• Aucun résultat trouvé

Extreme values of particular nonlinear processes

N/A
N/A
Protected

Academic year: 2021

Partager "Extreme values of particular nonlinear processes"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: halshs-00201320

https://halshs.archives-ouvertes.fr/halshs-00201320

Submitted on 27 Dec 2007

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Extreme values of particular nonlinear processes

Dominique Guegan, Sophie A. Ladoucette

To cite this version:

Dominique Guegan, Sophie A. Ladoucette. Extreme values of particular nonlinear processes. C.R.A.S.,

2002, 335, pp.73 - 78. �halshs-00201320�

(2)

Extreme values of particular non linear processes DominiqueGU  EGAN a , SophieLADOUCETTE a,b a

EcoleNormaleSuperieuredeCachan,GRID,UMRCNRS8534,61avenueduPresidentWilson, 94235Cachancedex, France.

b

BanquedeFrance,41-1391DGEI-DEER-CentredeRecherche,31rueCroixdesPetitsChamps, 75049Pariscedex1,France.

E-mail: guegan@grid.ens-cachan.fr,sophie.ladoucette@banque-france.fr

Abstract. Weareinterestedinthebehaviorofthemaximaofageneralclassofdeterministicchaotic processes-includingthetentmapandthelogisticmap-,ofnoisychaoticprocesses,and ofthelongmemoryGaussiank-factorGegenbauerprocesses.

Valeurs extr^emes pour des processus non lineaires particuliers

Resume. Nousnousinteressonsaucomportementdesmaximad'uneclassegeneraledeprocessus chaotiquesdeterministes -comprenant les applications tentet logistique -,de proces-sus chaotiquesbruites et desprocessus a memoire longuede Gegenbauer a k-facteurs Gaussiens.

Version francaise abregee

Dans cette Note, nous nous interessonsau comportement asymptotique des maxima de certains processus dependants. Nous consideronsd'abord lesprocessus generespar unefamilleparametriqued'applicationschaotiquesde niepar:

X n+1 ='  (X n )=  1 (1 2X n )  ; 0X n <1=2 1 (2X n 1)  ; 1=2X n 1 (3)

ou 1=2 2(voirHallet Wol [9] et Lawrance et Spencer[10]). Nous considerons aussilesprocessusgeneresparuneversionbruitedusystemechaotique(3)prisen=2, de niepar:  Y n =X n +" n ; n2N X n =4X n 1 (1 X n 1 ); n2N  (4) avec(" n ) n2N

unesuitedevariablesaleatoiresindependantesetidentiquementdistribuees de densite (a;b) (a;b >0), independantes de (X

n )

n2N

. En n, nous nous interessons auxprocessusdeGegenbauerak-facteursGaussiens de nispar:

k Y i=1 (I 2 i B+B 2 ) di X n =" n (5) avecjd i j<1=2sij i j<1,jd i j<1=4sij i j=1,d i 6=0,pouri=1;;k,et(" n ) n2Z un bruitblancGaussien(voirGrayetal.[6]etGiraitiset Leipus[4]).

(3)

Enetablissantprecisementladistributionlimitedeleursmaxima,nousgeneralisonsle Theoreme1deFisher-Tippett [3]pourlesprocessusdependants(3),(4)et(5).

Dans la suite, nous noterons (M n

) n2N

la suite des maxima M n = max(Z 1 ;;Z n ), n1,associeeaunprocessus(Z n ) n2N dedistribution marginaleF.

DanslesTheoremes2et 3,nous donnons lesdomainesd'attraction desdistributions marginalesassocieesauxprocessus (3)et(4), sousl'hypothesedenon nullitedel'index extremalde nien(2).

Theor

eme2.{ Soit(X n

) n2N

unprocessusassocieausysteme(3)avec xe,dontla fonction de densitef est supposee continue etstrictement positive en 1=2. Si (X

n )

n2N possedeunindexextremalveri ant0<1,alorsF appartientaudomained'attraction de Weibull d'index 1=,i.e. :

Pfc 1 n (M n d n )xg! 1= (x) avec c n =(f(1=2)n)  etd n =1. Theor eme 3. { Soit (Y n ) n2N

un processus associe au systeme (4) avec (" n ) n2N de densite (a;b). Si (Y n ) n2N

possede un index extremal veri ant 0 <   1, alors F appartientaudomained'attractionde Weibulld'index (2b+1)=2,i.e. :

Pfc 1 n (M n d n )xg! (2b+1)=2 (x) avec c n =( 4 (a+b)n (2b+1) (a) (b) ) 2=(2b+1) etd n

=2,o u estla fonctionGamma.

Nousetablissonsmaintenantunresultatsimilairepourleprocessus(5),enremarquant que la fonction d'autocovariance de ce processus veri e la condition de Berman [1] (n)logn!0quandn!+1. Theor eme 4. { Soit(X n ) n2Z

unprocessusde Gegenbauer ak-facteursGaussien (5) d'ecart-type,telquemax(d

1 ;;d

k

)>0. Alors,F appartientaudomained'attraction de Gumbel,i.e. : Pfc 1 n (M n d n )xg!(x) avec c n =(2logn) 1=2 etd n =((2logn) 1=2

loglogn+log4 2(2logn)

1=2 ).

1. Introduction and background

Extremevaluetheoryisanareaofstatisticsdevotedtothedevelopmentofmodelsand techniquesforestimatingthebehaviorofunusualorrareeventswhich areimportantin severaldomainsas nance,internettraÆc,meteorology,physicandbiology. InthisNote, weareinterestedtoinvestigatethistheoryforafamilyofchaoticmaps(thegeneralized tentfamily) representingdeterministicdynamicalsystemswithorwithoutmeasurement noise,andforaparticularclassoflongmemoryprocesses.

ThroughoutthisNote, wedenote(M n

) n2N

thesequenceofmaximade ned byM n = max(Z 1 ;;Z n

), n1, associated with aprocess (Z n

) n2N

with marginaldistribution function(d.f.) F,x

F

therightendpointofad.f. F,andg2R +1 Æ

apositiveLebesgue measurablefunctionon]0;+1[whichisregularvaryingat+1withindexÆ2R.

Let(X n

) n2N

beasequenceofindependentandidenticallydistributed (i.i.d.) random variables. Theclassicalextreme valuetheorydealswiththedistribution ofM

n

asn! +1, andits central result is thefollowingtheorem, derived by Fisherand Tippett [3] and rstprovedrigorouslybyGnedenko[5],whichgivesthepossiblelimitingdistribution formaxima.

(4)

Theorem 1. { Let(X n

) n2N

be a sequence of i.i.d. random variables. If there exists someconstants c n >0andd n 2R suchthat: Pfc 1 n (M n d n )xg!H(x) (1)

for somenondegenerate d.f. H,thenH belongstothe typeof oneof the following three d.f.s: Frechet:  (x)=  0; x0 exp( x ); x>0; >0 Weibull: (x)=  exp( ( x) ); x0; >0 1; x>0 Gumbel: (x)=exp( e x ); x2R:

We say that the d.f. F of a sequence of random variables (Z n

) n2N

belongs to the domain of attraction of H, and we write F 2 D(H), if (1) holds for some sequences c

n

>0andd n

2R. NecessaryandsuÆcientconditionsareknownforeachtypeoflimit, involvingthebehaviorof thetail1 F(x)(denoted byF(x))asx increases.

Beforede ningthemodelsonwhichwework,werecallthede nitionofextremalindex whichturnsouttobeusefulinthesequel. FollowingLeadbetteretal.[11],astationary process(Z

n )

n2N

hasextremalindex(01)ifforevery >0thereexitsasequence (u n ) n2N such that: lim n!+1 n(1 F(u n ))= and lim n!+1 P(M n u n )=e  : (2)

First, we consider the processes generated by a parametric family of chaotic maps de nedby: X n+1 ='  (X n )=  1 (1 2X n )  ; 0X n <1=2 1 (2X n 1)  ; 1=2X n 1 (3)

where1=22. Thisfamilycontainsthetentmapandthelogisticmap,respectively for  = 1 and  = 2, and it is referred to the generalized tent family (see Hall and Wol [9]andLawranceandSpencer[10]). Wealsoconsideranoisyversionofthesystem (3)for=2,de nedby:

 Y n =X n +" n ; n2N X n =4X n 1 (1 X n 1 ); n2N  (4) where (" n ) n2N

is a sequence of i.i.d. random variables independent of (X n

) n2N

with (a;b)density(a;b>0). ThelastmodelwhichweconsideristhelongmemoryGaussian k-factorGegenbauerprocess(X

n ) n2Z de ned by: k Y i=1 (I 2 i B+B 2 ) di X n =" n (5) withjd i j<1=2ifj i j<1,jd i j<1=4ifj i j=1,d i 6=0,for i=1;;k, and(" n ) n2Z a Gaussianwhitenoise(seeGrayet al.[6]andGiraitisandLeipus[4]).

2. Maxima'slimitingdistributionof processes(3),(4) and (5)

IntheTheorem2and3,weprovidethemaximaldomainofattractionofthemarginal d.f.softheprocesses(3)and(4),undertheassumptionthatextremalindexde nedin (2)isdi erentfromzero.

(5)

Theorem2. { Let(X n

) n2N

beaprocess associated withthe system(3)for a xed, withinvariantdensityf assumedtobecontinuousandstrictlypositiveat1=2. If(X

n )

n2N hasextremalindex0<1,thenF belongstothemaximaldomainofattractionofthe Weibulldistributionwithindex 1=,i.e.:

Pfc 1 n (M n d n )xg! 1= (x) withc n =(f(1=2)n)  andd n =1. Forinstance, wegetF 2D( 1 ),c n =(n) 1 and d n

=1forthetentprocess( =1 in (3)), and weget F 2 D( 1=2 ), c n =(=(2n)) 2 and d n

=1 forthe logistic process (=2in (3)).

Theorem 3. { Let (Y n

) n2N

be a process associated with the system (4), assuming ("

n )

n2N

has (a;b) density. If (Y n

) n2N

has extremalindex 0<1, thenF belongsto themaximal domainof attractionof theWeibulldistributionwithindex (2b+1)=2, i.e.:

Pfc 1 n (M n d n )xg! (2b+1)=2 (x) withc n =( 4 (a+b)n (2b+1) (a) (b) ) 2=(2b+1) andd n

=2, where denotethe Gamma function. Now,weprovideasimilarresultfortheprocess(5),remarkingthatitsautocovariance function veri estheBerman'scondition (n)logn!0asn!+1(seeBerman[1]).

Theorem4.{ Let(X n

) n2Z

beaGaussiank-factorGegenbauerprocess(5)with stan-darddeviation,suchthatmax(d

1 ;;d

k

)>0. Then,F belongstothemaximaldomain ofattraction ofthe Gumbeldistribution, i.e.:

Pfc 1 n (M n d n )xg!(x) withc n =(2logn) 1=2 andd n =((2logn) 1=2

loglogn+log4 2(2logn)

1=2 ).

Inestablishingpreciselythelimitingdistributionoftheirmaxima,wehavegeneralized theTheorem1ofFisher-Tippett[3]forthedependentprocesses(3),(4)and(5). Proofs aregiveninSection 4,anddetails canbefoundin GueganandLadoucette[8].

3. Estimationof extremal index

InTheorems 2and 3 above,the extremal index  de ned in (2) appears in the nor-malizingconstantc

n

. Sincewedon't provide thevalueof analytically,weproposeto estimateit. Wechoosetheblocksmethod which involvesdividingN givendatainto m blocksoflengthnandsettingahighthresholdu. Anaturalestimatorofisthen:

^ =n 1 (log (1 K u =m))=(log(1 N u =(mn))) whereK u andN u

arerespectivelythenumberofblocksandthenumberofobservations thatexceedthethreshold. Wedon'thavetheasymptoticnormalityofthisestimator,but statisticalpropertiesaregiveninSmithandWeissman[12]. Forthesystem(3)or(4),we simulatesrealizationsoftheassociatedprocessinconsideringsdi erentinitialconditions X

0

inordertocompute ^

anditsstandarddeviation. Then,weobtainsestimatedvalues for , and we compute

^  = ( P s i=1 ^  i )=s, where the ^  i

's are the estimated valuesfor a singlerealization,and ^

 = q ( P s i=1 ( ^  i ^ ) 2

)=s. Thus, wecandeduce ^c n

, anestimate forc

n .

Forinstance, weconsiderthesystem(3)and xm=n=200ands=100. For=1 and=2,werespectivelychooseu=0:9950andu=0:9999.Weget

^

=0:98,^ 

(6)

for=1,and ^

=0:99,^ 

=0:01for =2. Similarestimationsforthesystem(3),with di erentvaluesof,andforthesystem(4),areprovidedinGueganandLadoucette[8]. Now,forspeci cdensitiesf inTheorem 2,andspeci cvaluesofaandbin Theorem3, itiseasytocomputec^

n .

4. Proofs

Proof of Theorem 2. { Wesuppose that (X n

) n2N

hasextremal index0< 1. It is clearthat x

F

=1. FollowingHall andWol [9],weconsider thepre-imageofageneral point1 x 1 ; x>1,andweobtain: f(1 x 1 )=(2) 1 x 1 1= (f(1=2(1+x 1= ))+f(1=2(1 x 1= ))):

Then, wehave the asymptoticf(1 x 1 )  1 f(1=2)x 1 1= asx !+1 i.e. f(1 x 1 )2R +1 1 1=

. UsingaKaramata'stheorem(seeTheorem1page281inFeller[2]),we haveF(1 x 1 )f(1=2)x 1= asx!+1i.e. F(1 x 1 )2R +1 1= .

Thus, byTheorem 1.6.2. and Corollary3.7.3. in Leadbetteret al. [11],weconclude thatF 2D( 1= ),c n =(f(1=2)n)  andd n

=1. Thetheoremisthenproved.

Proof of Theorem 3. { Suppose that (Y n

) n2N

has extremalindex 0< 1. Letf, g andhdenoterespectivelytheinvariantdensitiesof(Y

n ) n2N ,(X n ) n2N and(" n ) n2N . Itis obviousthatx F

=2. For x1,wehave(seeGueganandLadoucette[7]):

f(2 x 1 )= Z 1 1 x 1 g(y)h(2 x 1 y)dy = (a+b) (a) (b) Z +1 x y 2 g(1 y 1 )(x 1 y 1 ) b 1 (1+y 1 x 1 ) a 1 dy:

Then,usingaKaramata'stheorem,weobtainthatf(2 x 1 ) 2 (a+b) (a) (b) x b g(1 x 1 )as x!+1:Sincef(2 x 1 )2R +1 (1 2b)=2

,weapplyasecondtimeaKaramata'stheorem. WeobtainthatF(2 x 1 )(2=(2b+1))x 1 f(2 x 1 ) 4 (a+b) (2b+1) (a) (b) x (b+1) g(1 x 1 )  4 (a+b) (2b+1) (a) (b) x (2b+1)=2 asx!+1,i.e. F(2 x 1 )2R +1 (2b+1)=2 .

Thus, by Theorem 1.6.2. and Corollary3.7.3. in Leadbetteret al. [11],weconclude that F 2D( (2b+1)=2 ), c n =( 4 (a+b)n (2b+1) (a) (b) ) 2=(2b+1) and d n

=2, andthe theorem is proved.

ProofofTheorem4.{ AstationaryGaussianprocesswhichveri estheBerman's condi-tion (n)logn!0asn!+1,belongstotheGumbeldomainwiththesame normal-izingconstantsasin thei.i.d. case(seeTheorem4.3.3. in Leadbetteretal.[11]). Since ithas acausalrepresentation, the process(5) is Gaussian. Fromthe expressionof the asymptoticofits autocovariancefunction , givenin Giraitis andLeipus[4], weobtain that: (n) X i=1;;k :di>0 An 2d  i 1 (B+o(1)) as n!+1 with d  i = d i if j i j <1 and d  i = 2d i ifj i j= 1(i =1;;k : d i > 0), and where A andB aretwo nitepositiveconstants. Since2d

 i 1<0,wehaven 2d  i 1 logn!0as n!+1(i=1;;k:d i

>0), andthen,wehave (n)logn=o(1)asn!+1. Thus, theBerman'sconditionholds,and theproofiscomplete.

(7)

References

[1] BermanS.M.,Limittheoremsforthemaximumterminstationarysequences,Ann. Math. Stat.35 (1964)502{516.

[2] FellerW.,AnIntroductiontoProbabilityTheoryandItsApplications,Vol.2,2ndEd.,Wiley,New York,1971.

[3] FisherR.A.,TippettL.H.C.,Limitingformsofthe frequencydistributionofthelargestorsmallest memberofasample,Proc.CambridgePhil. Soc.24(1928)180{190.

[4] GiraitisL., LeipusR., A generalized fractionally di erencingapproach inlong memory modeling, Lithu.Math. Journ.35(1995)65{81.

[5] Gnedenko B.V., Sur la distribution limitedu termed'une seriealeatoire, Ann. Math. 44 (1943) 423{453.

[6] Gray H.L., Zhang N.F., Woodward W.A., Ongeneralized fractional processes, J.T.S.A.10 (1989) 233{257.

[7] GueganD.,LadoucetteS.,Invariantmeasuresandsecondorderpropertiesformapson[0;1],Preprint 01.07,UniversityofReims,France(2001).

[8] Guegan D., Ladoucette S.,Extreme value theoryof particular nonlinear processes, inpreparation (2001).

[9] HallP.,Wol R.C.L.,Propertiesofdistributionsandcorrelationintegralsforgeneralizedversionsof thelogisticmap,Stoch. Proc. Appli.77(1998)123{137.

[10] LawranceA.J.,SpencerN.M.,Statisticalaspectsofcurvedchaoticmapmodelsandtheirstochastic reversals,Scand.Journ. Stat.25(1998)371{382.

[11] LeadbetterM.R.,LindgrenG.,RootzenH.,ExtremesandRelatedPropertiesofRandomSequences andProcesses,Springer-Verlag,Berlin,1983.

Références

Documents relatifs

I -Aire sous une courbe :Int´ egrale d’une fonction continue positive 2 II -Int´ egrale d’une fonction continue de signe quelconque 3.. 1) Int´egrale d’une fonction

Un insecte est pos´e sur une brindille au dessus de la surface de l’eau. Un poisson archer projette une goutte d’eau avec une orientation initiale θ 0 qui pointe directement vers

Des atomes de type 1 ayant une masse de 35 umit´es de masse et des atomes de type 2 d’une masse de 37 unit´es de masses sont ionis´es une fois et sont introduits dans un spec-

Le vase B, dont le volume est de 4 fois celui du vase A, contient le mˆeme gaz parfait, mais `a une pression de 1 × 10 5 Pa et `a une temp´erature de 400 K?. Le robinet est ouvert

Je fais du th´e froid en m´elangeant 500 g de th´e chaud (que l’on consid´erera comme ´etant de l’eau) avec une masse identique de glace `a son point de fusion.

Pour estimer le temps moyen pendant lequel une mol´ecule d’oxyg`ene se trouve dans la trach´ee, calculez d’abord le nombre de particules qui y entrent et qui en sortent, puis, par

Pour la calculer, utiliser les d´efinitions des chaleurs sp´ecifiques `a volume et `a pression constants (cours pages 182 `a 185) en estimant les temp´erature du gaz aux points A, B

Supposons que l’insecte se trouve `a la hauteur H au dessus de l’eau et `a une dis- tance horizontale L du poisson. Satellites. a) On consid`ere la Terre et le satellite comme