• Aucun résultat trouvé

For the first point, the transformed spinor bilinear is ψ † R Λ † R σ µ Λ R ψ R . Let us expand the quantity between the spinors infinitesimally:

N/A
N/A
Protected

Academic year: 2022

Partager "For the first point, the transformed spinor bilinear is ψ † R Λ † R σ µ Λ R ψ R . Let us expand the quantity between the spinors infinitesimally:"

Copied!
2
0
0

Texte intégral

(1)

Quantum Field Theory

Set 13: solutions

Exercise 1

For the first point, the transformed spinor bilinear is ψ R Λ R σ µ Λ R ψ R . Let us expand the quantity between the spinors infinitesimally:

Λ R σ µ Λ R = e

12

(~ η+i~ θ)~ σ σ µ e

12

(~ η−i~ θ)~ σ ' (1 + 1

2 (~ η − i~ θ)~ σ)σ µ (1 + 1

2 (~ η + i~ θ)~ σ) = σ µ + 1

2 η ii , σ µ } + i

2 θ ii , σ µ ] Let us distinguish the cases µ = 0, µ = i. Knowing the equations [σ i , σ 0 ] = 0, [σ i , σ j ] = 2i ijk σ k , {σ i , σ 0 } = 2σ i , {σ i , σ j } = 2δ ij σ 0 , we find:

Λ R σ 0 Λ R ' σ 0 + η i σ i Λ R σ i Λ R ' σ i + η i σ 0 − θ j jik σ k

We can guess that this represents the infinitesimal Lorentz transformation of a vector, with the boost part parametrized by η i and the rotation part by θ i . Indeed, the vector (spin 1) representation of the Lorentz trans- formation is given by Λ(η, θ) µ ν = e ω

µν

' δ µ ν + ω µ ν , with the constraint that ω αν = η να ω µ α is antisymmetric:

ω µν = −ω νµ , and the identification θ i = 1 2 ijk ω jk , η i = ω i0 .

Λ R σ 0 Λ R ' σ 0 + ω i0 σ i = σ 0 + ω 0 i σ i Λ R σ i Λ R ' σ i + ω i0 σ 0 − 1

2 jlm ω lm jik σ k = σ i + ω i 0 σ 0 + ω i k σ k

where we used the obvious identities ω µi = −ω µ i , ω µ0 = ω µ 0 . Thus, we have proved the infinitesimal form of Λ R σ µ Λ R = Λ µ ν σ ν .

For the second point, the calculation is very simple:

−1 Λ L = −1 e

12

(~ η+i~ θ)~ σ = e

12

(~ η+i~ θ)

−1

~ σ = e

12

(~ η+i~ θ)(−~ σ

) =

e

12

(~ η−i~ θ)~ σ

= Λ R ∗

by using the properties of , this implies also −1 Λ R = Λ L , −1 Λ R = Λ T L .

For the third point, we can take the first result and do a similarity transformation through :

−1 Λ R σ µ Λ R = −1 Λ µ ν σ ν Since −1 σ µ = ¯ σ ∗µ , the previous equation is equivalent to:

Λ T L ¯ σ ∗µ Λ L = Λ µ ν σ ¯ ∗ν

The complex conjugate of this relation is Λ L ¯ σ µ Λ = Λ µ ν σ ¯ ν . This shows that the spinor bilinear ψ L ¯ σ µ ψ L transforms

as a vector.

(2)

Exercise 2

Given the results in the previous exercise, it is now easy to show that Λ −1 D γ µ Λ D = Λ µ ν γ ν . Indeed, given that Λ R = Λ −1 L and Λ L = Λ −1 R , then

Λ −1 D =

Λ −1 L 0 0 Λ −1 R

=

Λ R 0 0 Λ L

,

and thus

Λ −1 D γ µ Λ D =

Λ R 0 0 Λ L

0 σ µ

¯ σ µ 0

Λ L 0 0 Λ R

=

0 Λ R σ µ Λ R

Λ L σ ¯ µ Λ L 0

= Λ µ ν γ ν . To summarize:

Λ R σ µ Λ R = Λ µ ν σ µ , Λ L ¯ σ µ Λ L = Λ µ ν σ ¯ µ , Λ −1 D γ µ Λ D = Λ µ ν γ ν .

Recalling the definition of σ µ = (1, σ i ) and ¯ σ µ = (1, −σ i ), one easily verifies:

σ µ ¯ σ ν + σ ν σ ¯ µ =

µ = 0, ν = 0 σ 0 σ ¯ 0 + σ 0 σ ¯ 0 = 2, µ = 0, ν = i σ 0 σ ¯ i + σ i σ ¯ 0 = −σ i + σ i = 0,

µ = i, ν = j σ i σ ¯ j + σ j σ ¯ i = −σ i σ j − σ j σ i = −{σ i , σ j } = −2δ ij . The same holds for the identity ¯ σ µ σ ν + ¯ σ ν σ µ = 2η µν . Therefore, given the definition of the Dirac matrices,

γ µ =

0 σ µ

¯ σ µ 0

one can deduce the anticommutation relation {γ µ , γ ν } = 2η µν : 0 σ µ

¯ σ µ 0

0 σ ν

¯ σ ν 0

+ (µ ↔ ν) =

σ µ ¯ σ ν 0 0 σ ¯ µ σ ν

+ (µ ↔ ν ) = 2η µν 1 4 .

2

Références

Documents relatifs

Lorsque P et Q sont deux polynômes à coecients réels, on notera P b (Q) le polynôme obtenu en substituant dans l'expression de P chaque occurrence de X par Q.. Soit n un

Lorsque P et Q sont deux polynômes à coecients réels, on notera P b (Q) le polynôme obtenu en substituant dans l'expression de P chaque occurrence de X par Q.. Soit n un

(5 points) Pour les questions 1–10, donner la r´ eponse (vrai ou faux ) sans aucune justification.. Soit µ une mesure sur [0, 1] absolument continue par report ` a la mesure

[r]

(d) establishment of a link with the community to facilitate utilization of services by those in need. The most sensitive area for effective intervention seemed

(1) Quel est le sens de variation de la fonction λf. (2) D´ emontrer ce

Zhu, A Uniformization Theorem Of Complete Noncompact K¨ ahler Surfaces With Positive Bisectional Curvature, J.. Zhu, On complete noncompact K¨ ahler manifolds with positive

[r]