• Aucun résultat trouvé

Twenty-year tracking of lighting savings and power density in the residential sector

N/A
N/A
Protected

Academic year: 2021

Partager "Twenty-year tracking of lighting savings and power density in the residential sector"

Copied!
14
0
0

Texte intégral

(1)

ContentslistsavailableatScienceDirect

Energy

and

Buildings

jo u r n al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / e n b u i l d

Review

Twenty-year

tracking

of

lighting

savings

and

power

density

in

the

residential

sector

Shady

Attia

a,∗

,

Mohamed

Hamdy

b,c

,

Sherif

Ezzeldin

d

aSustainableBuildingsDesignLab,Dept.UEE,FacultyofAppliedSciences,UniveristédeLiège,Belgium

bNTNUNorwegianUniversityofScienceandTechnology,DepartmentofCivilandTransportEngineering,Trondheim,Norway cDepartmentofMechanicalPowerEngineering,HelwanUniversity,P.O.Box11718,Cairo,Egypt

dDepartmentofArchitecturalEngineering&EnvironmentalDesign,ArabAcademyforScienceandTechnologyandMaritimeTransport,AASTMT(Cairo

Campus),Egypt

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received10December2016

Receivedinrevisedform15August2017 Accepted16August2017

Availableonline24August2017 Keywords:

LEDlamps Buildings

Compactfluorescentlamp Incandescentlamp Energyefficiency MENAregion

a

b

s

t

r

a

c

t

Lightingenergyconsumptionrepresentsasignificantpercentageoftotalenergyconsumptionin resi-dentialbuildingsector.Duringthelast20years,advancedenergy-efficientlightingfixtureshavebeen introducedworldwidetoconservetheenergyconsumptioninresidences.IntheMiddleEastandNorth Africa(MENA)region,veryfewstudieshavebeenconductedtoevaluatetheassociationbetweenthe introducedlightingfixturesandtheresultedenergysavingsusingvalidmeasurementsandverification techniques.Thisstudyevaluatesthetechno-economicimpactofreplacingnewenergyefficient light-inginresidencesinEgypt(arepresentativeMENAregioncountry).Aquantitativeanalysisisappliedby trackingtheutilitybillsof150residentialapartmentsinCairo.Theaveragemeasuredpower consump-tionbefore(1993–1998)andafter(2009–2014)installationenergyefficientlightingfixturesisanalyzed. Abuildingperformancesimulationmodelisdevelopedtobackthefindings.Thefindingsindicatea sig-nificantdisparitybetweentheestimatedsavingsbasedonsimulationandtherealmeasuredsavings duetopenetration,reboundeffectandlowqualitylamps.Moreover,thefindingspresentanexampleof quantifiedbenefitsofenergyefficientlighting,whichisveryimportanttoinformthedecisionmakingof publicpolicymakers,investorsandbuildingoccupants.

©2017ElsevierB.V.Allrightsreserved.

Contents

1. Introduction...114

2. Stateoftheart...115

2.1. Advancesinlightingenergysavingsandtechnologies ... 115

2.2. Egyptianenergyefficientlightingpolicies...117

2.3. Towardsclosingthegap...118

3. Methodology ... 118

3.1. Dataacquisitionandenergyaudit...119

3.2. Baselinecharacterization...119

Abbreviations:ASHRAE,AmericanSocietyofHeating,Refrigerating,andAir-ConditioningEngineers;AC,airconditioning;ANSI,AmericanNationalStandardsInstitute; CAPMAS,CentralAgencyforPublicMobilizationandStatistics;CRI,colorrenderingindex;CFLs,compactlluorescentlamps;DHW,domestichotwater;EEHC,Egyptian ElectricityHoldingCompany;EEUCPRA,EgyptianElectricUtilityandConsumerProtectionRegulatoryAgency;HBRC,EgyptianHousingandBuildingResearchCentre;EOSQ, EgyptianOrganizationforStandardizationandQuality;EU,EuropeanUnion;GEF,GlobalEnvironmentFacility;GHG,greenhousegases;IES,IlluminatingEngineeringSociety; IEA,InternationalEnergyAgency;kWh,kilowatt-hour;LED,lightemittingdiode;LPD,lightingpowerdensity;MED-ENEC,energyefficiencyintheconstructionsectorinthe Mediterranean;OECD,OrganizationforEconomicCo-operationandDevelopment;MENA,MiddleEastandNorthAfrica;MOEE,MinistryofElectricityandEnergy;UNDP, UnitedNationsDevelopmentProgramme;UNEP,UnitedNationsEnvironmentProgramme;UNIDO,UnitedNationsIndustrialDevelopmentOrganization;WWR,windowto wallratio.

∗ Correspondingauthorat:UniveristédeLiège,SustainableBuildingsDesignLab,Office+0/542,QuartierPolytech1,AlléedelaDécouverte13A,4000Liège,Belgium. E-mailaddress:shady.attia@ulg.ac.be(S.Attia).

http://dx.doi.org/10.1016/j.enbuild.2017.08.041

(2)

114 S.Attiaetal./EnergyandBuildings154(2017)113–126

3.3. Buildingperformancesimulation ... 121

4. Results...121

5. Discussion...122

5.1. Summaryofmainfindings ... 122

5.2. Strengthsandlimitationsofthestudy...123

5.3. Implicationsforpracticeandfutureresearch...124

6. Conclusion...124

Acknowledgements...124

References...125

1. Introduction

Lightingenergyaccountsforapproximately19%(2900TWH)of

theglobalelectricenergyconsumption.Projectionsbythe

Inter-nationalEnergyAgency(IEA)showthatifgovernmentsonlyrely

oncurrentpolicies,globalelectricityuseforlightingwillgrowto

around4250TWhby2030,anincreaseofmorethan40%[1].The

energysectorplaysakeyroleintheMiddleEastandNorthAfrica’s

(MENA)economicprogress.TheEgyptiangovernmentfaces

seri-ouschallengessecuringenergyforalleconomicactivities.During

thelast15yearstheannualgrowthrateexceeded8%,where85%of

theelectricityoriginatesfromfossilsourcesprimarilynaturalgas.

Theresidentialbuildingsectorissuppliedmainlybyelectricityto

meetthecooling,lightingand plugloaddemands. Accordingto

thelastgovernmentalstatistics,in2014,43%ofthetotalelectricity

consumptionwasattributedtothebuildingsector[2,3].The

resi-dentialbuildingsectorisfacinganumberofchallenges,aboveallis

thelowconstructionqualityandbuildingenergyefficiency.Similar

tomostMENAcountries,thehighestenergyconsumptionsubsidy

iscurrentlywithintheresidentialsector,thatiswhytheenergy

savingsinthissectorshouldgeneratethehighestreturnstothe

statebudget.Facedwiththeneedtosecurereliableandaffordable

energysourcesforthecomingdecadeswhilemaintaininggrowth,

thereisanationalincentivetomovetowardalessgreenhousegas

(GHG)intensivedevelopmentpath,bybecomingmoreenergy

effi-cientandmakinggreateruseofthecountry’spotentialrenewable

energy.

Energy efficiency standards and labels are developed for

appliancessuchasrefrigerators,freezers,washingmachines,air

conditioners,electricwaterheaters,electronicballasts,and

com-pactfluorescent lamps[4].Inrecent years,severalmeasuresto

promote efficient lighting use were adopted by the Egyptian

government.Since2014,theelectricitysectorwitnessedserious

fundamentalreforms,reducingtheenergysubsidy,allowingthe

privatesectortogenerateelectricity,distributing10millionLED

lamps and aiming to replace incandescent lighting fixtures by

2020[5,6].AccordingtoGEFEvaluationOfficeanenergyefficiency

marketsupportwasachievedbyconducting193auditsand

imple-mentingtherecommendationsof20audits,replicatingacompact

fluorescentlamp leasingprogram atCairoand CanalElectricity

DistributionCompanies,bypromotinganddiffusingcompact

flu-orescentlampswiththeactiveparticipationoftheprivatesector

[4].

InEgypt,residentialbuildingscomprise26.881.533households

andelectricallightingaccountsfor20–35%oftheresidential

elec-tricity consumption [2]. Between 2012 and 2015, the average

lamps’saleswas70millionlamps,representingfivemajortypes

oflightinglampsthatareusedinEgypt(Incandescent,

Fluores-cent,CompactFluorescent,Halogen,LEDlamps)[7].Onthebasis

oftheenergyefficiencyoflightingprojectoftheUnitedNations

DevelopmentProgram(UNDP)itisestimatedthatEgyptsold260

millionlampsin2010(excludingstreetlighting)[8,9].Theproject

strategytoacceleratemarkettransformationintheresidential

sec-toristosellhigh-qualityCFLsatsubsidizedpricesforwhichthe

remainingpartcanbepaidbackininstallmentsthroughregular

electricitybills.Among260millionsoldlampsabout35million

(13%)unitswerefluorescenttubesand17million(7%)CFLs.The

remainderisprimarilyincandescentlightbulbs(GLS)[7].Fig.1

illustratesanestimationoftheevolutionoflampsmarketinEgypt

duringthe periodfrom 2010to2016.The Egyptian authorities

and industry couldnotprovide uswith actualsalesof lighting

equipmentduringthatperiod,duetothelackofcentraltracking

oflocallyproducedandimported lampssales.Therehasbeena

fastgrowthoffluorescentlamps,particularlycompactfluorescent

lamps(CFL)andthegovernmentintroducedalargeamountofLED

lamps[10].

Inthepasttwodecades,manystudieshavereportedthe

corre-lationbetweenthedecreaseofenergyconsumptionbyimproving

theenergyefficiencyoflightingappliances[11–16].Moststudies

investigatedtheimpactofefficientlightingappliancesbyusing

estimationmethodssuchasregressionanalysismodelsor

simula-tionmodels[17].However,thereisnopublisheddataorknowledge

onthemeasuredeffectofinstallingefficientlightingtechnologies

onsavingsofaveragemiddleclasshouseholdsinEgypt.Of

partic-ularrelevancearethelightingpowerdensityandtheeffectofCFL

onlong-termsavings.Itisdifficulttoquantifytheactualsavings

fromenergyefficiencymeasures,whichcandeterconsumerand

investors.

Therefore,thisstudywasconductedwiththeobjectiveof

quan-tifyingtheeffectofreplacingincandescentlightbulbswithCFLover

aperiodof20years.Theoverallaimistopromoteeffectiveenergy

efficiencyof indoorlighting. Theresearch objectivesinclude:i)

identificationanddeterminationoflightingenergy-savingsofthe

residentialEgyptian buildingsectorthat have been madefrom

1994to2014andii)reductiontheuncertaintyofindoorlighting

energysavingbyapplying evidencebasedmeasuringapproach.

The methodology is based on data acquisition, modeling

tech-niquesand a structured survey.Thus the methodologyfocused

ontrackingenergyefficientlightingsavingsandpowerdensityof

150representativeCaireneapartments.Inthisstudy,wetracked

andanalyzedbuilding’senergyperformancemonthlybillsof150

apartmentsforastudyspanof20years.

Theobjectiveofthestudyisnottoproofthatflorescentand

CFLwould resultinreductions inenergy consumption.Instead,

thestudyaimstoidentifytherealconsumptionpatterns,andthe

lightefficiencyintheEgyptianresidentialsectorasanexample

ofaMENAcountry.Byquantifyingthebenefitsofactualsavings

ofenergyefficientlightingthestudyresultsprovideinsightsand

anovelcontributiontothepublicauthorities,investors,lighting

industry and even citizens in the MENA region.This is a very

importantsteptoenabletheassessmentofthesuccessofenergy

efficiencyimplementationpoliciesandidentifyempiricallythe

bar-riersin theregion.Moreover,thestudyreportsthebreakdown

ofhousehold’senergyconsumptionusagepatternandtheshare

oflightingenergyconsumption.Therefore, thestudyresultsare

transferableandcanstrengthentheregulatoryand institutional

framework,improvethedecisionmakingofpublicauthoritiesand

(3)

Fig.1.EstimatedsalesoflampsintheEgyptianmarketbetween2010and2016(ElSewedy[51],Yassin[7]).

plansfordistributing10millionLEDlampsandreplacing

incan-descentlightingfixturesby2020inEgypt[5].

Thispaperisorganizedintosixsections.Thefirstsection

iden-tifiestheresearchproblemwithintheEgyptianenergyefficiency

community.Thesecondsectionprovidesaresearch

contextualiza-tionbypresentingareviewonthestateoftheartofenergyefficient

lightingworldwideandenergyefficientlightingpoliciesinEgypt.

Thethirdsectionexplainstheresearchmethodology,processand

toolstogeneratetheresultsandsupportthefindings.Theenergy

dataacquisitionresultsandanalysisarediscussedinsectionfour.

Thefinaltwosectionsarediscussingthefindingsandproviding

feedbacktolightingexperts,testinglaboratories,policymakersand

thelightingindustry.

2. Stateoftheart

Replacingolderlighting withadvanced lighting systemscan

lead tosubstantialenergy savings for electriclighting. Lighting

qualityandusersatisfactioncanalsobeimprovedtoachievein

thesametimebettervisualcomfortinresidentialspaces.Togetan

overviewofadvancesinlightingenergysavingsandtechnologies

thatareavailableonthemarketwepresentareviewofexisting

advancedlightingsystems.Forthisreview,weinvestigatedgroups

ofproductsthatarerelevanttothestateoftheartoflightingenergy

savingsandtechnologies.Theproductsareselectedwiththeintent

ofcapturingthecurrentstateofthemarketat agivenpoint in

time,representingabroadrange ofperformancecharacteristics.

However,theselectiondoesnotrepresentastatisticalsampleofall

availableproductsintheidentifiedgroup.Atthetimeof

investiga-tion(2014),allselectedproductswerecomparedbasedonavailable

manufacturer’swebpages(2014).Then,wepresentinSection2.2a

reviewofEnergyEfficientLightingPoliciesinEgypt.Bothreviews

areaimedtopositiontheresearchstudyworldwideandinthelocal

context.

2.1. Advancesinlightingenergysavingsandtechnologies

Humancentriclightingrepresentsthenextevolutioninlighting

design. Human centric lighting is defined as the dayand

elec-triclightingdesignedandappliedtoimprovecircadianrhythms

for alertness, sleep, mood, visual acuity and productivity. Its

effective application can increase lighting performance, energy

savingsandsustainabledesign.TheIlluminatingEngineering

Soci-ety(IES)publishedin2013theTM-24-13[18],which describes

howlightspectrumaffectsvisualacuityininteriorlightedspaces,

andillustrateshowspectrallyenhancedlightingmaybefactored

into lighting calculationsfor interior lighting applications. Asa

consequence, there is rapidly growing variety of products and

changingperformancecharacteristicsinconjunctionwiththeiruse

toachieveoptimumhumancentriclighting,includingprimarily

thelatestgenerationofdimmingandwarm-to-coolwhiteKelvin

changingLEDtroffers,trofferkits,drums,andtasklights.

Thirty five years ago theincandescent lampswere thebest

availableoptioninthemarketintheOrganizationforEconomic

Co-operationandDevelopmentOECDcountries.Ithadaperfectcolor

renderingindexof100withacheapluminaire.Itwasthebeginning

oftheninetieswhendischargelampsbecamethebasisofmany

lightingtechnologies,includingneonlights,low-pressuresodium

lamps(thetypeusedinoutdoorlightingsuchasstreetlamps)and

fluorescent lights.Today, theUnited NationsEnvironment

Pro-gramme(UNEP)andGlobalEnvironmentFacility(GEF)workwith

developingandemergingcountriestoimplementstandardsforthe

lightingenergyefficiencytophase-outincandescentlightbulbs.

Fig.2showsthestatus ofphaseoutofincandescentlightbulbs

aroundtheworld.

Five years later in 1995 the spiral fluorescent tube or the

compactfluorescentlight(CFL)becamethemainstreaminOECD

countries.EarlyCFLswereintroducedinthemid-1980sinthe

mar-ketatretailpricesof$25–35[19].Forexamples,intheUSprices

variedsharplydependingondifferentpromotionscarriedoutby

energycompanies.CFLswereexpensive,bigandbulky,theydid

notfitwellintofixtures,andtheyhadlowlightoutputand

incon-sistentperformance[19].Sincethemid-1990s,CFLperformance,

price,efficiency(75%lessenergyusethanincandescentlamp)and

lifetime(lastingabout10timeslonger)improvedandhavemade

themaviableoptionforresidents.Nearly30yearsafterCFLswere

firstintroducedonthemarket,anENERGYSTAR®CFLcostsaslittle

as$1.74perbulbwhenpurchasedinafour-pack[19].

Todayoneofthefastestdevelopinglightingtechnologiesand

mostefficientlightsisthelight-emittingdiode(LED).AsLEDshave

evolvedinthearchitecturallightingmarket,integral LEDlamps

havebecomeobviousoptionsforreplacinglow-efficacy

fluores-centandhalogenlampsintherecentyears.LinearLEDlamps(also

(4)

116 S.Attiaetal./EnergyandBuildings154(2017)113–126

Fig.2.Phaseoutofincandescentlightbulbsworldwidein2016adaptedfrom(UNDP[53])andoverviewoflamptype’sfamilytree.

Table1

Typesofdomesticappliancesandtheiraveragepowerandoperationhours.

Performance

Description Incandescent Candle Incandescent

Halogen Fluorescent TL8

Compact Fluorescent

LEDGLS LEDspotlight FlorescentT5 LEDDT8

CodeinPlan InC CnL Hal FluT8 CfL LeD LeDPin FluT5 LeDT8 ColorTemp.(Kelvin) 2700K 2700K 3000K 3000K–6500K 2700K–6500K 2700K–5000K 2700K–6500 2700K–6500 2700K–6500 LifeSpanh 1000 1000 5000 20,000 10,00 45,000 45,000 50,000 50,000

EnergyUse 60W 25W 60W 30–40W 20W 10W 8W 22W 15W

SalesinOECD Limited Limited Low Limited Medium High Medium High Low SalesinEgypt&MENA Medium High Medium High Medium Limited Limited Limited Limited

compulsorytechnologythatisfamiliar,efficient,interchangeable, andcost-effective.LinearLEDlampsareincreasinglyconsidered byelectricians andfacilitymanagersasobviousenergy-efficient replacementsforthelinear fluorescentlamp. LinearLEDlamps areoftenpromotedbymanufacturersandsalesagentsasaneasy retrofitoption,withonlyminorretrofitlaborneeded,equivalent lightingperformancetofluorescent,dramaticenergysavingsand resultingreturnoninvestment,and/oralmostnegligiblerelamping costsbecauseoflonglife. Itshouldbenoted thatmany manu-facturersare targetingT8fluorescent(FL)lamps,whichintheir premium form already boast efficacyof greater than 90lm/W, excellentlumenmaintenance,andlonglifeofupto80,000hwhen

pairedwithwell-engineeredelectronicballasts.Fig.2andTable1

providesanoverviewofthemainlamptype’sfamilytreeandtheir

characteristicsthatevolvedduringthelast50years.

Paralleltotheadvancesinlightingenergy savingsand

tech-nologies,veryfewstudiesthatmeasuredandmodeledthelighting

energysavingsareshowingaverylargerangeofvariationinthe

OECDcountries.ThisincludestheworkofStokesetal.[20]and

Del-touretal.[21].However,almostnostudymeasuredtheimpactof

thoseadvancesonenergyconsumptioninemergingand

develop-ingcountries.Therefore,inthispaperweinvestigateandmeasure

theimpactofadvancesinlightingenergysavingsandtechnologies

(5)

2.2. Egyptianenergyefficientlightingpolicies

Egypt,similar tomany MENA regioncountries, did jointhe

worldenergy efficiency movementrecently.The 1973Arab Oil

Embargowasnotareasontoconsiderenergyefficiencyinthe

coun-try.Ontheopposite,theheavyenergypricesubsidyconstrainedan

investmentintheenergysectorandthepotentialofGHGreduction

wasnotproperlyexploited.Itwasuntiltheestablishmentofthe

GlobalEnvironmentFacility(GEF)in1991asapilotprograminthe

WorldBankinpartnershipwithUnitedNationsDevelopment

Pro-gram(UNDP)andUnitedNationsEnvironmentProgramthatEgypt

startedtoaddressenergyefficiencyandenvironmentalissues.

From1991until2010,theEnergyEfficiencyImprovementand

GreenhouseGasReductionProjectwasexecutedbytheEgyptian

ElectricityHolding Company (EEHC),Ministryof Electricityand

Energy(MOEE)andsupportedwithagrantfromtheGlobal

Envi-ronmentFacility(GEF)oftheUnitedNationsDevelopmentProgram

(UNDP).Thedevelopmentobjectivewastomeetsuppressedand

stillgrowingpowerandenergydemandsthroughreliable,efficient

andrationalconsumptionpatterns,therebyreducinggreenhouse

gasemissions[22].The project’smainachievements havebeen

theencouragementofEgyptianmanufacturerstomanufactureCFL

locally(6factories),publicawareness programand cooperation

withNGOsandpowerdistributioncompanies.TheEgyptian

Orga-nizationforStandardizationandQualityhasissuedspecification

numberofoperationandsafetyaspectsand12millionCFLs(20W)

havebeensoldthroughtheelectricitydistributioncompaniesfor

halfoftheirpricebetween2006and2010[9,6].Alsotheproject

succeededtoprovidesupportgiventotechnicaltestinglabsofCFLs

andaMinisterialDecreeonspecificationsofenergylabelsforCFLs

butwithoutaclearenforcementmechanism.

In2002,aministerialdecreewasissuedfortheenforcement

ofthestandardsandlabelingprogramfortherefrigerators,

freez-ers,washingmachines,andairconditioners.In2006,theEnergy

CodeforResidentialBuildingswasdevelopedandin2008a

stan-dardforCFLsandelectronicballastswasissued.Lightingsystem

andairconditionertestinglabsareplayingamajorroleinpractice.

In2007,anewlystructuredNationalCommitteeonClimateChange

hasbeencreated.Thefollowingpublicationsreviewand

summa-rizechronologicallythekeypublicationenergyefficientlighting

savingsandpowerdensityintheEgyptianbuildingsector.Asa

con-sequence,severalstudieshavebeenpublishedaddressinglighting

energyefficiencyinEgyptbetween2006and2016andwillbelisted

below:

In 2006,theHousingand BuildingNational ResearchCenter

(HBRC)supportedbytheUNDPpublishedtheresidential

build-ingenergystandardforEgypt[23].Severalprototypicalresidential

buildingshavebeendevelopedthatareusedbythecodeworking

grouptoevaluatetheenergysavingsfromacomprehensivesetof

envelopeandHVACsystemmeasuresAttiaetal.[29,34].Chapter

7oftheresidentialbuildingenergystandardsetsminimum

effi-ciencyrequirementsontheelectriclightingsystem,includingthe

lightingpowerdensity,lightingintensityrequirements,lifespan

andpropertiesoflightingfixtures[23].Themainproblemwiththis

codeisthatitisnotenforcedbythestate.Inpractice,thereisno

compliancewithitsrequirementsfornewpublicorprivatehousing

projects[24].

ElMohimenetal.analyzedthedaylightbenefitsforoffice

build-ings [17]. A parametric study compared the impact of various

daylightingcontrolstrategiesandWWRvaluesonthetotal

build-ing electricity use for cleardouble-pane reflective glazing. The

studynotedtheimportanceofreducingtheWWRto0.2to

guaran-teemaximumdaylightautonomywhilereducingthepeakcooling

loadsandelectricitydemand.However,thestudyfocusedmainly

onofficebuildingsanddidnotquantifytheimpactofdaylighting

onelectriclightingandtheaverageelectricityuseforlighting.

Khalil [25] presented in 2006the resultsof one of thefirst

residentialenergysurveysconductedinCairo.Thesurveywas

con-ductedin1998withasamplesizewas2634householdsdistributed

among16areasinCairo.Thedegreeofsaturationofdifferent

elec-tricalappliancewasreported,however,lightingfixtureswerenot

included.Thestudypresentedspecificenergyconsumption and

averagedemandinresidentialbuildings.

In2009,Attiaetal.[26]conductedafieldsurveytoestimate

thetypicalelectricconsumptionratefortypicalapartmentblocks

inCairoaimingtoinvestigatethepotentialsandimpactofenergy

efficientretrofits.Thestudyfocusedonoverallenergyuseintensity.

Thestudypresentedaqualitativedescriptionofoccupancypattern

andoperationschedulesofelectricalappliances.Thefieldsurvey

resultsclassifiedthemajorappliancesineachhousehold.

Light-ingfixtureswereconventionalincandescentlamps.Othertypical

appliancesincludedceilingandstandingfans,personalcomputers,

microwaveoven,television,andstereo.Unfortunately,thestudy

didnotquantifyormentiontheelectriclightingshareintheenergy

breakdown.

In 2009,theGEF launchedtheUNEPen.lighten initiative, in

collaborationwith privatesector partners toprovide industrial

knowledge (Philips and Osram), as wellas the participationof

UNDP,UNIDO,theWorldBankandtheChineseNationalLighting

TestCenter(NLTC).Themainobjectiveoftheinitiativeistohasten

theglobaltransitiontowardsmoreefficientlighting,onthebasisof

itsbenefitsforclimatechangemitigation,energysavingsand

finan-cialsavings[27].Inthiscontext,en.lighten,inconjunctionwiththe

UNEPlaunchedin2011aplatformonEnergyEfficiencyforLighting

&AppliancesinEgypt[28].

OneoftheimportantpublicationsofthisreviewistheUNDP

projectdocumententitled‘Improvingtheenergyefficiencyof

light-ingandotherappliances’releasedin2011.Thedocumentreports

thatlightingaccountsforover20%ofEgypt’stotalelectricity

con-sumptionwhereincandescentlampsaccountfor94%ofalllamps

sales[8].Thedocumentidentifiedthesalesvolumeof lampsin

Egyptandproposedanannualgrowthrateof5%.Thedocument

highlightsthebarrierstoincreasethemarketpenetrationofenergy

efficientlightinginEgyptandthemarkettransformationtargets

oftheproject.Thedocumentaddressestheperformancequality

ofCFLlampsandtheirstandardsincludinglimitingthemercury

contentto5mgofmercuryperlampandcreatingawaste

man-agementandrecyclingplan.Thedocumentforeseesenergysavings

potentialofenergyefficientlightingupto13%ofprojectednational

electricitydemandby2020and17%by2030[8].However,the

base-linescenariofortheelectricitydemand,includinglighting,didnot

reportannuallightingpowerdensityorelectricityuseforlighting

inthebuildingsector.Inthereport,mostpresentedinformation

and assumptionsonenergysavingpotentialwerenot reported.

Withthesimplifyingassumptionsreportedinthisdocumentwe

couldnotfindrealperformancevalues,whichsettheUNDPproject

documentatlowaccuracyandreliability.

In 2012,Attia et al. reported theresults of surveying 1500

apartmentsin Alexandria,Cairoand Asyut[29].The study

pro-videddetailedlightingpowerdensityvaluesand schedules.The

dominanttypesoflampsusedwereincandescentlampsand

fluo-rescenttubes.Accordingtothestudyfindings,theaveragelighting

powerintensityforlivingroomandbedroomswas17and13W/m2,

respectively.Theotherspacesoftheinvestigatedapartmentshad

anintensityof9W/m2.Howeverthestudydidnotprovidea

break-down of energy consumption and operationmodes of electric

lighting.Moreimportantly,thestudydidnotinvestigatetheenergy

savingpotentialofelectriclighting.Thestudyfocusedmorethe

developmentofabenchmarkforresidentialbuildingsandoverall

averageenergyuseintensityperapartment.

In2014,Nassief[30]evaluatedthetotalelectricityconsumption

(6)

investi-118 S.Attiaetal./EnergyandBuildings154(2017)113–126

Fig.3.ComparisonoflightingtechnologyadaptioninMENAandOCEDcountries.

gatingtheeffectofvaryingHVACsystemsandenvelope.Similarly

in2015,Banhardtreportedtheresultsofamonitoringstudyon

airconditionedapartmentsinElGouna[31].However,both

stud-iesdidnotprovidesufficientdetailsontheenergyconsumption

breakdownandtheshareorinfluenceofartificiallightingonthe

overallconsumption.

Thisreviewgenerallyshowsthatenergyefficientlighting

sav-ingswereneverquantifiedormonitoredforEgyptianhouseholds.

Many studies addressedimproving theelectric lighting system

i.e.byreplacingorplanningtheelectriclightinginstallationwith

energy-efficientfluorescentlamps-luminairesandCFL(orevenLED

lamps).InEgypt,energysavingconceptsispopularoverthelast

decadewithinthegovernment.TheEgyptianMinistryof

Electric-ityhasbeenpromotingtheuseofenergysavinglamps,including

theLFLandtheCFL[6].However,therealeffectorimpactofenergy

efficiencylightingisnotpresentedinanystudy.Moreover,nostudy

reportedthebreakdownofhousehold’senergyconsumptionand

theshareoflightingenergyconsumption.

2.3. Towardsclosingthegap

Finally,thisreviewprovidedasnapshotonthelatestadvances

inenergysavingsandtechnologiesinlightinginOECDcountries

versusthecurrenthistoryandsituationofenergyefficientlighting

policiesinEgypt.Ourreviewestimatesa10–15yearsgapbetween

theOECDandMENAcountries.AsshowninFig.3,ittook7years

untilCFLsgotusedbyone-quarterofhouseholdsinOECDcountries

and18yearsuntilCFLsgotusedbyone-quarterofhouseholdsin

theMENAregion.Then,ittook4yearsuntilLEDlampsgotused

byone-quarterofhouseholdsinOECDcountriesand13yearsuntil

LEDlampsgot usedbyone-quarterofhouseholdsintheMENA

region.We thinkthat thecauseof thecurrent gapis explained

byheavysubsidyprogram thatpeakedacrosstheMENAregion

startingtheindependenceyears.Weobserveduringthelastyears

atrend towardsclosing thegapduetofastdeveloping pace of

efficientlightingtechnologiestoday,thelight-emittingdiode(or

LED).

Inthiscontextwearelookingtoquantifythebenefitsofenergy

efficiencymeasuresinresidentialbuildingsandprovidereliable

dataontheactualsavings.Theresearchoutcomeswillinfluence

policies that ensure closing the energy efficiency lighting gap.

According tothe literature review, theefficiency and

penetra-tionofhouseholds’electriclightinginstallationinEgyptremains

unknown,especiallywith,withthestateintentiontospreadthe

useofLEDtechnologyin2014.In2015,atenderhasbeenissued

bytheMinistryofElectricityforprocurementof10millionLED

lampstobedistributedtoresidentialcustomersbyelectricity

dis-tributioncompaniesthroughinstallmentsaddedtotheelectricity

bill[6].Therefore,itisessentialtotrackenergyperformanceand

tocheckwhethertheGHGemissionreductiontargetsarebeing

met.Accuratedatacaninformtimelydecisionmakersregarding

theimpactofpastandfutureenergyefficientlighting.

3. Methodology

We aimedtofinda representative sample of Egyptian

mid-dleclasshouseholds.Forthis studywecollectedand compared

data about the effect of installing fluorescent lamps and

com-pactfluorescentlamps(CFL)ontheenergysavingsofmiddleclass

residentialhouseholdsinCairo.Theapartmentshadtorepresent

middleclassfamilieswith3–5children,connectedtothenatural

gasgridforcookinganddomestichotwater,representingtypical

Egyptianmiddleclasshouseholds,alllocatedinAl-Bassatiynsouth

eastofCairo(ASHRAEZone2A).Thespecifictargetgroupwasupper

middle-incomefamiliesthatareabletoinvestinCFLsduetotheir

stillrelativelyhighcosts,whencomparedtotheincomelevelofthe

familiesandtheircurrentelectricitytariff.Accordingtothe2012

census,thenumberofcustomersinthisgroupis12million,which

representsover55%ofallresidentialcustomersinthecountry

(esti-matedat21.2million).Thiswasbased2012surveycollecteddata

from12,083households.Thespecificselectionwasbasedon

exam-iningtheenergybillsofmorethan4500apartmentsprovidedto

usbySouthCairoElectricityDistributionCompany.Thefinal

sam-pleforanalysiswas180rentedapartmentslocatedinmultistory

buildingblocksinSouth-EastCairo.

Fourmajorstepsidentifytheresearchmethodology.Firstly,the

dataacquisitionofmonthlyelectricenergyconsumptionof 180

(7)

2014.Secondly,anauditandsurveyforlightingfixturesand

appli-ances,includingtheirwattages,wereconductedforeachapartment

fortheyears2014.Thirdly,thebaselinewasdeterminedby

calcu-latingtheaverageelectricenergyconsumptionforlightingfrom

1993to1998.Based ontheauditstheaverageplug loads

con-sumptionwasdeterminedandextractedfromthemonthlyenergy

valuesallowingustoapproximateaccuratelytheinstalledbaseline

lightingenergy.Thefinalstepofthemethodologywastobuilda

simulationmodeltoestimatethelightingpowerdensityand

vali-datestepthree.Thefollowingsectionexplainseachstepindetail.

3.1. Dataacquisitionandenergyaudit

In Egypt, electric energy consumption is commonly tracked

onamonthlybasisandisaccessibleonthestateownedelectric

utilitycompanies.Forthisstudy,totalenergyconsumptionbills

weretrackedforeveryapartmentfrom1993to1998

represent-ing Dataset Iand 2009–2014representing Dataset II.To verify

thatthedatasetiscompleteandthatityieldscredibleresultswe

investigatedeverymonthlyreading.Forsomeapartmentsmonthly

readinghadbeenmissing.However,wediscoveredthatthe

follow-ingmonthwouldincludethetotalconsumptionofbothmonths.In

suchcaseswehadtoreconcilethemissingdatabyestimatingthe

missingmonthreadingvaluetoavoidgaps.

Inthesametime,wecollectedandcalculatedthedataforeach

apartmentmanually,throughadetailedauditoflightingfixtures,to

improveourforecastsofenergyconsumptions.Thefinalsamplefor

analysisfocusedonapartmentblocks.180rentedapartmentswere

eligibleforthisstudywithanaccesstotheirelectricityenergybills

andoccupants.Allblockswerebuiltbetween1985and1990,and

madeofconcretestructuralskeletonandbrickwallswithatypical

3mhighceiling.Allinvestigatedapartmentshadnoinsulation,AC

unitsorelectricheaters(nocoolingorheatingconsumption).All

typesoffanswereincludedintheplugloadsforeachapartment

andapumpisusedcollectivelyforeachbuildingblockwitha

sep-arateelectricmeter.Allinvestigatedapartmentswererentedand

occupiedbyusersbetween1993and2014.Allexamined

apart-mentshadtohaveanelectricitymeteraccessiblefrominsideor

outsidetheapartment andassumed thatlighting retrofitswere

madebytheapartmenttenants.Onlythen,each apartmentwas

examinedthroughawalkthroughvisitwiththeuseofan

inter-viewquestionnairedesignedforthestudy.Respondentscompleted

3questionnairesthatassessedvariablesthatcouldinfluenceenergy

consumption(e.g.,appliances,acclimatizationsystems,fansand

lightappliances).Afterfillinginthequestionnairetodescribethe

householdin1994,2004and2014interviewswereconductedfor

eachhousehold’sresidentstocompleteandvalidateanydetails.

OccupantswereaskedaboutthefuelusedforcookingandDHW

andiftherewasanyheatingorACequipmentusedintheirhomes.

Table2

Benchmarkmodelandenergyefficiencycharacteristics.

Properties Benchmarkcharacteristics 1 Orientation 0◦

2 Shape Rectangular(12mx10m) 3 FloorHeight 3mheight

4 RoofU-value U=1W/m2K

5 WallU-value U=2W/m2K(noradiantbarrier)

6 WWR 35%

7 Windowsystem U=5.8W/m2K,SHGC:0.6–SinglePane

inaluminiumframe,Tv=0.86 8 OperableShading operablewindowwithoutexterior

shading

9 Overhang None

10 Nightinsulation Notconsidered 11 PeopleDensity 0.033people/m2

12 Infiltration: 1.5ACH

13 Internalheatgaina 19W/m2fromlighting,12W/m2from

appliances 14 LightingPowerDensity 10kWh/m2a–100m2

aConstantinternalgainswereobtainedfromannualequipmentandlighting

energyuse,usingconventionalvs.energy-efficientappliances,0.8W/m2

(incan-descent)vs.0.17W/m2(CFL)Installedlightingwattageandidenticalusageprofiles

forthebase-caseandmaximumefficiencyoption.

Lightingfixturestypesofeachapartmentwereinvestigated

includ-ingtheirpowerdensity (inwatt)and intensity(inlux)tohelp

determinethetypicallightinglevelsandon/offperiods.The

walk-throughvisitswereconductedfor180apartmentsonJuly2014and

madeanaccuratecountofeachlightfixturewitheachspaceofthe

apartments.Tasklightingalsowasaccuratelycountedand

docu-mentedforeachroom.Buildingdrawingsandarchitecturalplans

helpedtodeterminetheplannedlightingpowerdensity(LPD)for

eachapartment.

3.2. Baselinecharacterization

Step three focused oncreating a representative baseline by

translatingtheauditandquestionnaireresultsintoacalculated

baselinemodel.Fig.4illustratesabaselineapartmentthat

repre-sentsthe180investigatedapartments.Theapartmentsarelocated

inbuildingblocksandclustersallplannedbyMaadiCompanyfor

DevelopmentandReconstruction andfallbetweenonbothside

ofastreetnamedStreetAlGazaer.For thisstudyweselecteda

benchmarkbasedonarecentresearch[29],todevelopabenchmark

modelfortheEgyptianresidentialbuildingssector.Thebenchmark

wasdevelopedtodescribetheelectricityuseprofilesforlighting,

domestichotwaterandappliancesinrespecttobuildingslayout

andconstruction(seeTable4).AsshowninFig.4,differentlighting

technologiesaretracedanddrawnduringthe1994and2014audits.

Thereferencedwelling’slightingsolutionscomparisonisdescribed

inTables2and3.Inordertodeterminethebaselinewecalculated

Table3

Comparativelightingtype’scharacterizationfor150apartmentsin1994and2014.

LightingType Averageunitsperapartment-100m2 Capacitylumens AveragePowerWatt DailyOperationHours

1994

Incandescent 9.5 n/a 75 7

Fluorescent(120cm) 2.5 n/a 45 5

Fluorescent(60cm) – – – –

CompactFluorescent 0.4 n/a 100 0.1

Halogen 2014 Incandescent 3 960 60 7 Fluorescent(120cm) 1.8 45 11 Fluorescent(60cm) 2 22 5 CompactFluorescent 7 1300 18 3 Halogen 0.6 1400 100 0.1 LED 0.2 8 8

(8)

120 S.Attiaetal./EnergyandBuildings154(2017)113–126

Fig.4.Representationofthereferencecaseofthesimulatedapartmentbefore(left:1993–1998)andafter(right:2009–2014)theinstallationoftheenergyefficientlighting fixtures.

theaverage(meanvalue)electricenergyconsumption for light-ingfrom1993to1998.Thenweestimatedtheaveragemonthly plugloadsbasedonthe1994questionnaire.Wesubtractedthe averagecalculatedelectricconsumptionforthebaselinefromthe averageannualenergyconsumptionprovidedfromtheenergybills. Withthehelpofthequestionnaireresults(listedinTable4)the

averageplug loadsconsumption wasdeterminedand extracted

fromthemonthlyenergyvaluesfromDatasetI.Thisallowedusto

approximatetheinstalledbaselinelightingenergy.The

question-naireincludedanextensivestudyofavailablelampsandluminaires

andilluminancevaluesintheworkingplanes,kitchen,restroom,

livingroomandbedrooms.Forthelamps,thestudied

character-isticswerestart-uptime,thecolorandcolorrendering,theshape

(9)

Table4

Typesofdomesticappliancesandtheiraveragepowerandoperationhours.

Appliance Watt DailyOperatingHours 1994

Exhaustfan – –

Satellitedecoder – – CellPhonecharger – –

Phonecharger 3 3 ElectricIron 1100 0.1 Vacuumcleaner 630 0.1 Fans(2) 100 3 Television 180 5 Washingmachine 600 0.2 Refrigerator 380 24 Kettle – – PC/Laptop(1) 300/− 2 Mixer 127 0.05 Stereo 100 0.1 2014 Exhaustfan 150 3 CableBox 20 7

CellPhonecharger 5 8

Phonecharger 3 24 ElectricIron 1100 0.1 Vacuumcleaner 630 0.1 Fans(6) 100 3 Freezer 450 24 Television 100 6 Washingmachine 550 0.2 Refrigerator 300 24 Kettle 1800 0.1 PC/Laptop(1/2) 300/90 1/3 Mixer 127 0.05 Toaster 750 0.1

loadsofDatasetIIbasedontheauditof2014.Thenwecompared theaveragemonthlykWhconsumptionofdatasetIandII. Con-sumptionchangewastreatedasacontinuousvariable,calculated asdifferencebetweenmeasurements.Theapproximateinstalled baselinelighting energywasdeterminedbased onthemonthly consumptioncomparison.

3.3. Buildingperformancesimulation

Inordertoextendthedatasetanalysisandvalidatethe aver-agelightingpowerdensityasimulationcasestudywasconducted. Eachofthequestionnairesandtheself-reportauditprovided esti-matesofoccupancyratesandactivityschedulesovertheyear1994 and2014.Areferencedwellingwasselectedtovalidatethelighting powerdensityfortheyear1994and2014.Cairoweatherfilewas selectedforthiscasestudy[32].Cairoispartofthemid-latitude

globaldesertzoneanditsclimateisconsideredextremelyhotand

dryaccordingtotheKöppenClassification(GroupB)[33].

Accord-ingtoASHRAEclimateclassificationCairoishothumid(2A).The

selectedbaselinerepresentsoneoftheinvestigatedflatapartments

inSouth-EastCairo(see Section3.2).Table2and Fig.4 listthe

baseline(1994)characteristicsinadditiontomeasuresfor

estimat-inglighting energy.ZEBO andEnergyPlus buildingperformance

simulation (BPS) programs were used to perform the analysis

[34,35].EachreleasedversionofEnergyPlusundergoestwomajor

types of validation tests: analytical tests, according toASHRAE

ResearchProjects865and1052,andcomparativetests,according

toANSI/ASHRAE140[36]andIEASHCTask34/Annex43BESTest

method[37].WithinthecapabilityofEnergyPlus,thebuilding

mod-elsweresetupwithaprioritytoreproducequitein detailthe

geometricalfeaturesofthebuildingandthephysicalphenomena

thatdeterminetheelectricenergyconsumptionofthebuilding.

Thetasksperformedforsimulationincluded:simulationofa

benchmarkapartment,energybreakdownforplugloadsand

light-ing.Thesimulationstartedwithdeterminingtheannualaverage

energyuseexcludingspaceheatingandcoolingtodetermineuser’s

electric consumption patterns and spikes.By this, the research

acquiredastartingpointforcomparingtheelectricenergy

con-sumptionmonthlyprofileswiththecollecteddata.Thebaseline

modelwascalibratedtocomparethemonthlyenergyconsumption

figures in1994 and 2014.Then, themonthlyenergy

consump-tionvalueswerenormalized.Thedetailedmodelingoftheelectric

energyuses allowedus toeffectively generatea monthly

light-ingconsumptionprofileandlightingpowerdensityfortheyear

1994and2014.Typicaldensitiesandschedulesdatacollectedfrom

theaudits were usedtomodel occupancy,lighting, and

equip-ment.Forthe1994baseline,incandescentluminaireswereused

to representstandard residentialinstallations. Typical Egyptian

residentialbuildingoccupancyschedules areusedtodefinethe

operationpatternsfortheelectricallightingsystem.Monthly

light-ingenergyconsumptionwascalibratedtoaveragevaluesextracted

fromDatasetIand II.Thisresultedin estimatedvaluesof

elec-triclightingconsumptionoftheothermonths.Thefollowingstep

wastocreatethe2014proposedmodelwithfluorescentandCFL

luminairestorepresentthechangeinfixtureusageforresidential

buildings.Thesimulationresultswerecalibrateduntilthemore

energyefficientconsumptionmonthlyprofilewasgenerated.

4. Results

Theresultsofenergydataacquisitionindicatethattheaverage

electricconsumptionforDatasetI(1993–1998)was26kWh/m2/a

and24kWh/m2/aDatasetII(2009–2014)(seeFig.5).Theenergy

auditincludedaninventoryofelectricalappliancesasshownin

Table1.Thesaturationratesandpenetrationratesoflighting

fix-tures weredetermined based onthe1994and 2014 auditand

walkthroughof180apartments.Betweenthe1994and2014audits,

majorchangesinthestructureofhouseholdsappearedevensome

families have moved out. All apartment tenants made lighting

retrofits.Oureligibilitycriteriaexcludedfamilieswhowitnessed

asharpchangeinoccupancyrateorpurchasedACunitsor

elec-tricheatersoverthe20yearsperiod.Thisresultedinthedecreased

ofstudyapartmentsfrom180to150.Thesurveyresultsindicate

anaverageoccupancyof3.1,4.4,3.6peopleperapartment

respec-tivelyfortheyear1994,2004and2014,whichwasconsideredas

consistent.Thecharacteristicsoffamiliesaremainlynuclear

fami-lieswhereanadultwouldbeathomeduringdaytime,whileother

familymemberswouldbeatworkoratschool.Bynuclear

fam-ilywemeanafamilygroupconsistingofapairofadultsandtheir

children.

Data generated by theaudit shows that thelighting power

densityandfixturestypesinstalledin1994comparedto2014

var-iedsignificantly.Thedominanttypesoflampsusedin1994were

mainlyincandescentlampswithfluorescenttubes (120cm).On

theotherside,the2014auditresultsindicatethatCFLlampswere

themostdominantlampswhileincandescentunitsstillexistedin

additionaltohalogenlamps.Table3,showsabreakdownof

aver-agelightingfixturestypesfoundintheapartments.Inaverage,an

apartmentwouldhave12.4lampsper100m2ofapartmentin1994

and14.6lampsper100m2ofapartmentin2014.Theincreasewas

mainlyduetotheproliferationoftasklightingsandindividual

light-ingunits.AlsooccupantsindicatedthemainreasontoswitchtoCFL

andflorescentlampsistheincreaseofenergypricesinthelast20

years.Fig.6showsdailyprofilesoflightinguseforatypicalliving

anddiningroomandtypicalbedroombasedonthetimeof

pres-enceofindividualhouseholdsmembersreportedinthesurvey.The

differencebetweentheweekdaysandweekendsinthelivingroom

isduetomale’sabsence.

Inordertodeterminethebaselineweestimatedtheplugload

(10)

elec-122 S.Attiaetal./EnergyandBuildings154(2017)113–126

Fig.5. AverageelectricconsumptionforDatasetI(1993–1998)andDatasetII(2009–2014)includingelectricalappliances.

Fig.6. Profilesoflightinguseforatypicallivinganddiningroomandtypicalbedroom.

tricalapplianceswereincludedinthefieldsurvey.Thesaturation

ratesandpenetrationweredeterminedbasedontheauditfindings.

Theaverageplugloadpowerintensityin1994was9–11W/m2and

in2014was13–15W/m2.Theresultindicatesaseriousincreaseof

residentialplugloadsduetotheincreaseofelectricalappliances

ownershipperhousehold.Table3summarizesonlythosetypes

ofdomesticappliancesthathaveasaturationratehigherthan50%

fromthesurveyedsample.

Afterdeterminingtheaverageplugloadpowerdensitywe

sub-tractedthesevaluesfromtheaverageelectricconsumptionvalues

ofDatasetIandII.Atbaseline,DatasetIwasanalyzedwithrespect

tolightingfixturestypesandmonthlyconsumption.Thesimulation

modelallowedustovalidatethecalculationresultsand

exam-inethemonthlyandannuallyconsumptionprofiles.Theaverage

consumptionforelectriclightingin1994was14kWh/m2/aand

8kWh/m2/ain2014.Fig.7presentstheaveragemonthlyvalues

forlightingconsumptionper100m2aftercalculatingthemean

dif-ferences.Thesimulationresultwasusedtoassessthepresented

profilesinFig.5.Thesimulatedmonthlyelectriclightingprofiles

didnotidenticallymatchthecalculatedvaluesinFig.6.Thereis

a20–30%variationbetweenelectriclightingconsumptioninthe

summerand winterseasons. Thisismainlydue tosolaraccess

(angles)and daylightingautonomyvariationsbetweensummer

andwinter.

5. Discussion

5.1. Summaryofmainfindings

Keyresultsofthedataacquisitionindicatethattheefficiency

oflightingandassociatedfossilfuelandGHGreductionarelower

thanexpected.Installationoffluorescentandcompactfluorescent

lampsledtoonly35–40%reductioninlightingpowerconsumption

between 1994and 2014. Furthercomparisons of annual

light-ingpowerdensityreporttherealmeasuresconsumptionchange

inaveragefrom14kWh/m2to8kWh/m2.Moreimportantly,the

studyproofsthatthequalityoffluorescentballastandlampssold

inEgyptarerespectivelylessenergyefficientthantheminimum

requirementsspecifiedintheEUDirective[8].Basedonthestudy

findings,werecommendqualitycontrolandmarketsupervision

(11)

Fig.7.Comparisonresultsofaverageelectricmonthlylightingenergyconsumptionoftheyears1994and2014.

Wequantifiedtheimprovement oflightingenergyefficiency

inEgyptianmiddle classhouseholdsover thelast 20years.The

increaseof energyefficiency,associated withtheinstallationof

CFLandfluorescentlampswasexpected.Therewasmissingdata

on the real improvements. According to the Energy Efficiency

ImprovementandGreenhouseGasReductionProjectprogramthe

energysavingpotentialofreplacingincandescentlampsin

Egyp-tianhouseholdswasestimatedtoexceed50%[8].However,average

lightingconsumptiondeclinedovertimebyonly35–40%,with

sig-nificantdecreasesbetweenexaminationyears1993–1998(Dataset

I)and2009–2014(DatasetII).Replacingincandescentlampswith

CFLandfluorescentlampswaspositivelyassociatedforall

exam-inedapartmentswithenergysavings.Acrosstheyear2014,electric

energyconsumptionforlightinghassignificantlylower

consump-tionvalues.Thefullsamplehadanaverageenergyconsumption

of 8kWh/m2/a for electric lighting. Over a period of 20 years

allapartment occupantsphased outtheirincandescent lighting

lamps.Theaverageconsumptionforelectriclightingin1994was

14kWh/m2/a.AsshowninTable3,thenumberofCFLsper

house-holdin2014is substantially high(50%).On theotherside,the

2014auditresultsindicatedthatoccupantsstillprefer

incandes-centlighting,since20%oflampsareincandescent.Thisisduetoits

slightlylowercolortemperature(ColorRenderingIndex(CRI))in

livingrooms,guestandstudyareas.Surprisingly,thestudyrevealed

thattheaverageplugloadpowerintensityincreasedby40%

mov-ingfrom12kW/m2/aforDatasetIto16kW/m2/ainDatasetII.The

applianceinventoryconfirmstheincrease(penetrationand

satu-ration)ofappliancesacrossallapartments(seeTable4).

5.2. Strengthsandlimitationsofthestudy

Forthisstudy,wedevelopedamethodologythatcouldbeused

byotherresearchers.On-siteaudits,collectedmonthlybills,

simu-lationandelectricplugloadscalculationenabledustoreportthe

realelectriclightingperformanceof150apartments.Weprovided

accuratedatatoinformtimelydecisionmakers.Thisstudybuilds

onearlierstudiesthathavedocumentedtheenergyconsumption

inresidentialbuildingsinEgypt[29,38,25,39–43].Noneofthese

studies,however,provided detailedlighting energy

characteris-ticsofresidentialapartments.Therefore,thepresentedoutcome

can be very helpful for energy modelers and decision makers

tobetterunderstandthebuildingperformanceanalysisthrough

benchmarkingandcanhelpinestimatingtherealimpactofenergy

efficiency measures in theEgyptian residential building sector.

Thestrengthofthisstudyincludestheuseofcomplete,detailed,

longitudinalmonthlyconsumptiondataover 20-yeartimespan

andstandardizedmeasuresofelectricenergyconsumptionusing

energymeters,includingestimatesofappliancesandlighting

fix-turestypes,power,andprofilesmadewithdataacquisitionand

modelingtechniqueswithknownreliabilityandvalidity.Theaimof

thestudywastoquantifyandtrackthechangesandimprovements

oflightingenergyefficiencyusingrealmeasureddata.Thusinthis

study,wewereexplicitly notinterested inthedaylighting

har-vestingstrategies[44,45].Nonetheless,usingaspecificsampleand

combiningevidencebasedapproachwithsimulationweidentified

theenergysavings accuratelyandcreateda monthly

consump-tionprofile.Ourfindingscontributetoliteratureonenergyefficient

lightingandthequantificationofenergysavingsintheresidential

buildingsector[46],inparticularweconsiderthisresearchresults

beneficialandtransferabletootherMiddleEastandNorthAfrica

(MENA)regioncountriesthroughbodiessuchastheEnergy

effi-ciencyintheconstructionSectorintheMediterranean(MED-ENEC)

[47].Themaintwostrategiesreportedinourauditforreducing

energyuseforelectriclightingweretheCFLandfluorescentlamps.

Wefoundthattheefficiencyoflightingandassociatedfossilfuel

andGHGreductionarelowerthanexpected.Ourfindingsshowed

thattheinstallationoffluorescentandcompactfluorescentlamps

ledtoa35–40%reductioninlightingpowerconsumptionovera

periodof20years.Ourfindingsarenotinlinewithliteraturereview

andresearchthatassumesanexpectedsavingor50–70%ofthe

originallightinginput[8,13].Despitethatthereasonofthis

mis-matchisoutofourstudyscope,weassumethatthemismatchcould

beduetothequalityoffluorescentballastandlampssoldinEgypt.

AccordingtoUNDPProject,onaveragefluorescentlampsand

bal-lastsarerespectively10%and30%lessenergyefficientthanthe

minimumrequirementsspecifiedintheEUDirective[8].For

exam-ple,itisconservativelyassumedthattheCFLslastforanaverageof

4700h(life-spansofupto8000harequitenormalforhigh-quality

CFLs)butforvariousreasonsalowerlifespanisassumedinEgypt

[8].Therefore,itisnecessarytodealwiththeproblemoflamps

imports.Lightingfixturesshouldbeimportedfrom

internation-allyrecognizedcompaniesthatcomplywithEuropeanstandards

andspecificationsafterbeingsubjectedtothoroughtestingand

(12)

124 S.Attiaetal./EnergyandBuildings154(2017)113–126

Despitethesestrengths,thisstudyhadsomelimitations.The

estimationoftheplugloadspowerdensitydoesnotimply

mea-suring.Weusedtheauditstoestimatetheplugloadsandsubtract

theirvaluesfromthemonthlyelectricbillsassumingaconstant

monthlyplugload.Futurestudiescanbenefitfrommeasuringand

monitoringtoolssuchascurrenttransformermeters,shunt(smart

plugs)andmicrometeringloggerstoidentifytheplugloads.

The study was limited due to its self-reported audits and

changesintheapartmentoccupancyratesandintensity,andwe

couldnot completelycontrol formisreporting,which mayhave

resultedin over orunder reportingof lighting efficiency.

Simi-larly,we donot haveanannualauditor monitoringfor the20

yearsperiod.Sotheauditresultsrepresentonlyoneyear

examina-tion(2014)of150apartments.Analysesofconsumptioncouldbe

alsolimitedbyelectricheatingeffectsthatcouldbeoccasionally

happeningdespitenothavinganyheatingdeviceintheselected

apartment’ssample.Itisimportanttomentionthatmanyof

pos-sibleunknownchangeshappenedover thelongstudyperiodof

20years.Thosechangeswerenotmonitoredforthis studyand

couldbeinfluential.Thereforeweconsiderelectricfixtures,

occu-pantbehavior,andlifestylehabitsasindependentvariableswhich

havenotbeenconsideredinthisresearch.

5.3. Implicationsforpracticeandfutureresearch

Insummary,thisstudyprovidesaquantifiedevidenceofenergy

efficientlightingsavingsandpowerdensityintheEgyptian

res-idential sector. Egypt and the EU will enter into a free trade

agreementby2019.TheEgyptiangovernmentplanstodistribute

50millionLEDlampsbefore2017.ThusthecumulativedirectGHG

reduction benefitsenergy-efficient lighting programshad tobe

estimatedinRefs.[48,13].AccordingtoFig.1,theEgyptian

mar-ketispotentiallyreadytoincreasetheannualshareofLEDlamps

upto50millionlampsbefore2019,whentheenergysubsidiesare

expectedtobecomefullylifted.Therefore,lightingenergysavings

fromLEDlampscanbeverysignificantandofhighvalue.

Over-alltheyrepresent13%ofprojectednationalelectricitydemandby

2020and17%by2030[8].Inthefuture,theestimationofenergy

efficiencylightingoverexpectedlifetimeoftheappliancesneedsto

beaccuratelyquantified.Notethattheexpectationisthatsalesof

incandescentwouldbecompletelyphasedoutby2020.Alreadythe

shareofincandescentlampsdeclinedinthesalesof2016andwas

estimatedaround18%(seeFig.1).Therefore,itisvitaltosourceonly

highqualityCFLsandLEDlamps.Asmoreandmoremanufacturers

entertheEgyptianmarket,consumerswillfinditincreasingly

dif-ficulttodifferentiatelow-qualitylampsfromhigh-qualitylamps,

andthereputationofCFLscouldsufferasaresult[48].TheMinistry

ofElectricitystatedthat2.4millionLEDbulbsareinconsistentwith

Egypt’snationalelectricitynetworkspecifications.Thelampswere

importedaspartofatender.ForinstancetheMinistryof

Electric-ityplannedtosupply10millionLEDbulbstothedomesticmarket

[49–52].

Inordertoachieve optimallighting energyefficiencyandto

reachitsfullpotentialofGHGreduction,theMENAregionneedsto

closetheentiregapidentifiedinFig.3anddiscussedearlierin

Sec-tion2.3.Thisrequiresstipulatingnewpoliciesthatenforcequality

controlthroughtestinglabsandmarketsupervision.Thefollowing

policesshouldbeaddressedassoonaspossibleinEgyptandall

MENAregions:

1.Establishnationalorregionallaboratorytoverifycompliance

withstandard IEC62612for self-ballastedledlampsand IEC

60969 for self-ballasted compact fluorescent lamps.Lighting

monitoring,verification andenforcementactivitiesshouldbe

executedbynationalqualitycontrolcenter(s).Thisincludethe

developmentof procurementspecificationsand testing

stan-dardstoensurethatreliable,highqualityandefficientproducts.

2.Providetechnicaltrainingandsupporttomarketcontrol

author-ities and customs with a focus on imported LED lamps and

components.

3.Developnationalbaseline,impactindicators,datacollection

sys-temtoensurereliabilityofsavingsandefficiencyimprovements.

Creatingbaseline typologiesfor dwellings,hotels, officesand

educationalbuildingscanhelptocharacterizethebuildingstock

andguidedecisionmakersontheprioritiesforlightingsavings

potential.

4.Implementationandsupportofgovernmentalandprivatesector

demonstrationprojectsfortargeteduseoflightingcontrolsand

highefficacylampscouldincreasethemarketpenetration.

Besidesthe above recommended policies,future research is

neededtocontinuetrackingandanalyzingtheimpactofusinghigh

qualitylightingfixtures.Thefutureresearchshouldconsiderthe

reboundeffect,andtheirrealsavingpotential.

6. Conclusion

Seriousefforthasbeenmadeinordertominimizetheenergy

consumption of lighting installations in theMENA region.This

efforthasevolved,alongwiththedevelopmentofflorescentlamps,

compactflorescentlampsandmorerecentlyLEDlamps.The

objec-tiveofthispaperwastoquantifytheeffectofimplementingenergy

efficiency policies and the benefitsof actualenergy savings of

energyefficientlightingmeasures.Acasestudyof150apartments

inCairowasusedtomeasureandverifythelightingenergysavings.

Thestudyfindingspresentanovelquantificationoftherealeffectof

replacingincandescentlightbulbswithCFLoveraperiodof20year

periodandidentifytheperformancegap.Themajorresearch

find-ingswereasfollows:

(1)Installation of fluorescent and compact fluorescent lamps

resultedonlyina35–40%reductioninlightingpower

consump-tionbetween1994and2014insteadoftheestimated50–70%

reduction.

(2)Comparisonsofannuallightingpowerdensitybetween1994

and 2014 revealed a consumption increase due to rebound

effect.

(3)Egyptianmiddle-incomehouseholds(withACs)havein

aver-age15lightbulbs.Thebulbs‘energyconsumptionaccountfor

approximately15%ofannualhouseholdelectricitybills.

(4)Variousenergy-savingbehaviorsofthehouseholdoccupants

wereidentified.

(5)ThereisalimitedpenetrationofLEDlampsinEgyptian

house-holds,asnewenergyefficientlightingfixturestypes.

Failing to address the previously mentioned study findings

canjeopardizetheUNobjectives(i.e.,climatechangeandenergy

savings goals) that need to be met by 2020. The introduction

ofhigh-qualityLEDlampsintheMENAregioncansignificantly

attenuatethe lightingenergy consumption that occurs inmost

households.

Acknowledgements

ThisworkwassupportedbytheUNDPproject:Improvingthe

energy efficiencyoflighting and otherbuildingappliances.The

authorssincerely appreciatethecooperationoftheSouthCairo

ElectricityCompany, Maadi District and residentsof the

moni-toredapartments,andtheothercollaboratorsandresearcherswho

(13)

References

[1]IEA,SHCTask50AdvancedLightingSolutionsforRetrofittingBuildings,2013, Retrievedfromhttp://task50.iea-shc.org.(Accessed10May2017).

[2]CAPMAS,StatisticalYearbook,HousingCentralAgencyforPublicMobilization andStatistics,Cairo,2015,p.16,Retrievedfromhttp://www.capmas.gov.eg/ Pages/StaticPages.aspx?pageid=5034.(Accessed10December2016). [3]EEUCPRA,EgyptianElectricUtilityandConsumerProtectionRegulatory

Agency,AnnualReport2013/2014,EEUCPRA,Cairo,2014,Retrievedfrom

http://egyptera.org/ar/elecreport.aspx.(Accessed10December2016). [4]GEF,GEFCountryPortfolioEvaluation:Egypt1991–2015,GEFEvaluation

Office,2015,Retrievedfromhttps://books.google.be/

books?hl=nl&lr=&id=BlWcKd8CKKcC&oi=fnd&pg=PR7&dq=GEF+Country+Portfolio+Evaluation:+Egypt+(1991%E2%80%932008)&ots=Hk99HLa-uR&sig=VZ3dGYiADVNAZdPKF32ddtARYdY.(Accessed10December2016).

[5]EEHC(2014,September10).EgyptianElectricityHoldingCompanytenderto import10millionenergysavingLEDtypeslamps.AmericanChamberOf CommerceinEgypt.Cairo.Retrievedfromhttp://www.amcham.org.eg/ onlineservices/tas/ViewProjectsEmailtwitter.asp?projectid=32675. (Accessed10December2016).

[6]K.Youssef(2015,November16).InterviewwithKameliaYoussefConsultant forLightingComponent,MinistryofElectricityandEnergyUNDP-GEF,Egypt. Retrievedfromhttp://ifpinfo.com/Top-MiddleEast-NewsArticle-6896#. Vl3YMHarS70.(Accessed10March2017).

[7]I.Yassin(2015,September).MarketDevelopmentofCompactFluorescent LampsinEgypt.P30presentedattheTransitiontoEnergy-EfficientLighting intheMiddleEastandNorthAfrica,Cairo.Retrievedfromhttp://www. enlighten-initiative.org/NewsEvents/RegionalWorkshops/

TheTransitiontoEnergy-EfficientLightingintheMiddleEastandNorthAfrica. aspx.(Accessed10April2017).

[8]UNDP,ImprovingtheEnergyEfficiencyofLightingandOtherBuilding Appliances,2011,Retrievedfromhttp://www.undp.org/content/dam/undp/ documents/projects/EGY/00060162

Final%20Draft%20-%20Project%20Document.pdf.(Accessed10December2016).

[9]I.AbdelGelil,RegionalReportonEfficientLightingintheMiddleEastand NorthAfrica,UNEP-GEF,Cairo,20111–52,Retrievedfromhttp://www. enlighten-initiative.org/portals/0/documents/country-support/regional-workshops/Regional%20Report%20MENA%20Final.pdf.(Accessed10 December2016).

[10]M.A.Al-Batanony,G.M.Abdel-Rasul,M.A.Abu-Salem,M.M.Al-Dalatony,H.K. Allam,Occupationalexposuretomercuryamongworkersinafluorescent lampfactory,Quisnaindustrialzone,Egypt,Int.J.Occup.Environ.Med.4 (July)(2013)219–249.

[11]T.Ueno,F.Sano,O.Saeki,K.Tsuji,Effectivenessofanenergy-consumption informationsystemonenergysavingsinresidentialhousesbasedon monitoreddata,Appl.Energy83(2)(2006)166–183.

[12]M.P.Deru,N.Blair,P.A.Torcellini,ProceduretoMeasureIndoorLighting EnergyPerformance,NationalRenewableEnergyLaboratory,2005,Retrieved fromhttp://www.nrel.gov/docs/fy06osti/38602.pdf.(Accessed10December 2016).

[13]M.Dubois,AAke.Blomsterberg,Energysavingpotentialandstrategiesfor electriclightinginfutureNorthEuropean,lowenergyofficebuildings:a literaturereview,EnergyBuild.43(10)(2011)2572–2582.

[14]N.Khan,N.Abas,Comparativestudyofenergysavinglightsources,Renew. Sustain.EnergyRev.15(1)(2011)296–309.

[15]R.Saidur,Energyconsumption,energysavings,andemissionanalysisin Malaysianofficebuildings,EnergyPolicy37(10)(2009)4104–4113.

[16]P.Bertoldi,B.Atanasiu,Residentiallightingconsumptionandsavingpotential intheenlargedEU,Proceedingsof4thInternationalConferenceonEnergy EfficiencyinDomesticAppliancesandLighting(EEDAL’06)(2006)21–23, Retrievedfromhttp://www.enerlin.enea.it/doconline/documents/Bertoldi. pdf.(Accessed10December2016).

[17]M.A.ElMohimen,G.Hanna,M.Krarti,Analysisofdaylightingbenefitsfor officebuildingsinEgypt,J.Sol.EnergyEng.127(3)(2005)366–370.

[18]IES,TM-24-13,AnOptionalMethodforAdjustingtheRecommended IlluminanceforVisuallyDemandingTasksWithinIESIlluminanceCategories PThroughYBasedonLightSourceSpectrumStandard,Illuminating EngineeringSociety,2013,ISBN:9780879952754.

[19]DOE,HistoryoftheLightBulb,2013,Retrievedfrom:http://energy.gov/ articles/history-light-bulb.(Accessed13November2016).

[20]M.Stokes,M.Rylatt,K.Lomas,Asimplemodelofdomesticlightingdemand, EnergyBuild.36(2)(2004)103–116.

[21]J.Deltour,P.D’herdt,A.Deneyer,M.Bodart,Impactoflightingrenovationon energyconsumptionandvisualcomfort:acasestudyinsocialdwellings, LightEng.19(3)(2011)18.

[22]J.VandenAkker,EnergyEfficiencyImprovementandGreenhouseGas ReductionProject(FINALEVALUATION),UNEP-GEF,Cairo,2010,pp.1–52, Retrievedfromhttp://www.thegef.org/gef/sites/thegef.org/files/gefprjdocs/ GEFProjectDocuments/MandE/TER/FY2010/UNDP/267/267452TECCM Egypt.pdf.(Accessed10May2017).

[23]HBRC,2005.Egyptiancodeforenergyefficiencyimprovementinresidential buildings,ECP306.Cairo.

[24]P.Bampou,GreenbuildingsforEgypt:acallforanintegratedpolicy,Int.J. Sustain.Energy(2016)1–16.

[25]E.Khalil,BaselineStudyforEgypt.EnergyEfficiencyintheConstruction SectorinMediterranean,EnergyResearchCenterFacultyofEngineering, CairoUniversity,Cairo,2006,Retrievedfromhttp://s3.amazonaws.com/

zanranstorage/www.med-enec.com/ContentPages/17439177.pdf.(Accessed 10December2016).

[26]S.Attia,A.DeHerde,etal.,Impactandpotentialofcommunityscale low-energyretrofit:casestudyinCairo,InternationalSASBEConference (2009),Retrievedfromhttp://www.researchgate.net/profile/AndreHerde/ publication/228656160Impactandpotentialofcommunityscale low-energyretrofitcasestudyinCairo/links/5465e2d90cf25b85d17e46f5.pdf. (Accessed10December2016).

[27]UNDP,DevelopinganEfficientLightingStrategy,UNEP-GEF,2012,p.155, Retrievedfromhttp://learning.enlighten-initiative.org/ebook/en/mobile/ index.html#p=2.(Accessed10December2016).

[28]EEHC,EnergyEfficiencyProjectforLighting&HomeAppliances,Energy EfficiencyImprovementandGreenhouseGasReduction(EEIGGR)Project, 2012,Retrievedfromhttp://www.eeiggr.com/index.html.(Accessed10 December2016).

[29]S.Attia,A.Evrard,E.Gratia,Developmentofbenchmarkmodelsforthe Egyptianresidentialbuildingssector,Appl.Energy94(2012)270–284.

[30]M.M.Nassief,Evaluationofelectricityconsumptionofaresidentialflatin Egypt,Am.J.Electr.PowerEnergySyst.3(2)(2014)37–44.

[31]C.Banhardt,Developmentofaprototypeforsolarpoweredairconditioning forapartmentsinElGouna,in:PresentedattheCommunityForumElGouna 2030,TUBerlinCampusElGouna,2015.

[32]ASHRAE,CairoInternationalWeatherforEnergyCalculations,ASHRAE,IWEC, Atlanta,2009,Retrievedfromhttp://apps1.eere.energy.gov/buildings/ energyplus/cfm/weatherdata3.cfm/region=1africawmoregion1/ country=EGY/cname=Egypt.(Accessed10December2016).

[33]W.Köppen,R.Geiger,W.Borchardt,K.Wegener,A.Wagner,K.Knoch,etal., Handbuchderklimatologie,vol.3,GebrüderBorntraeger,Berlin,Germany, 1930,Retrievedfromhttps://www.climond.org/Public/Data/Publications/ Koeppen1936GeogSysKlim.pdf.(Accessed10December2016).

[34]S.Attia,E.Gratia,A.DeHerde,J.L.Hensen,Simulation-baseddecisionsupport toolforearlystagesofzero-energybuildingdesign,EnergyBuild.49(2012) 2–15.

[35]USDepartmentofEnergy,EnergyPlusEnergySimulationSoftware,2015, Retrievedfromhttp://app1.eere.energy.gov/buildings/energyplus/ energyplusabout.Cfm.(Accessed10December2016).

[36]ANSI/ASHRAE,Standardmethodoftestfortheevaluationofbuildingenergy analysiscomputerprograms,americansocietyofheating,Refrigerating Air-Cond.Eng.(2011)272.

[37]R.Judkoff,J.Neymark,InternationalEnergyAgencyBuildingEnergy SimulationTest(BESTEST)andDiagnosticMethod,NationalRenewable EnergyLab,Golden,CO(US),1995,Retrievedfromhttp://www.osti.gov/ scitech/biblio/90674.(Accessed10May2017).

[38]G.Hanna,N.M.Guirguis,H.S.Osman,M.A.Hussein,Energyanalysisfornew residentialbuildingsinEgypt,in:InternationalFutureVisionandChallenges forUrbanDevelopmentConference,Cairo,2004.

[39]D.E.Khalil,A.A.Medhat,E.E.Khalil,Energymodelingofmodernresidencein Egypt,in:ASME2012InternationalMechanicalEngineeringCongressand Exposition,AmericanSocietyofMechanicalEngineers,2012,pp.107–116, Retrievedfromhttp://proceedings.asmedigitalcollection.asme.org/ proceeding.aspx?articleid=1751841.(Accessed10December2016). [40]E.Kazakevicius,A.Gadgil,D.Vorsatz,ResidentiallightinginLithuania,Energy

Policy27(10)(1999)603–611.

[41]B.F.Mills,J.Schleich,Whydon’thouseholdsseethelight?Explainingthe diffusionofcompactfluorescentlamps,Resour.EnergyEcon.32(3)(2010) 363–378.

[42]E.Vine,D.Fielding,AnevaluationofresidentialCFLhours-of-use

methodologiesandestimates:recommendationsforevaluatorsandprogram managers,EnergyBuild.38(12)(2006)1388–1394.

[43]Q.Zhang,ResidentialenergyconsumptioninChinaanditscomparisonwith Japan,Canada,andUSA,EnergyBuild.36(12)(2004)1217–1225.

[44]M.A.Hegazy,S.Attia,Aninvestigationintotheinfluenceofexternalwalls reflectivityontheindoordaylightavailabilityindesertclimates,Conference Proceedings:BuildingSimulationandOptimization2014(2014),Retrieved fromhttp://orbi.ulg.ac.be/handle/2268/169283.(Accessed10March2017). [45]M.Hegazy,S.Attia,J.Moro,Parametricanalysisfordaylightautonomyand energyconsumptioninhotclimate,13thConferenceofInternationalBuilding PerformanceSimulationAssociation(2013)2232–2240,Retrievedfrom

http://www.ibpsa.org/proceedings/BS2013/p2261.pdf.(Accessed10 December2016).

[46]H.Sallami,AnalysisofEnergyUseIntensityinResidentialBuildingsinJordan (MasterThesis),GermanJordanianUniversity,Amman,2015.

[47]J.Koch,S.Gouda,M.Seyppel,K.Wiesegart,F.Visser,EnergyEfficientLighting GuidelinesandRecommendationsfortheMENARegion,MED-ENEC,Cairo, 2014,p.32,Retrievedfromhttp://www.med-enec.eu/sites/default/files/user files/downloads/Lighting%20Brochure%20Final.pdf.(Accessed10December 2016).

[48]E.Martinot,N.Borg,Energy-efficientlightingprograms:experienceand lessonsfromeightcountries,EnergyPolicy26(14)(1998)1071–1081.

[49]Alwatan(2014,October21).WakilAlKahrabaa:AlLambaatAl-muwafira tuhaddidbikarissa.Cairo.Retrievedfromhttp://www.elwatannews.com/ news/details/580850.(Accessed10December2016).

[50]Wellmax(2014,October13).EgyptImports2.4MillionLEDBulbsDon’t ConformWithElectricityNetwork.Retrievedfromhttp://wellmaxgroup.com/ egypt-imports-2-4-million-led-bulbs-dont-conform-with-electricity-network/.(Accessed10May2017).

(14)

126 S.Attiaetal./EnergyandBuildings154(2017)113–126

[51]M.ElSewedy(2014,July5)inArabic.ItihadAlSina’at:70millionlambahajm alsuksanawiyannmu’azamhamukhaliflilmuwasafat.Retrievedfromhttp:// www.almasryalyoum.com/news/details/441916.(Accessed10April2017). [52]M.H.Hilal,LEDLampsAccountfor80%oftheMarketSales,(inArabic),Almal

News,06Mach,2016,Retrievedfromhttp://www.almalnews.com/Pages/ StoryDetails.aspx?ID=325067.(Accessed10May2017).

[53]UNDP,GlobalLightingMap,UNEP-GEF,2016,Retrievedfromhttp://map. enlighten-initiative.org/.(Accessed24August2017).

Figure

Fig. 1. Estimated sales of lamps in the Egyptian market between 2010 and 2016 (El Sewedy [51], Yassin [7]).
Fig. 2. Phase out of incandescent light bulbs worldwide in 2016 adapted from (UNDP [53]) and overview of lamp type’s family tree.
Fig. 3. Comparison of lighting technology adaption in MENA and OCED countries.
Fig. 4. Representation of the reference case of the simulated apartment before (left: 1993–1998) and after (right: 2009–2014) the installation of the energy efficient lighting fixtures.
+3

Références

Documents relatifs

The SAKey approach is composed of three main steps: (1) the preprocessing steps that allow avoiding useless computations (2) the discovery of maximal (n+1)-non keys (see Algorithm

For comparison, a decay curve obtained by exciting the room with a filtered m- sequence signal and using the Bruel & Kjaer analog octave-band filter is also depicted in

These results suggest that even small differences in the expression level of BRCA2, as those associated with the different haplotypes that we identified, can have an impact on the

Finally, we give an example of fine-grained analysis using a choice from the game “Papers, Please,” which breaks down options and their outcomes to illustrate exactly how the

previous literature on coalition formation is that, motivated by political settings, we assume that the majority (or supermajority) of the members of the society can impose their

Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées?. Si vous n’arrivez pas

In contrast to short-term TGF-β exposed HCC cells, long-term TGF-β stimulation upregulated CXCL5 expression in collaboration with Axl in HLF-T cells, whereas it failed to

Unfor- tunately, continuous-wave CL alone does not reveal the respective variations of charge carrier non-radiative and radiative recom- bination lifetimes at the origin of the