• Aucun résultat trouvé

2020 roadmap on two-dimensional materials for energy storage and conversion

N/A
N/A
Protected

Academic year: 2021

Partager "2020 roadmap on two-dimensional materials for energy storage and conversion"

Copied!
13
0
0

Texte intégral

(1)

OATAO is an open access repository that collects the work of Toulouse

researchers and makes it freely available over the web where possible

Any correspondence concerning this service should be sent

to the repository administrator:

tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:

http://oatao.univ-toulouse.fr/27622

To cite this version:

Xu, Baolin and Qi, Shihan and Jin, Mengmeng [et al.]. 2020 roadmap on

two-dimensional materials for energy storage and conversion. (2019) Chinese

Chemical Letters, 30 (12). 2053-2064. ISSN 1001-8417

(2)

2020 roadmap on two-dimensional materials for energy storage

and conversion

Baolin Xua, Shihan Qia, Mengmeng Jinb, Xiaoyi Caic, Linfei Laib,c,**, Zhouting Sund, Xiaogang Hand ,*, Zifeng Line,*, Hui Shaof,g,***, Peng Pengh, Zhonghua Xiangh,*, Johan E. ten ElshofÏ·*, Rou Tanj, Chen Liuj, Zhaoxi Zhang\ Xiaochuan Duani·*, Jianmin Maa,k,****

asd!ool of Physics and Electronics, Hunan University, Otangsha 410082, China

b Key Laboratory of Flexible Elearonics & lnstitute of Advanœd Materials (1AM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, China

cSchool of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore dState Key Lab of Elearirol Insu lation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China e College of Materials Science and Engineering. Sichuan University, Otengdu 610065, China

f Université Paul Sabatier, Laboratoire OR/MAT UMR CNRS 5085, Toulouse 31062, Franœ g Réseau sur le Stockage Elearodlimique de /'Energie (RS2E), CNRS 3459, Amiens, Fmnœ

h State Key Laboratory of Organic-lnorganic C omposites, Beijing University of Otemical Ted!nology, Beijing 100029, Otina 1 University of Twente, AE Enschede 7500, the Netherlands

J Pen-Tung Sah lnstitute of Micro-Nana Scienœ and Technology, Xiamen University, Xiamen 361005, China

k Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou 450002, China

A RTI CLE I NFO

Keywords: Graphene Black phosphorus

MXenes

Covalent organic frameworks Oxides Chalcogenides Metal-air batteries Metal-sulfur batteries Metal-ion batteries Electrochemical capacitors • Corresponding authors. AB STR ACT

Energy storage and conversion have attained significant interest owing to its important applications that

reduce COi emission through employing green energy. Sorne promising technologies are included metal air batteries, metal sulfur batteries, metal ion batteries, electrochemical capacitors, etc. Here, metal

elements are involved with lithium, sodium, and magnesium For these devices, electrode materials are

of importance to obtain high performance. Two dimensional (2D) materials are a large kind of layered

structured materials with promising future as energy storage materials, which include graphene, black

phosporus, MXenes, covalent organic frameworks ( COFs ), 2D oxides, 2D chalcogenides, and others. Great

progress has been achieved to go ahead for 2D materials in energy storage and conversion. More

researchers willjoin in this research field. Under the background, it has motivated us to contribute with a

roadmap on 'two dimensional materials for energy storage and conversion.

© 2019 Chinese Chemical Society and Institute ofMateria Medica, Chinese Academy ofMedical Sciences.

1. Graphene and graphene-composites for energy storage applications

•• Corresponding author at Key Laboratory of Flexible Electronics & lnstitute of Advanced Materials (1AM}, Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM}, Nanjing Tech University, Nanjing 2 10009, China.

Mengmeng Jin, Xiaoyi Cai, Linfei Lai**

1.1. Status

••• Corresponding author at: Université Paul Sabatier, Laboratoire CIRJMAT UMR CNRS 5085, Toulouse 31062, France.

•••• Corresponding author at: School of Pbysics and Electronics, Hunan University, Changsha 410082, China.

E-mai l addresses: iamlflai@njtech.edu.cn (L. Lai} xiaogang.han@xjtu.edu.cn

(X Han}, linzifeng@scu.edu.cn (Z. Lin}, shao@chimie-ups-tlse.fr (H. Shao },

xiangzh@mail.buct.edu.cn (Z. Xiang}, j.e.tenelshof@utwente.nl O .E. ten Elshof),

xcduan@xmu.edu.cn (X. Duan}, nanoelechem@hnu.edu.cn

u.

Ma).

Graphene is a one atom thick two dimensional sheet corn

posed of sp

2

bonded carbon atoms that are densely packed in a

honeycomb crystal lattice. The 2D planar structure of single

layer graphene ensures high utilization of carbon atoms for the

electron transfer, high surface area, and tlexibility. Graphene and

https: / /doi.org/ 10.1016/j.cclet.2019.10.028

(3)

graphene based composites have been demonstrated to have

enhancedperformanceinvariousenergystorageandconversion

systems (Fig. 1), such as Li/Na ion batteries, supercapacitors,

electrocatalysis,Li Sbatteries.

1.2.Currentandfuturechallenges

1.2.1.Li/Na ionbatteries

Asexcellent2Dcarbonmaterials,thehybridizationofgraphene

withelectroactivematerialsforbothcathodeandanodeofLi/Na

ionbatterieshavebeenvastlyreported,andsignificantlyimproved

capacity,rateperformanceandcyclabilityhavebeenachieved[1].

Theultrathingraphenecanformastableconductingnetworkwith

low percolation threshold and enhanced the electrochemical

performanceofelectrodewitheventraceamountandisregarded

asapromisingconductiveadditiveforbothcathodeandanodein

Li ionbatteries.Forexample,0.2at%graphenewith1%superP(SP)

wasreportedtohavebetterelectrodeconductivitywithmicrom

eter sizedLiCoO2than3wt%ofSP[2].Grapheneasanodehasa

theoreticalcapacityoftwicethatofgraphite.However,mostofthe

capacityofgraphenemaybecontributedbytheadsorptionofLi+

on edges, defects, and pores, together with the fast surface

reactionsongraphene,which maynot bebeneficialfor battery

applicationsincetheycanleadtoalargeirreversiblecapacityloss

initially.All graphene basedelectrodeshavehighcapacity,high

rate,andlongcyclelife,however,thecapacitylossintheinitial

cycleis commonlyover50%,makingthemimpracticalin Li ion

batteryfullcells.The2Dfeatureofgraphenemakesitanexcellent

candidateas a protectivecoating layerof Alfoil torestrictthe

electrolytecorrosion during high rate cycling. The coating also

enhances the adhesion of electroactive materials with current

collector and assists in electron transportation. The excellent

mechanicalpropertiesofgraphenemakeitapplicabletoprepare

free standingelectrodeseitherwithorwithoutcompositingwith

otherelectroactivematerials.

1.2.2.Supercapacitors

Supercapacitorsareahighlypromisingclassofenergystorage

devices due to their high power density and long life cycle.

Supercapacitorscanbebroadlyclassifiedintotwotypesbasedon

thedifferentmechanismsofenergystorage:electricdoublelayer

capacitors(EDLCs)andpseudocapacitors.Thespecificcapacitance

ofEDLCsisdeterminedbysurfacearea,porestructureandpore

sizedistribution ofcarbonaceous materials.Graphenestructure

modulationbyKOHactivationtogeneratemicroporesorin plane

poreopeningofgraphenebytemplate directedetchingtocreate

holey graphene with pore size from a few to hundreds of

nanometers are highly desirable for not only supercapacitors

but also batteries and electrocatalysis. As the energy storage

mechanismofpseudocapacitorsreliesonthefastandreversible

Faradaicredoxreactionsintheinterfacebetweenelectrolyteand

electrode, grapheneis usually combined withpseudocapacitive

materials,suchas transitionmetaloxides/sulphides/hydroxides,

conductingpolymers,etc.Comparedwithothertypesofcarbon,

suchasactivatedcarbonnanoparticles,rGOandGOfabricatedvia

wetchemicalmethodshavethehighaccessiblesurfaceareaand

variety of surface functional groups for efficient loading of

pseudocapacitive materials. The graphene composites based

supercapacitive materials generally show excellent capacitance

whichincludestheredoxchargeprovidedbypseudocapacitancein

additiontotheEDLCchargeprovidedbyhighsurfacearearGO.The

surface functional groups of graphene contribute capacitance

valueundercharge accumulation,therationalsurfacemodified

graphenecanchargeanddischargefastandresultinasignificant

increaseinpseudocapacitance.

1.2.3.Electrocatalysis

Typical energy conversion devices, i.e., metal air batteries

and fuel cell rely on the efficiency of oxygen reduction (ORR)

and evolution reaction (OER), while electrolysis involves

hydrogenevolutionand OER.Holeygraphenewithin planpore

(4)

size in meso/macro pore range could further facilitate mass

diffusion of reactants. Graphene based materials can induce

favorablecatalyst supportinteractionandactivityenhancements

forpreciousmetalcatalysts nanoparticles,thereby,leadingtoa

reduced loading mass, thus saving cost. Graphene with heter

oatomsdopingorcompositingwithothernanostructuredcarbon

arealsoeffectivestrategiestoachieveexcellentcatalyticperfor

mance. As planar ultrathin 2D carbon materials with tunable

surfacechemistryandhighconductivity,italsoaffordsastrong

backbonetoearth abundantmetalbasednanoparticlestomini

mize the agglomerations of these nonprecious metal catalyst

and enhance the stability [3]. Free standing graphene and

graphene composites as catalysts, gas diffusion, and current

collector integrated air electrodes are promising for energy

conversion devices. The pore volume density, pore diameter,

and thenumber of defectsin the graphenenanoplateletshave

critical effects on the electrochemical performance of these

devices.Forexample,althoughZn airbatteriesandLi O2batteries

havedifferentreactionmechanismstowardOER,thebi/trimodal

porous graphene are reported to effectively accommodate

intermediate products and facilitate the electrolyte and ions

diffusion. Graphene show superior performance not only in

fundamental electrocatalysis measurement but also in some

energyconversiondevicesdue totherationalizedstructureand

composition. N doped graphene has a slightly lower kinetic

activityin fast forced convectiveelectrolyte but a much larger

rate capability(nearly 1.5 timesof powerdensity)inquiescent

electrolytethanthat ofcommercial20%Pt/CcatalystforZn air

batteries[4].

1.2.4.Li Sbatteries

Li S batteries are promising alternative for next generation

energy storage system due to the preferred high theoretical

capacities of Li (3861mAh/g) and sulfur (1675mAh/g) [5].

Heteroatoms doped graphene or compositing with selected

transition metals/carbon nanomaterials may lead to a strong

bindingstrengthwithpolysulfidewhichcanbetterrestricttheloss

ofsulfurduringcyclingandensureshighsulfurloading.Graphene

has been applied as a sulfur wrapping substrate to restrict

polysulfideshuttling. Graphenethin layercoating eitheronthe

membrane or cathode side efficiently barrier the diffusion of

polysulfides.

1.2.5.Solarcells

Graphenehasshowngreatpotentialintransparentelectrodes

forsolarcells.Ultrathin andflexiblesolarcells canbeachieved

withgraphene’sgoodconductivity,transparency,andmechanical

strength.Currentresearchmainlyfocusesonfunctionalizationand

doping to improve the efficiency of graphene containing solar

cells.

1.3.Advancesinscienceandtechnologytomeetchallenges

Among the mass production of graphene in mechanical

exfoliationmethods includingballmilling,ultrasonication,fluid

dynamics,supercriticalfluids,etc.,supercriticalfluidsmethodhas

shown advantages in terms of high yield and environmental

friendliness.However,howtoimprovetheyieldofmono/fewlayer

grapheneandenhanceexfoliationefficiencyremainsahottopic

[6,7]. Theprelithiationofgraphene basedLielectrodestooffset

theirlow initialcycleefficiencyhavebeenexplored,yetnotbeen

developedforindustrialproduction.Athigherconcentrationsover

5 10mg/mL,thechemicallyreducedgrapheneslurryturnsviscous

for processing, and its high porosity makes the electroactive

materialseasily detachfrom thecurrent collectorunless more

insulatingbinder isapplied.Therestackingofgrapheneleadsto

lowcross planediffusivityofLiorNaionsstericeffectresultin

increasedpolarizationathighcharge/dischargeratesfornanosized

electrodematerials.Structuremodulationbyetchingtogenerate

in planeholes, orusingunconventional dryingprocess,suchas

spraydrying,freezedryingareeffectivetorestricttherestacking.

Thelowdensityandporousstructureofgraphenecouldlowerthe

volumetricpowerandenergydensitiesofenergystoragedevices,

theinterfacialmodulationofgrapheneandelectroactivematerials

need to be explored. The residual of O containing functional

groups ofgrapheneand theiradsorbedwatermayleadtohigh

leakage current and gas evolution for EDLC type nonaquoues

supercapacitors [8]. Recent research has developed plenty of

graphene basedhigh performancecatalystbutstillfailtoreplace

the noble metal based catalysts. Therefore, rational control of

synthesisconditioniscriticaltoachievenotonlyreasonablehigh

capacitancevaluebutalsoultralongdurationcyclelife.Moreover,

most of the OERand ORR electrocatalysts function only under

alkaline conditions [9], graphene based catalyst for all pH

electrocatalysts are highly desirable. The catalytic mechanisms

for some of the catalysts are well known, but the synergistic

mechanismbetweencatalystsandgraphenesubstratearestillnot

fully understandable. Despite the excellentbarrier effect of 2D

graphene,thelowdensityandhighsurfaceareaofgraphenelimit

thearealloadingofsulfurandbringchallengestotheelectrolyte

control.Itisalsoworthtonotethatwhenprocessedintoelectrode

films via various methods, graphene layers tend to stack and

aggregate inhibiting electrolyte access. The packing density of

grapheneelectrodepreparedinconventionalwetcastingproce

dureislow,andnewprocessingtechnology,suchasspraydrying,

in situ sintering, vacuum filtration. The residual O containing

functionalgroupsonthelong durationcyclabilityofbatteriesneed

toberevisitedastheundefinedfunctionalgroupscouldaffectthe

agingproperties.Therefore,adjustmentofgrapheneporestructure

and surface chemistry to construct a fast ion and electron

conductingnetworkifofhighsignificance.

1.4.Concludingremarksandprospects

Graphenehasthepotentialtogreatlyenhancemanyofcurrent

energyapplications.However,thecurrentlyavailablegraphenecan

possess variousproperties,suchasporosity,purityandamount

and typeof dopants,whichneedstobeclearly investigatedfor

eachapplication.Manyofgraphene’sproblemsintheapplication

come from their porosity and low density. Development of

methods toimprovegrapheneelectrode’s densityandcolumbic

efficiencyonthefirstcyclewillgreatlyimprovetheapplicationof

grapheneinenergydevices.

2.Blackphosphorousforenergystorage

ZhoutingSun,XiaogangHan*

2.1.Status

A 2D material black phosphorous (BP) is one of the most

promisingmaterialforenergystoragearea:(1)Itsintrinsicbad

gap(0.34eV),reasonabledensity(2.69g/cm3)andhightheoreti

cal capacity (2596mAh/g for lithium ion batteries) are also

advantageous for achieving high energy density and power

density [10]. (2)Its largelateral size andultra thinproperties

provide an ultra high specific surface area.Combined with its

excellent electronic conductivity (102 S/m), the content of

conductiveagentintheelectrodecouldbedecreased.Environ

mentalfriendliness and theabundance ofphosphorus are also

importantreasonsforitbeinganimportantcandidatematerial

(5)

2.2.Currentandfuturechallenges

BP is considered anexcellent active materialin lithium ion

batteries,sodiumionbatteries,magnesiumionbatteriesandsuper

capacitors(Fig.2).AlthoughBPhasattractedgreatattentioninthe

fieldof energy storage,it still hasmanychallengesin practical

applications.

TheBPusedinthecurrentenergystoragefieldispeelofffrom

bulk BP. Conventional preparation methods include "top down

methods" (mechanical cleavage, liquid exfoliation, etc.) and

"bottom up methods" (e.g., chemical vapor deposition (CVD)

andwet chemistry).Thesemethodsaregenerallyexpensiveand

timeconsuming. Thisproduction challengepartiallyoffsetsthe

superiority of black phosphorus performance. In addition,

phosphorene,anatomic thicknessBP,degradesunderair,which

preventsitsuseinenergystoragedevices.

BPcanreactwiththreelithiumatomstoformaLi3Pcompound,

correspondingtoaveryhightheoreticalspecificcapacity (2596

mAh/g).AlthoughBPisanimportantcandidateforanodematerials

in lithium ion batteries, it still has several shortcomings. For

example,layered BPwillre stack due tovander Waalsforces,

which will result in additional electrolyte consumption. And,

volumeexpansionfromamorphousLi3.3PtocrystallineLi3Pduring

thedischargingprocessleadstopulverizationoftheanode.The

lossofelectricalcontactcausedbyelectrodecrackingandthelow

electron conductivity of Li3P all make the reversibility of the

discharge process worse, further resulting in low Coulombic

efficiencyandcapacityretentionofthefirstcycle[11].

Sodiumionswithalargerionicradius(0.106nm)havedifferent

embeddingbehaviorthanlithiumions(0.076nm).BPhasalarger

interlayerchannelsize(3.08Åvs.1.86Åofgraphite),whichmeans

thatsodiumismoreeasilystoredbetweenthe2DBPlayers.In

addition,the2DBPexhibitsextremelyhighcapacityandfastion

diffussionchannelsduring sodiumalloying. However,therapid

declineincapacitycausedbythelargevolumechange(300%)

duringchargingand dischargingstill hinders theapplicationof

blackphosphorusinsodiumionbatteries.

The current applicationof blackphosphorus incapacitors is

limitedbycapacitiveperformance.Thespecificsurfaceareaand

poresizedistributionstillsignificantlyaffecttheperformanceof

theelectrodematerial.Inaddition,blackphosphorusisalsousedin

magnesiumionbatteriesandpotassiumionbatteries.

2.3.Advancesinscienceandtechnologytomeetchallenges

Highmaterialcostsandlimitedproductioncapacitypreventthe

applicationofblackphosphorus.BPthatissimpletoprepareand

scalable is urgently needed. Recently, a technique of applying

pressure to synthesize BP at a normal temperature has been

reportedforuseinanopticaldevice[12].However,theanisotropic

volume expansion of 2D BPduring the reactionrequires other

conductivetwo dimensional materials(suchas redoxgraphene

GO)forbuffering.Liuetal.developedasimpleandscalablemethod

for synthesizing BP/GO composites by pressurizing at room

temperature[13]. Ata currentdensity of1A/g, thecapacityof

thecompositestabilizedat1250mAh/gafter500deepcycles.

Enhancing the stability of the electrode structure is an

important meanstosolve thevolume changeand thecapacity

attenuationcausedbytheelectricalcontactloss.Thisstrategyis

usually achieved by couplingconductive carbon (carbon black,

carbonnanotubes,graphene,etc.)withBPtoformaphosphorus

carbonbond.Sunetal.proposeastrategyforformingstrongP C

bondsbetweenBPandgraphene,whichisachievedbyHEMMinan

argon atmosphere of 1.2MPa [14]. The P C bond effectively

decreasesthevolumechangeduringlithiationanddelithiationand

increasesthecoulombicefficiencyofthecycle.

Whenappliedtoacapacitor,2DBPisstilllimitedbyitslower

capacitance.Duetothelargespecificsurfacearea,there stacking

of 2D BP is inevitable, and its electronic conductivity is also

impaired due to the absorption of impurities and defects. The

constructionof3DBPcaneffectivelyavoidthere stackingof2DBP

and promote theeffective diffusionof electrolyte. Atthe same

time,closecontactbetweenthe2DBPlayerscanprovideafastand

continuous electron transport path. Wu et al. proposed a

heterostructuredBP/CNTs hybrid material.The CNTsembedded

in the BP layer can promote interlayer electron conduction,

reducethestacking of BPnanosheets,and enhancemechanical

stability[15].

The mechanical flexibility of phosphorene and graphene

compositespowers wearable electronics[16]. Thehighpacking

densityisduetotheclosecontactofphosphorenewithgraphene,

buttheBPinphosphorene graphenecompositesiseasilyoxidized.

Therefore,atpresent,therearefewreportsonphosphoreandBP

basedstrategiesasanode.

The interlayer distanceof black phosphorus (5.4Å)is larger

than thatof graphite(3.4Å),meaningthat it iseasier toinsert

larger ions between them, so the feasibility of BP applied to

magnesiumionbatteriesandpotassiumionbatteriesisalsowidely

reported. BP hasbeenproven tohave a capacity over graphite

materialsforuseinpotassiumionbatteries.Sultanaetal.proposed

a potassiumion batteryanodematerialthat encapsulatesblack

phosphorus in a carbon based material and measured a high

capacityof600mAh/g[17].BasedontheBPalloyformedbythe

expectedalloyingmechanism,thetheoreticalcapacityofBPcanbe

ashighas843mAh/g.Moresimulationresultshaveconfirmedthat

BP can be used as an electrode material for magnesium ion

batteries,whichcanstoremagnesiumatomsinMg2P.Thesingle

layerofphosphorenemaintainsitsstructuralstabilityintheform

ofMg0.5P[18].

2.4.Concludingremarksandprospects

With its intrinsic superior performance, BP is one of the

promisingmaterialsinthefieldofenergystorage.Theinterfacial

interactionbetweenBPandothermaterialsisanimportantfactor

Fig.2.2DBPusedforelectrochemicalenergystorage.Copiedwithpermission[10].

(6)

inimproving theelectrical performanceof batteriesand super

capacitors. But at present, BP still faces many challenges.

ImpuritiesanddefectsintroducedduringBPpreparationadversely

affectelectrochemicalproperties.Inaddition,theelectrochemical

propertiesof2DBParehighlydependentonthenumberoflayers,

sothemanufactureof2DBPwithadjustablelayercountisvery

important. The current complex and expensive manufacturing

processisalsoanimportantfactorhinderingBP'sexpansionand

furtherapplication.Therefore,competitiveprocessingtechnology

shouldbedevelopedtoimproveproductquality,reduceproduc

tioncosts,andpromoteBP'sapplicationinenergystorage.Inthe

field of energy storage, most of the research focuses on the

preparationandcharacterizationofelectrodematerials,andthere

isstillinsufficientresearchonthemechanismofactionofblack

phosphorusto improvechemical properties. Fullystudying the

mechanismanddevelopingthefullpotentialofblackphosphorus

isatoppriority.

Blackphosphorus is a very attractivenew two dimensional

material, but it still facesmany challenges. A large number of

theoretical calculations and experimental studies have been

reported,hopingtomakeevengreaterbreakthroughsinthefuture.

2.5.Acknowledgment

Thisworkis supportedby KeyResearchProgramofShaanxi

Province(No.2017ZDXM GY 035).

3. MXenematerialsforelectrochemicalenergystorage

ZifengLin,HuiShao***

3.1.Status

2Dtransitionmetalcarbides,carbonitrides,andnitrides,known

asMXenes,areproducedbyselectiveremovalofaatomlayersfrom

MAX phaseprecursorsusing aqueousfluoride containing acidic

solutions astheetchants.MAXphases areternarycarbidesand

nitrides,withageneralformulaofMn+1AXn(n=1 3),whereMisa

transition metal (such as Sc, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo), A

representselementsfromthegroup13and14oftheperiodictable

andXiscarbonand/ornitrogen.ThemetallicM Abondsofthe

MAXphasescanbebreakbytheetchant,resultinginmultilayered

Mn+1XnTxmaterials,and Txrepresentssurfacefunctional groups

(suchashydroxyl,oxygenandfluorine)thatareobtainedfromthe

etchingprocess.Afterward,multilayeredMXenescanbedelami

nated into single flakes via intercalation of organic molecules

and/or metal ions, followed with mechanical vibration or

sonication inwater. Since 2011,Gogotsi etal. reportedthefirst

MXene material Ti3C2Txthat was synthesizedby removingAl

atomsfromTi3AlC2MAXphaseinconcentratedHF(Fig.3),todate,

morethan20differentMXenematerialsaresuccessfullyprepared,

anddozensofmoreMXeneshavebeentheoreticallypredicted[19].

MXenescanhaveatleastthreedifferentformulas:M2X,M3X2

andM4X3,whereMisanearlytransitionmetalandXiscarbon

and/ornitrogen.Theycanbemadeinthreedifferentforms:mono

Melements(forexample,Ti2CandNb4C3);asolidsolutionofat

least two different M elements (for example, (Ti,V)3C2 and

(Cr,V)3C2);orordereddouble Melements,inwhichonetransition

metaloccupiestheperimeterlayers,andanotherfillsthecentralM

layers(forexample,Mo2TiC2andMo2Ti2C3,inwhichtheouterM

layersareMoandthecentralMlayersareTi).Solidsolutionsonthe

Xsiteproducecarbonitrides.NA,notavailable[19].

Withthemeritsofmetallicconductivity,uniquetwo dimen

sional structure and rich chemistry, MXenes have attracted

significant attention as electrode materials of rechargeable

batteriesandelectrochemicalcapacitors.Thecalculatedtheoreti

calcapacities ofLi,Na,KandCaionsbatteriesbasiconvarious

oxygenterminatedMXenenanosheetsare447.8,351.8,191.8and

319.8mAh/g, respectively [20]. Experimentally, MXene film

electrodes typically deliver capacities less than 200mAh/g for

(7)

Li+ storageand even less for Na+ and othermetal ion storage.

MXenecomposite or surface functionalized electrodeis able to

enhancetheelectrochemicalperformance greatly. Ontheother

hand,MXenesexhibitoutstandingcapacitiveorpseudocapacitive

performance,especiallyinaqueouselectrolytes.Highgravimetric

capacitance up to 350F/g as well as the high volumetric

capacitanceof 1500F/cm3 can be obtainedfrom a Ti

3C2Txfilm

electrodein3mol/LH2SO4electrolyte;theredoxpeaksidentified

inFig.4aindicatesapseudocapacitivecontributionthathasbeen

wellconfirmedbyX rayabsorptionanalysis[21].

3.2.Currentandfuturechallenges

TopushforwardtheapplicationofMXenesinenergystorage,

severalchallengesneedtobeaddressed.Alargenumberofnovel

MXene compositions with interesting properties have been

theoreticallypredicted,andmoreexperimentaleffortsshouldbe

takentoremovethegaps.Anotherconcernisthatthehazardous

aqueousfluoride containingacidicsolutions,suchashydrofluoric

acidorlithiumfluoridemixedinhydrochloricacid,arethemost

commonusedetchantstoprepare MXenes.Asafeandefficient

route for MXene synthesis is important to further practical

applications.Inaddition,thestabilityofMXenesremainsanother

challenge.MXenessufferfromeasyoxidation,thusbringdifficul

tiestothelong termreservation.Ithasbeendemonstratedthatthe

oxidation of MXene flakes starts from the edges, and the

manufacturing procedure can affect the stability. Restacking is

oneofthemainchallengesnotonlyexistinMXenesbutalsoother

2Dmaterialswhenfilteredasfilmelectrodes,whichwillimpede

electrolytemigration andlimitpowerperformanceasshownin

Fig.4b[22].Onepossibleapproachtopreventtherestackingissue

istoincorporatepolymerswithpolarfunctionalgroupswithinthe

interlayers. Although MXene electrodes demonstrated a high

capacitanceinaqueouselectrolytes,performancesinnon aqueous

systemsareinadequate.Itiscrucial toincreaseMXenescapaci

tanceinnon aqueouselectrolytessincenon aqueoussystemscan

offeralargervoltagewindow(>2.5V),thusleadtohighenergy

density. Besides, in the battery applications of MXenes, the

irreversiblecapacityoftheinitialcycleshouldbeminimizedfrom

thepracticalpointofview.

3.3.Advancesinscienceandtechnologytomeetchallenges

LotsofeffortsarededicatedtothesynthesisofnovelMAXphase

precursorsandMXenecompositionsinthelastfewyears.Ti4N3Tx

MXenewaspreparedbyheatingTi4AlN4inamoltenfluoridesalt,

makingitaninterestingHF freeapproachtoprepareMXenes[23].

Very recently, a new series of Zn based MAX phases (Ti3ZnC2,

Ti2ZnC,Ti2ZnN,and V2ZnC)weresynthesizedbya replacement

reaction[24].ThenaLewisacidicmoltensaltwasusedtoextract

Znatom of theas preparedMAX phases,resulting inthe first

reportedCl terminatedMXenes.Ithasbeenconfirmedthatsurface

terminationsplayacrucialroleinenergystorageapplications[25].

SomerecentstudieshaveindicatedthatClfunctionalizedgroups

canenhancetheelectrochemicalbehavior[24].

Thearchitecturaldesignoftheelectrodeisaneffectivemethod

to address the restacking issue. Xia et al. reported a vertical

alignmentTi3C2Txelectrode(Fig.4c),whichexhibitsanoutstand

ingthickness independentrateperformanceinaqueouselectro

lyte[22].Over200F/gisretainedatahighscanrateof2000mV/s

with electrode thickness even up to 200

m

m. Moreover, 3D

macroporousMXene film (Fig.4d) werefabricated to enhance

theiontransport.Byusingthismacroporousdesign,Ti3C2Tx,V2CTx,

and Mo2CTxelectrode deliver high rate electrochemical perfor

manceandlongcyclingstabilityinNa ionstorage[26].

Correctly coupling organic electrolytes with electrodes can

furtherpush forward theelectrochemical performance in non

aqueoussystems[27].Therecentreportprovedsolventisthekey

factorincontrollingthechargestoragemechanismintheTi3C2Tx

electrode.AspresentedinFigs.4eandf,thefulldesolvationofLi+

inpropylenecarbonatesolventleadstomuchbetterelectrochem

icalperformancethaninothersolventswithlessdesolvation.

Fig.4.(a)Cyclicvoltammetryprofilesofper-intercalatedTi3C2Txfilmin3mol/LH2SO4atscanratesfrom2mV/sto200mV/s.Copiedwithpermission[21].Copyright2017, NaturePublishingGroup.(b,c)SchematicillustrationofiontransportinTi3C2TxMXenefilms.(b)Iontransportinhorizontallystackedand(c)verticallyalignedTi3C2TxMXene

films.Thebluelinesindicateiontransportpathways.Copiedwithpermission[22].Copyright2018,NaturePublishingGroup.(d)SEMimageofmacroporoustemplated

Ti3C2Txelectrodecross-section.Scalebars:5mm.Insetsshowsschematicallytheioniccurrentpathwayinelectrodes.Copiedwithpermission[21].Copyright2017,Nature PublishingGroup.(e)CVcurvesofmacroporousTi3C2Txelectrodewith1mol/LLiT-FSIinDMSO,ACNandPCorganicelectrolytesand(f)schematicofasupercapacitorusing2D MXeneasanegativeelectrodewithsolvatedordesolvatedstatues.TheOCVs(markedbyarrows)are 0.13V(black), 0.32V(blue)and 0.12V(red)versusAgforDMSO,ACN andPC-basedelectrolytes,respectively.Copiedwithpermission[27].Copyright2019,NaturePublishingGroup.

(8)

3.4.Concludingremarksandprospects

MXenes with advantages of metallic conductivity and 2D

structure are emerging as excellent electrode materials for

batteriesandelectrochemicalcapacitors.Breakthroughsinmate

rialssynthesis, electrode structure design, and a better under

standingofchargestoragemechanismhavegreatlyimprovedthe

electrochemical performance of MXene electrodes. Despite the

remained challenges, it can be provisioned that MXenes will

becomecompetitiveelectrodematerialsfromthepracticalpointof

viewandwilldevelopfastinenergystorageapplications.

3.5.Acknowledgments

Z.LinissupportedbytheFundamentalResearchFundsforthe

CentralUniversities(No.YJ201886).H.Shaowassupportedbya

grantfromtheChinaScholarshipCouncil.

4.2Dcovalentorganicframeworksforenergyconversionand

storage

PengPeng,ZhonghuaXiang*

4.1.Status

SinceYaghiandco workersdiscoveredthetopologicalframe

worksin2005[28],adiversityof2Dcovalentorganicframeworks

(COFs) have emerged towards versatile applications. With

preciselycontrollable capacitiessuchaswell defined structures

androbust tailoringheteroatoms[29],2D COFshavepresented

superior potentials for energy storage and conversion devices.

Through hightemperature treatment, COFs are widely used to

prepare hetero doped catalysts for oxygen reduction reaction

(ORR), oxygenevolution reaction(OER)etc.,which arevital for

clean and renewable energy technologies such as metal air

batteries and fuel cells [30]. To date, numerous COFs derived

highlyefficient energy electrocatalystshave been reported. For

example,benefitedfromwell defined2Dstructuresandcomplex

ation of non noble metals (such as Fe, Co, Mn), carbon based

catalystsaredevelopedwithoutstandingcatalyticperformancefor

oxygenreductioninbothalkalineandacidmedia[31].

4.2.Currentandfuturechallenges

Eventherapiddevelopmentof2DCOFshaspredictedabright

future,challengesofCOFstowardsenergyapplicationsstillexist.

Toaddressthepracticalapplicationsof2DCOFsinenergydevices,

researchersinthefieldshouldfocusonthesechallengesoutlined

in (Fig.5).Firstly, theinsufficient stability orlimited durability

remainsagrandchallenge.FornotonlyCOFs derivedcatalysts,but

also most carbon based catalysts, significant performance loss

(50%)occuroverafewhundredsofhoursinthepresenceofO2at

more practical potentials (>0.6V) [32]. In both aqueous acidic

electrolyteandsolid stateelectrolyte basedMEAs,carbonstruc

tureswouldbecorrodedunderthechemicalattackofH2O2and

radicalsthroughtheFentonreaction,whichcouldalsodrivethe

demetallation of the active sites. Besides, collapse of carbon

structures generates additional barriers for mass transfer and

charge transport, leading to limited performance in practical

scenarios.

Anotherissuethatprecludesthewideapplicationof2DCOFsis

their poor processing ability. The inherent cross linked frame

worksorreticularnetworksresultintoinsolublenatureandpoor

three phaseinterfaces,incurringdifficultiesforthepreparationof

electrodesandunstablefactorssuchasstripingoff.Asinsoluble

powders,COFs cannot bereliably interfacedonto electrodes or

incorporatedintodevices.Forthefabricationof electrodeswith

insolubleCOFs,extracomponents(bindersorconductiveagents)

arealwaysnecessary,whichalsohinderthechargetransportand

masstransfer.

Last but not the least, the pyrolysis free construction of

functional2DCOFswithintrinsiccatalyticpropertyisimperative.

Inordertopromotethepracticallyusefulperformancelevelsof2D

COFstowardsenergydevices,itisveryimportanttoilluminatethe

catalystdegradationmechanismsandelucidatetherolesofeach

components.Nevertheless,pyrolysistreatmentisalwaysneeded

toimprovetheconductivityandstabilityofCOFs basedprecursors,

which unfortunately bring unpredictable and undetectable

changestothestructures.Onthecontrary,pyrolysis freederived

2D COFs would provide valuable information for the optimal

structures and components in a predictive manner. Thus, the

developmentofpyrolysis freesynthesiswouldbeinstructivefor

translating the experimental activity and stability into device

performance.

4.3.Advancesinscienceandtechnology

Recentyearshavewitnessednumerouseffortsinexplorationof

2DCOFsforfunctionalapplicationsandseveralapproacheshave

been made tomeet those challenges. In terms of the stability,

researchershavefoundthatFentonreactionsinvolvingmanganese

ionsarenearlynegligibleandthusMn basedcatalystsmayprovide

anewopportunitytoachieveenhancedstability[33].Meanwhile,

increasingtheratioofhighlygraphitizedcarbonalsobenefitsthe

durability byenhancingcorrosion resistance in electrochemical

oxidativeenvironments.However,highergraphitizationmakesit

hardertoaccommodateactivesitessuchastransitionmetalandN

dopants.Itremainsachallengetofindthebalancebetweenactivity

andstability.

Interms oftheprocessability,evennumerousattemptshave

beenutilizedtoprepareprocessableCOFnanosheetsorfilms,only

limitedachievementshavebeenobtained.Thematuresynthesisof

solution processable COFs still remains a grand challenge. For

example, physical approaches, including ultrasonication, ball

milling,andmechanicaldelaminationusuallybreaktheCOFsinto

small pieces with decreasing properties. Chemical approaches

suchasinterfacialpolymerizationallowstheformationoffilm like

2DCOFs,butitistoodifficulttoscaleup.Recentlydevelopedionic

Fig.5.Challengesfor2DCOFsintheareaofenergydevices:insufficientstability, poorprocessingabilityandunpredictablestructurescausedbypyrolysis.

(9)

COFswhich couldbeexfoliatedintonanosheetsuponmixingin

special solvent still demonstrate rather limited solubility with

smallsizesoftheexfoliatednanosheets.Althoughissuesstillexist,

thesedevelopmentshavepavedpathwaysforrealizingprocess

able 2D COFs. It should be noted that researchers have also

developedmethodstowithstandtheinter layer

p p

stackingor

theinter layer interactionsof2D COFlayersviaencodinghigh

densityelectrostaticrepulsionintotheskeletonorsimplein situ

chargeexfoliationpathway.Bythismeans,highlysoluble2DCOFs

andstabletruesolutionsof2DCOFshavebeenreported[34].

In terms of thedevelopment of COFs based electrocatalysts

withoutpyrolysis,consideringthecombinationofactivesitesand

conductive backbone, several possible approaches have been

explored.Onewayis todesign and synthesizeCOFscombining

fully conjugatedstructureswithactivecenters.Researchershave

reporteda2DCOFswithdelocalizedconnectionsandactiveknots,

which demonstrate outstanding performance for ORR catalysis

[35].Anotherpromisingwayisformingthehybridelectrocatalysts

byself assemblingpristine COFswithmatrixthat containlarge

conjugatedsystemandhighchargemobility.Forexample,ithas

beenreportedthataftercombiningwithreducedgrapheneoxide

(rGO),electricalconductivityofthehybridizedmaterialssignifi

cantlyincreasebymore thansevenordersofmagnitude, along

with the enhanced ORR activities [36]. Very recently, by

constructing the intermolecular conjugatedstructures, carbon

basedcatalystswithnitrogen coordinatedsingleatomshavealso

beenachievedviapyrolysis freepathway(Fig.6),demonstrating

superioractivities and long termstabilities when assembled in

zinc air batteries [37]. As one can expect, thedevelopment of

pyrolysis free approach not only paves a new and promising

avenuetoatomicallyoptimizethecatalysts,but alsoprovides a

platformfortheaccuratetheoreticalpredictioncalculations.Based

onthewell definedstructuresof2DCOFs,thistechniquemakesit

possibletodevelop moreexcellent catalysts forvarious energy

conversionandstoragedevicesbesidesoxygenreduction.

4.4.Concludingremarksandprospects

2D COFs represent a newsynthetic era of the catalysts for

energy applications. Their unique features, such as flexible

moleculardesign and diverse buildingblocks provide 2D COFs

with promising potentials in further applications for energy

storageandconversiondevices.Therapiddevelopmentinthisarea

has, therefore, attracted increasing interest from scientific

researchers. The 2D COFs combining with the pyrolysis free

techniquesallowresearcherstomodulateactivesitesandcontrol

thedensityofactivestiesatthemolecularlevel,offeringpiratical

possibilitiestostudytheoptimalstructures,degradationmecha

nisms and kinetics of energy electrocatalysis. 2D COFs with

enhancedstabilityandprocessabilityholdgreatpromiseforthe

bettersolution for energy and environmental issues. Although

currently2D COFstowards energyapplicationsarein itsinfant

stages,thenewadvancesinscienceandtechnologyencouragethat

itwillgrowintoarichandbroadareaofgreatimportance.

4.5.Acknowledgments

WeacknowledgethefinancialsupportfromtheNaturalScience

FoundationofChina(No.21676020);theBeijingNaturalScience

Foundation(No.17L20060);theYoungEliteScientistsSponsorship

ProgrambyCAST(No.2017QNRC001);theTalentCultivationand

Open Project (No. OIC 201801007) of State Key Laboratory of

Organic Inorganic Composites; the Distinguished Scientist Pro

gramatBUCT(No.buctylkxj02);Double First ClassConstruction

Projects(Nos.XK180301,XK1804 02)andthe111ProjectofChina

(No.B14004).

5. 2Dmetaloxidenanosheet-basedelectrodesforcharge

storagedevices

JohanE.tenElshof*

Fig.6. Constructionofnitrogen-coordinatedsingleatomcatalystthroughpyrolysis-freepath.(a)Atomicallyrivetthewell-designedCOFnetworkscontainingFe-N-Ccenters ontographenematrixviaintermolecularvanderWallsinteractions;(b)as-obtainedcatalystswithplentifulFeatoms(brightdots)anchoredonthegraphenematrix.Copied

withpermission[37].Copyright2019,AmericanAssociationfortheAdvancementofScience.

Fig.7.Threeexamples ofoxidenanosheets. Copiedwithpermission[38–40].

(10)

5.1.Status

The high specific surface areas and well defined surface

terminationsoftwo dimensionaloxideandhydroxidenanosheets,

combined with their semiconducting nature, makes these

materialsattractiveasbuildingblocksforconstructionofultrathin

porous electrode architectures for future generation faradaic

supercapacitorsandlithium ionbatteries.Techniquestochemi

callyexfoliatelayeredmetaloxidesandlayereddoublehydroxides

(LDH)intocolloidalunilamellar,single crystallineplateletswith

thicknessesinthe0.5 3nmnanometer rangeandlateraldimen

sionsof50nm 50

m

mhavebeenoptimizedandgeneralizedover

thepastyears.Examplesofwell knownnanosheetcompositions

areTi1-xO2,Ca2Nb3O10,MnO2,V2O5,TaWO6,Ni(OH)2andCo(OH)2

[38 40],asshowninFig.7.Dozensofothercompositionshavealso

beenrealized,dependingonlyontheavailabilityoflayeredparent

compoundsthatcanbechemicallyexfoliated.

Owingtotheir2Dnature,nanosheetstendtorestackduring

electrodeformation,therebyreducingtheireffectivesurfacearea

and generating slit shaped porosity. The in plane orientational

disorderofelectrodesmadefromrestacked2Dcrystallitescanhelp

tosuppress phase transformations during charging/discharging

andthusimprovecyclelife.Theionstoragecapacityisdetermined

byboth thespecificsurface areaand thepore sizeswithin the

electrodes.Inprinciple,largeporesizesfacilitatefastlithiumion

transportation and yield high rate capacities. Pillaring, i.e.,

incorporationofadditionalentitiessuchasnanoparticles,nano

wiresandnanoplateletsbetweenrestackednanosheets,hasbeen

shownavalidapproachtopreventorslowdowntheirstructural

collapseandtorealizestructurallystableelectrodearchitectures

withdischargecapacitiesevenupto860mAh/g[41].

Mostofthemetaloxidenanosheetcompositionsmadesofarby

exfoliationmethodsarebasedonoxidescontainingTi,Taand/or

Nb.Theyaretypicallywidebandgapsemiconductorsexhibiting

poorconductivity[38]. Pillaringphasesarethereforepreferably

highlyconductive,e.g.,Agnanoparticles,(reduced)grapheneoxide

(rGO) or carbon nanotubes. Synergistic phenomena have been

observed in some of these nanocomposites, e.g., spontaneous

electroncharge transfer fromgrapheneintoTi1-xO2 nanosheets

resultinginoverallconductivityenhancement,orfavorablecharge

separation atthe interface betweentwo suchphases,i.e., a Li+

accepting phase and an electron accepting phase, thereby

providingadditionallithiumstoragesites[42].

Faradaic pseudocapacitors based on 2D transition metal

hydroxides utilize (surface) redoxreactions to chemicallybind

andstoreions.Onlysurfaceatomsplayaroleinpseudo capacitive

processes.ThebestcandidatematerialisRuO2(700F/g),butsince

itisrareandexpensive,researchhasbeenfocusingonmorereadily

available cheaperalternativessuchas2DNi(OH)2,Co(OH)2 and

MnO2.Specificcapacitancesupto1100 1300F/g(at1A/g)have

beenreported[38].

Ithasalsobeendemonstratedthatthefractionofelectrochem

icallyactiveatoms inmonolayer andmultilayer nanosheetthin

film electrodes is higher than in precipitated nanosheet based

powders. Use of nanosheets as thin film electrodes in small

(flexible)devicesisthereforeoneofthepotentiallymostpromising

areasofapplicationofthese2Dmaterials.Multilayerarchitectures

ofoxidenanosheetsandoptionallyothermaterialscanberealized

withanunsurpasseddegreeofcontrolovertheassemblyprocess

using layer by layer (LbL) Langmuir Blodgett deposition [43].

Heterostructures made by sandwiching metal oxide or LDH

derivednanosheetswithe.g.,GO,rGOandCoOOHnanowireshave

shown reasonable togoodperformances when testedas Li ion

batteryorpseudocapacitorelectrodes.LbLassemblyisalsouseful

forthinfilmdevicefabricationonsoftsubstrates,inparticularfor

devices consisting of a limited number of layers. Interestingly,

flexiblepaper likenanocompositesconsistingoflithiatedTi1-xO2

nanosheetsandcarbon,withacapacityof150mAh/ghavealso

beendemonstrated[44],asshowninFigs.8aandb.

5.2.Currentandfuturechallenges

Oneofthemaincurrentchallengesconcernsthesynthesisof

nanosheetsonlargescale.Becauseofthemicron sizedradiusof

gyrationofnanosheets,colloidalnanosheetdispersionsarevery

dilute,typicallyintherangeof1 10g/L.Largereactionvolumesare

thusrequiredtoproducerelativelysmallamountsof2Dmaterial.

Under more concentrated conditions, non ideal separation of

sheetsandrestackedclusterswilldominatethestructureofthe

colloidaldispersions.

Otherchallengesincludegettingmorecontroloverthesizeof

the intergallery spaces, and further increasing the structural

stabilityoftheelectrodes.Inmanycases,restackedhostmaterials

oftensufferfromslowkineticsresultingfromtheincompatibility

betweenthesizeoftheintercalatingionsandthelimitedlattice

spaceavailableintheintergalleryspace.Moreover,theelectrode

architectures that are essentially composed of loose stacks of

isolated sheets, appear to degrade relatively quickly as a

consequence of repeated electrochemical exchange reactions.

Thestructuralcoherencythereforeneedstobeimproved,ideally

withoutoveralllossofelectrodeflexibility.

Whilehybridizationofoxidenanosheetsandmoreconductive

second phases as a route to getting materials with improved

electricalconductivityhasbeenstudiedinsomedepth,theuseof

controlleddefectengineeringstrategies,e.g.,aliovalentdopingin

2Doxidelattices,asatooltoimprovethelateralconductivityof

nanosheets as well as their surface redox properties, and

consequently alsotheir performance, has been explored much

less[46].Asystematicunderstandingoftheinfluenceoftransition

metal ion doping into 2D nanosheets on their conductivity,

electrontransfer(redox)propertiesandcapacitytoelectrochemi

callystoreLi+,willhelptoboosttheperformanceofnanosheet

basedelectrodesinbatteriesandsupercapacitors.

5.3.Advancesinscienceandtechnologytomeetchallenges

The prospect of massive scale production of nanosheets as

would be required for their commercial application in larger

energy storage systems seems unlikely on the short and

intermediate term.Their mostlikelyapplication is therefore in

theareaof(flexible)thinfilmbatteriesandsupercapacitorswith

Fig.8.(a)Opticalimageofaself-standinglithiumtitanatenanosheetelectrode

underbending.(b)Cross-sectionofthesamefilm.Copiedwithpermission[44].

Copyright 2013, WILEY-VCH. (c) Optical images of MnO2 nanosheet-based

microsupercapacitoronpolyimidesubstrateunderdifferentbendingangles.The

(11)

centimeter to micrometer sized lateral dimensions. Industrial

scalefabricationofthinfilmstoragedevicesrequiresmuchfaster

electrodeassemblymethodsthantheLangmuir Blodgettmethod.

Takingtheabove mentionedchallengesinmind,researchintothe

useof inkjetprintingof oxidenanosheetsand 2Dmaterialsin

general is currently ongoing and shows good prospects [47].

Devicesofsomewhatlargedimensionscouldbemadeviascreen

printing. Given the ability to mass produce layered thin film

devices via screen printing, the application of this production

methodseemslikely.

An advantageof employingnanosheets incombination with

wet chemicalprocessingmethodsisthatnohightemperaturesare

requiredintheelectrodeformationprocess.Theprecursorinkcan

thuscontainorganicandothersensitivecomponentsthatremain

in the as dried films and can serve a specific purpose. More

importantly,italsoimpliesthattemperature sensitivesubstrates

suchasflexibleplasticsubstratescanbealsousedasaplatformfor

deviceconstructdeviceson(Fig.8c)[45].Paralleltothefurther

development of nanosheet based electrodes, there is a more

general needfor saferelectrolytesin next generation batteries.

Replacementof liquid and gel electrolytesby solid electrolytes

wouldbeamajorstepforward.Thedevelopment ofnovel thin

solidelectrolytes,includingoptimizationoftheelectrolyte nano

sheetelectrodeinterface,isthereforeneeded.

5.4.Concludingremarksandprospects

Oxide nanosheetsarepromisingcandidatematerialsfor thin

film charge storage device electrodes. Various scalable low

temperaturedepositiontechniquesforthinandthickfilmdevice

fabricationlike inkjet and screenprinting are available. While

showingreasonableperformance intermsofenergyand power

density,thenanosheet basedelectrodearchitecturesneedfurther

structural improvements to extend their cycling lifetime, and

improvedcontrolovertheporesizesinthematerialinorderto

improveion diffusionand storagecapacity. Hybridization with

conductivesecondphasestoimproveconductivityhasshowntobe

successful, in particular a systematic exploration of aliovalent

dopingstrategies canhelptoenhance both theconductivityin

nanosheets,andimprovetheirelectrontransferandsurfaceredox

properties.

6.Verticallyalignednanosheetsaselectrodematerialsfor

high-performancerechargeablebatteries

RouTan,ChenLiu,ZhaoxiZhang,XiaochuanDuan*

6.1.Status

The developmentof electrode materialswith well designed

architecturespromiseshigh performancerechargeablebatteries.

Inpursuitofbetterelectrodekineticsandmasstransportation,3D

nanostructuredelectrodescomposedbyverticallyalignednano

sheets(VANS) havebeen receivingincreasingresearchinterest.

Combined witha highlyconductive carbon basedsubstrate(or

metallic thin film), VANS electrodes areendowed with several

merits,suchaslargesurfacearea,superiorelectroncapability,and

excellent mechanical strength. In this roadmap, various VANS

electrodeswithdifferentcomposition thatcanbeused asfree

standing electrodes for the high performance rechargeable

batteries are highlighted. Recent advances regarding the novel

synthetic method for VANS electrodes and the speculative

mechanism for the enhanced electrochemical properties are

reviewed. In addition, the emerging challenges and some

perspectivesontheprogressofVANSelectrodesforrechargeable

batteriesareincluded.

6.2.Currentandfuturechallenges

ThestudyofVANSoriginatedfromtheriseoftheapplicationof

2Delectrodematerialsinthefieldofenergystorage.Compared

withthebulkelectrodematerials,theultra thinstructureof2D

electrode materials thoroughly facilitates the electrochemical

reaction,whilebeingabletominimizeoreliminatethevolume

changeoftheelectrodematerialsinthecharge/dischargecycles.

Therefore,2Delectrodematerialscangenerallyexhibithighactual

specific capacity and structural stability. Previous studies have

provided that 2D electrode materials tend tohave a reversible

capacityexceedingthetheoreticalcapacityduetotheirsmallsizes

andlargenumberofexposedsurfaces.Inaddition,theultra thin

structure of 2D electrode materialsfacilitatethe rapidand full

immersion of theelectrolyte,which caneffectively shortenthe

electrontransport andion diffusiondistance,therebyachieving

fastchargeanddischargeforrechargeablebatteries[48].

Itiswell knownthattherearesizeeffectandstrongvander

Waals force in the nanomaterials, making the nanostructured

electrodesextremelyeasytoformirreversiblestackedaggregates

[22].Inparticular,theultra highspecificsurfaceareaandstrong

interlayerforcesof2Dnanomaterialspromotetheoccurrenceof

agglomeration,whichgreatlyreducesthestructuraladvantagesof

2D nanomaterials. This stacked structure is detrimental to the

rapid transfer of electrons and ions when used as electrode

materialsforenergystorage.AsshowninFig.9a,theclosestacking

ofactivematerialsformsaparallelelectrodestructure,resultingin

poor wettability of the electrolyte, which in turn leads to an

increase in ion transport distance [49]. However, if the 2D

nanomaterials canbedesigned a verticallyaligned structure as

showninFig.9b,thereisa largeamountofporesbetweenthe

open ended nanosheets. This vertical structure expands the

contactareabetweentheactivematerialsandelectrolyte,which

isbeneficialtoachieve rapidextractionandembeddingofions.

Therefore, controlling the vertical orientation assembly of 2D

materialsisanimportantmeanstopromotetheirelectrochemical

energystorageapplications.

Fig.9.Schematicdepictionofthestackedgeometry(a)andtheverticallyaligned

structure(b).Copiedwithpermission[49].Copyright2011,AmericanChemical

(12)

6.3.Advancesinscienceandtechnologytomeetchallenges

Carbon basedmaterialsareusuallyadoptedasthesubstratefor

theconfigurationofVANS.Inthepasttwodecades,carbon based

materialsandtheirhybridnanocompositeshavebeenthefocusof

considerableeffortsinenergyconversionandstoragebecauseof

their unique properties, featured by unique porous structures,

superiorelectricalproperties,fastionandelectrontransportation,

etc. In pursuit of optimal performance, various well designed

architectures have been developed for carbon based materials,

includingsomeinterestingsurfacemultilevelstructures(branched

nanorodsor nanosheets) and inner multilevel structures (core/

shell or multichannel nanostructures). However, traditional

preparation processes for carbon based materialsor electrodes

often lead to random restacking of loading materials, which

reducesactive sites and limits ion transport. This shortcoming

keepsthemawayfromtheoriginalintentionofdesign,oftenfails

to achieve the desired performances. To this end, vertical

alignment of 2D nanostructures on carbon based substrate

guaranteeseffectiveactivesitesanddirectionaliontransportthat

canleadtosuperiorperformances.Nevertheless,owingtothebad

compatibilityofcarbon basedmaterialswithothersubstancesand

strict synthesis conditions for 2D nanostructures, only limited

successinvolvingcomplexsynthesis methodhasbeenreported

heretofore.Asaproofofconcept,Xieetal.proposedahierarchical

electrode structure consisting of MoS2 nanosheets vertically

aligned on carbon paper, as shown in Fig.10 [50]. This VANS

structureisconducivetosufficientelectrode/electrolyteinterac

tionandfastelectrontransmission,enablinghighinitialCoulombic

efficiency,highratecapability,andlongcyclelifeforsodium ion

batteries.

Despite VANS electrodes demonstrate exhilarating perfor

manceforenergystoragedevices, theirprecisesynthesisisstill

a huge challenge. In most cases, the VANS electrodes were

prepared by chemical vapor deposition with relatively high

technicalrequirements(i.e.,PECVD)ormultistepprocesses[51].

InordertopromotetheapplicationofVANSelectrodesforhigh

performance rechargeablebatteries, more convenient synthesis

methodswillbethefocusofresearchinthisfield.Encouragingly,

someconcisesyntheticmethodsprovedtobeabletosynthesize

well designedVANSstructures,presentingnewopportunitiesfor

futureresearch.

6.3.1.Salt templatingmethod

Fellinger and co workers successfully prepared vertically

alignedgraphiticcarbonnanosheets(CNS)andmetalcarbide@CNS

compositesusing afacilesalttemplatinginduced self assembly

[52].Theresultingelectrodesmanifestultralowthickness,excel

lent structural tobustness,and porous structure,which enables

large contact between electrode and electrolyte and shortens

electron/iondiffusionpathways,renderingtheirexcellentelectro

chemicalperformanceswhenusedaselectrodematerialsforLi ion

batteries.

6.3.2.Electrochemicalassemblymethod

Lietal.adoptedatunablecyclicvoltammetry(CV)processto

fabricateverticallyalignedsulfur graphene(S G)nanowallsonto

electrically conductive substrates [53]. The S G VANS with

hierarchicalandmacroporousstructuresenablethefastdiffusion

bothoflithiumandelectron,therebyachievingsuperiorelectro

chemicalperformancesincludinghighreversiblecapacity,excel

lent rate capability, and outstanding cyclability when used as

electrodesforlithium sulfurbatteries.

6.3.3.Hydrothermalandsolvothermalmethod

Wangetal.patternedverticallyalignedMoS2nanosheetsonto

exfoliatedgraphenenanosheetsviaascalablesolutionsynthesis

strategy[54].Thisuniquearchitecturecombinestheadvantagesof

vertically aligned structure and 2D geometry, endowing the

features of good mechanical stability, highutilization of active

materials, andfastcapacitive energystoragebehavior. Liuet al.

reportedanelectrostatic attractionstrategytopreparethefew

layered ReS2 nanosheets vertically aligned on rGOsurfaces via

hydrothermal method [55]. By mean of the synergistic effect

betweenfew layeredReS2nanosheetsandthegraphenesubstrate

with the sandwich like structure, the outstanding excellent

sodiumstorageperformancecanbeobtained.

6.4.Concludingremarksandprospects

Here,wegiveabriefreviewofthestructure,synthesismethods

and electrochemical properties of VANS electrode materials.

Compared to other 2D material architecture, VANS electrode

materialswithinterconnectednetworkandeffectiveexposureof

active materials enable high mechanical integrity and fast

chargetransportkinetics.Althoughsomemeaningfulprogresses

achieved, there are great challenge still remaining for VANS

electrode materials. First, the controllable synthesis of

VANS electrode materials withdesired composition, as wellas

facile and scale up synthesis methods, still need to befurther

explored. Second, the relationship between the structures of

VANSelectrodesandtheirrelatedelectrochemicalperformances

or electrochemistry mechanism, is yet be fully understood in

depth.Astheresearchprogresses,theunexploredadvantagesof

VANSstructureswillbemoredeveloped.Theuniqueandversatile

electrochemicalpropertiesofVANShavemadeitagreatpromise

aselectrodematerialsforenergystorageinthefuture.

6.5.Acknowledgments

This study was supported by the National Natural Science

Foundation of China (No. 21601148) and the Natural Science

FoundationofFujianProvince(No.2017J05090).

Declarationofcompetinginterest

Theauthorsdeclarethatthereisnointerestforthismanuscript.

Fig.10.Schematic illustrationof thepaths for thesodium-ion diffusionand

electrontransmissioninVANSstructure.Copiedwithpermission[50].Copyright

(13)

References

[1]X.Cai,L.Lai,Z.Shen,J.Lin,J.Mater.Chem.A5(2017)15423–15446. [2]R.Tang,Q.Yun,W.Lv,etal.,Carbon103(2016)356–362.

[3]N.Suen,S.Hung,Q.Quan,etal.,Chem.Soc.Rev.46(2017)337–365. [4]L.Tian,J.Yang,M.Weng,etal.,ACSAppl.Mater.Interfaces9(2017)7125–7130. [5]M.Rana,S.A.Ahad,M.Li,etal.,EnergyStorageMater.18(2019)289–310. [6]M.Yi,Z.Shen,J.Mater.Chem.A3(2015)11700–11715.

[7]N.Pu,C.Wang,Y.Sung,Y.Liu,M.Ger,Mater.Lett.63(2009)1987–1989. [8]C.Yang,Q.Nguyen,T.Chen,etal.,ACSSustainable.Chem.Eng.6(2017)1208–

1214.

[9]M.Tahir,L.Pan,F.Idrees,etal.,NanoEnergy37(2017)136–157. [10]S.Wu,K.Hui,K.Hui,Adv.Sci.5(2018)1700491.

[11]S.Jung,Y.Han,J.Phys.Chem.C119(2015)12130–12137. [12]X.Li,B.Deng,X.Wang,etal.,2DMater.2(2015)031002. [13]Y.Liu,Q.Liu,A.Zhang,etal.,ACSNano12(2018)8323–8329. [14]J.Sun,G.Zheng,H.Lee,NanoLett.14(2014)4573–4580. [15]X.Wu,Y.Xu,Y.Hu,etal.,Nat.Commun.9(2018)4573.

[16]P.Li,D.Zhang,J.Wu,Y.Cao,Z.Wu,Sensor.Actuat.B-Chem.273(2018)358– 364.

[17]I.Sultana,M.Rahman,T.Ramireddy,Y.Chen,A.Glushenkov,J.Mater.Chem.A5 (2017)23506–23512.

[18]K.Hembram,H.Jung,B.Yeo,etal.,Phys.Chem.Chem.Phys.18(2016)21391– 21397.

[19]B.Anasori,M.Lukatskaya,Y.Gogotsi,Nat.Rev.Mater.2(2017)16098. [20]D.Er,J.Li,M.Naguib,Y.Gogotsi,V.Shenoy,ACSAppl.Mater.Interfaces6(2014)

11173–11179.

[21]M.Lukatskaya,S.Kota,Z.Lin,etal.,Nat.Energy2(2017)17105. [22]Y.Xia,T.S.Mathis,M.Zhao,etal.,Nature557(2018)409–412.

[23]P.Urbankowski,B.Anasori,T.Makaryan,etal.,Nanoscale8(2016)11385– 11391.

[24]M.Li,J.Lu,K.Luo,etal.,J.Am.Chem.Soc.141(2019)4730–4737. [25]Y.Xie,M.Naguib,V.N.Mochalin,etal.,J.Am.Chem.Soc. 136(2014)6385–6394.

[38]J.E.tenElshof,H.Yuan,P.GonzalezRodriguez,Adv.EnergyMater.6(2016) 1600355.

[39]H.Tan,W.Sun,L.Wang,Q.Yan,Chem.NanoMat.2(2016)562–577. [40]J.Mei,T.Liao,L.Kou,Z.Sun,Adv.Mater.29(2017)1700176. [41]J.Kang,S.Paek,J.Choy,Chem.Commun.48(2012)458–460. [42]Q.Wu,J.Xu,X.Yang,etal.,Adv.EnergyMater.5(2015)1401756. [43]T.Yamaki,K.Asai,Langmuir17(2001)2564–2567.

[44]N.Li,G.Zhou,F.Li,L.Wen,H.Cheng,Adv.Funct.Mater.23(2013)5429– 5435.

[45]Y.Wang,Y.Zhang,D.Dubbink,J.E.tenElshof,NanoEnergy49(2018)481–488. [46]S.Kim,I.Kim,S.Patil,etal.,Chem.Eur.J.20(2014)5132–5140.

[47]J.E.tenElshof,Y.Wang,SmallMethods3(2019)1800318. [48]X.Duan,J.Xu,Z.Wei,etal.,SmallMethods1(2017)1700156. [49]J.Yoo,K.Balakrishnan,J.Huang,NanoLett.11(2011)1423–1427. [50]X.Xie,T.Makaryan,M.Zhao,etal.,Adv.EnergyMater.6(2016)1502161. [51]Z.Zhang,C.Lee,W.Zhang,Adv.EnergyMater.7(2017)170678. [52]J.Zhu,K.Sakaushi,G.Clavel,J.Am.Chem.Soc.137(2015)5480–5485. [53]B.Li,S.Li,J.Liu,B.Wang,S.Yang,NanoLett.15(2015)3073–3079. [54]G.Wang,J.Zhang,S.Yang,etal.,Adv.EnergyMater.8(2018)1702254. [55]S.Liu,Y.Liu,W.Lei,etal.,J.Mater.Chem.A6(2018)20267–20276.

[26]M.Zhao,X.Xie,C.Ren,etal.,Adv.Mater.29(2017)1702410. [27]X.Wang,T.Mathis,K.Li,etal.,Nat.Energy4(2019)241–248. [28]A.Cote,A.Benin,N.Ockwig,etal.,Science310(2005)1166–1170. [29]B.Zhang,H.Mao,R.Matheu,etal.,J.Am.Chem.Soc.141(2019)11420–

11424.

[30]P.Peng,Z.Zhou,J.Guo,Z.Xiang,ACSEnergyLett.2(2017)1308–1314. [31]Z.Xiang,Y.Xue,D.Cao,etal.,Angew.Chem.Int.Ed.53(2014)2433–2437. [32]X.Wang,M.Swihart,G.Wu,Nat.Catal.2(2019)578–589.

[33]J.Li,M.Chen,D.Cullen,etal.,Nat.Catal.1(2018)935–945. [34]L.Wang,C.Zeng,H.Xu,etal.,Chem.Sci.10(2019)1023–1028. [35]P.Peng,L.Shi,F.Huo,etal.,ACSNano13(2019)878–884.

[36]J.Guo,C.Lin,Z.Xia,Z.Xiang,Angew.Chem.Int.Ed.57(2018)12567– 12572.

Figure

Fig. 1. Schematic illustration of applications of graphene-based composites in Li/Na-ion battery, supercapacitor, electrocatalysis and Li-S battery.
Fig. 2. 2D BP used for electrochemical energy storage. Copied with permission [ 10 ].
Fig. 3. MXenes reported so far. Copied with permission [ 19 ]. Copyright 2017, Nature Publishing Group.
Fig. 4 b [ 22 ]. One possible approach to prevent the restacking issue
+6

Références

Documents relatifs

Median estimates and 95% credible interval estimates of probability of response, conditional probability of correct response and probability of correct response of click train

A fused quartz mold covered with an array of chromium nanodots is pressed against the surface of a photolithographically patterned substrate, while a single laser pulse from

By Lemma 4, any lower bound for the size of -nets in the dual range space induced by the set B of boxes in R d gives the same lower bound for the size of an -net in the (primal)

Matthieu Riou, Bassam Jabaian, Stéphane Huet, Thierry Chaminade, Fabrice Lefèvre.. To cite

- les caractérisations rhéologiques de différents bétons autoplaçants réalisées à l’aide de la sonde Viscoprobe implantée dans un malaxeur planétaire et

A decrease in brown adipose tissue activity is associated with weight gain during chemotherapy in early breast cancer patients... This study aimed to investigate the impact

Using data from a network of treatment programs in Africa, Asia and Latin America, we examined early losses to program in individuals starting ART in low-income countries,

Hyperoxic exposure leads to nitrative stress and ensuing microvascular degeneration and diminished brain mass and function in the immature subject.... All