𝑷𝒓 =

𝜼𝒄𝝀

1) Calculer le nombre de Reynolds.

2) Calculer le nombre de Prandtl.

3) En déduire le nombre de Nusselt en utilisant la corrélation :

𝑵𝒖 = 𝟎. 𝟎𝟐𝟑 𝑹𝒆

𝟎.𝟖

𝑷𝒓

𝟎.𝟒

4) Le nombre de Nu est donné par :

𝑵𝒖 =

𝒉𝑫𝝀

, en déduire le coefficient de convection h.

5) Quelle relation y a-t-il entre le flux de chaleur échangé et le coefficient de convection h.

6) Déterminer la quantité de chaleur échangée par m2 de surface du tube et par seconde.

Réponse :

(9)

IPSA | DS de transfert thermique n° 1 du 19 novembre 2016

9/10

(10)

IPSA | DS de transfert thermique n° 1 du 19 novembre 2016

10/10

Exercice Bonus : Flux et densité de flux de chaleur ( 2.0 points)

On considère en un point O une source ponctuelle de chaleur émettant un flux de chaleur Φ constant de façon isotrope dans l’espace.

a) Etablir la loi de variation de la densité de flux φ (appelée aussi flux surfacique) à travers une sphère située à une distance r de la source.

b) Etablir la loi de variation de la densité de flux φ à travers la surface latérale d’un cylindre de rayon r et de hauteur h.

Réponse :

Références

Documents relatifs

Pour les QCM, chaque question comporte une ou plusieurs réponses. Lorsque l’étudiant ne répond pas à une question ou si la réponse est fausse, il n’a pas de point de pénalité.

Et que l’augmentation de débit volumique de fluide caloporteur influe sur la capacité d’énergie thermique stockée dans le matériau à changement de phase ainsi que

Au point de fusion, la chaleur latente n’accroˆıt pas l’ ´energie cin ´etique (et la temp ´erature) des mol ´ecules : elle sert `a surmonter l’ ´energie potentielle due

En supposant que le coefficient de transfert global entre la paroi exté-rieure du serpentin cylindrique et le fluide intérieur est constant tout au long de l'échangeur, quelle est

[r]

[r]

Il faut raisonner sur

[r]