• Aucun résultat trouvé

Note sur les bissectrices des angles d'un triangle

N/A
N/A
Protected

Academic year: 2022

Partager "Note sur les bissectrices des angles d'un triangle"

Copied!
4
0
0
En savoir plus ( Page)

Texte intégral

(1)

N OUVELLES ANNALES DE MATHÉMATIQUES

D ÉSIRÉ A NDRÉ

Note sur les bissectrices des angles d’un triangle

Nouvelles annales de mathématiques 2e série, tome 13 (1874), p. 10-12

<http://www.numdam.org/item?id=NAM_1874_2_13__10_1>

© Nouvelles annales de mathématiques, 1874, tous droits réservés.

L’accès aux archives de la revue « Nouvelles annales de mathématiques » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions).

Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente men- tion de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques

http://www.numdam.org/

(2)

NOTE SUR LES BISSECTRICES DES ANGLES D'UN TRIANGLE;

PAR M. DÉSIRÉ ANDRÉ,

Agrégé de l'Université, professeur à Sainte-Barbe.

1. Les théorèmes sur la bissectrice d'un angle inté- rieur d'un triangle et les théorèmes sur la bissectrice d'un angle extérieur se correspondent deux à deux. Nous allons donner un procédé général permettant, lorsqu'on connaît l'un quelconque de ces théorèmes, d'établir im- médiatement le théorème corrélatif.

2. Supposons connu ce théorème :

La bissectrice intérieure d'un angle d"*un triangle partage le coté opposé en segments proportionnels aux cotés adjacents.

Pour en déduire le théorème corrélatif, considérons un triangle quelconque ABC, et la bissectrice AD de l'angle extérieur A. Prenons, sur BA prolongé, une Ion-

(3)

l » )

gueur AE égale à AC, et joignons DE. Les deux triangles A CD, AED ont un angle égal compris entre deux côtés égaux chacun à chacun 5 donc ils sont égaux. Par suite, DA est la bissectrice de l'angle intérieur D du triangle BDE, et le théorème que nous venons d'admettre nous donne la proportion

AB AE D B ~ D Ë '

Remplaçons, dans cette égalité, AE et DE par les lon- gueurs AC et CD, qui leur sont respectivement égales, nous trouvons

A B _ AC D B ~ CD' ou bien

D B _ CD ÂB~~ AC'

ce qui nous donne le théorème corrélatif que voici : La bissectrice de Vangle extérieur d'un triangle dé- termine sur le côté opposé deux segments proportion- nels aux côtés adjacents,

3. Supposons connu maintenant le théorème suivant : Le carré de la bissectrice d'un angle intérieur est égal au rectangle des deux cotés de cet angle, moins le rectangle des deux segments du côté opposé.

Considérons la figure précédente, et appliquons ce théorème à la bissectrice DA de l'angle intérieur D du triangle BDE ; nous avons

DA — DB X DE — AB X AE.

Dans cette égalité, remplaçons encore DE parDCet AE par AC, il vient

DA*— DB X DC — AB X AC;

(4)

et, si nous nous rappelons que DA est la bissectrice de l'angle extérieur A du triangle ABC, nous pouvons énoncer le théorème corrélatif suivant :

Le carré de la bissectrice d'un angle extérieur est égal au rectangle des deux segments déterminés sur le côté opposé, moins le rectangle des deux côtés de l'angle.

4. Au lieu de partir des théorèmes sur la bissectrice d'un angle intérieur, nous aurions évidemment pu, à l'aide du même procédé, suivre la marche inverse : le procédé est général.

Références

Documents relatifs

Dans ce triangle pythagoricien (triangle rectangle à côtés entiers), le carré du périmètre est un multiple exact

[r]

Calculer la mesure de chacun des angles suivants, en expliquant votre réponse :.. Correction de

1- Colorie les triangles en vert, les carrés en rouge et les rectangles en bleu.. 2- Mesure les côtés du carré et

Utiliser la calculatrice pour déterminer une valeur approchée :du cosinus d’un angle aigu donné, de l’angle aigu dont on donne le cosinus.. La propriété de proportionnalité

La somme des carrés des deux côtés formant l'angle droit (les deux cathètes a et b) est égale au carré de l'hypoténuse du triangle (le côté c)?. Voir la

[r]

• On utilise la touche cos de la calculatrice, en tapant, selon le type de machine, la mesure de l’angle en premier ou en dernier. Cela correspond à l’écriture écrite sur

 Une propriété est dite caractéristique pour un objet lorsque l’objet vérifie cette propriété mais aussi est le seul à la vérifier. On employe

• On dit qu’un triangle est rectangle lorsque l’un de ses trois angles est un angle droit. b) Vocabulaire.. • Le côté opposé à (ou de) l’angle droit s’appelle

La plus simple consiste à considérer que une pizza carrée et une pizza ronde revient à acheter deux pizzas rondes plus 1 e.. Donc deux pizzas rondes coûtent 13,

Bissectrice: La bissectrice d'un angle est la demi-droite qui sépare un angle en deux angles adjacents de même mesure. La construction

[r]

[r]

D’un côté vous avez l’hypoténuse du triangle rectangle et vous êtes “bordés” par un autre côté que l’on va appeler le côté” adjacent” à l’angle BCA. Le

Propriété et définition: Les bissectrices des angles d’un triangle sont concourantes : elles ont un point en commun appelé centre du cercle inscrit au triangle. Ce point est

Démontrer qu’un triangle est (ou n’est pas) rectangle en connaissant la mesure des trois côtés. Si dans un triangle, le carré de la mesure du côté le

Pour calculer un côté ou un angle dans un

[r]

Dans un triangle rectangle, le carré de l’hypoténuse est égal à la somme des carrés des deux autres côtés.. Si le triangle ABC est rectangle en A alors BC 2 =AB 2 +AC

Le triangle ABC est rectangle en A.. Propriété : Si, dans un cercle, un triangle a pour sommets les extrémités d’un diamètre et un point du cercle Alors ce triangle

Le triangle ABC est rectangle en A. [AM] est la médiane issue de l’angle droit.. Propriété : Si, dans un cercle, un triangle a pour sommets les extrémités d’un diamètre et un

Avec ces trois pièces, réalise un carré, un triangle rectangle, un parallélogramme, un quadrilatère qui a deux angles droits et un rectangle.. Reproduis ce que ce