• Aucun résultat trouvé

Quelle relation existe-il entre LFY et l’apparition des plantes à fleurs ?

-SDS-PAGE

III. Caractérisation fonctionnelle de la protéine LFY FL

6. Quelle relation existe-il entre LFY et l’apparition des plantes à fleurs ?

A mon avis, les Angiospermes ou plantes à fleurs constituent à n’en pas douter la plus belle invention de la nature ! L’apparition de la fleur constitue un avantage sélectif sans égal, succès à l’origine d’une véritable invasion des Angiospermes qui en l’espace de 120 millions d’années ont développé pas moins de 250000 espèces. Selon l’arbre phylogénétique des plantes terrestres, les plantes à fleur sont monophylétiques et ne seraient donc apparues qu’au niveau d’un seul foyer de localisation inconnue. C’est cette origine unique qui expliquerait le fossé morphologique existant aujourd’hui entre les Angiospermes et leurs prédécesseurs, les Gymnospermes. Malgré les efforts entrepris par les botanistes et biologistes-théoriciens de l’évolution, les mécanismes mis en place par

153 les plantes pour expliquer une telle apparition n’ont pas été élucidés. Cette recherche est d’autant plus difficile qu’on ne connaît que très peu de choses sur l’ancêtre des Angiospermes et l’ancêtre commun des Angiospermes et Gymnospermes et que les fossiles connus apportent peu de renseignements quant à leurs caractéristiques morphologiques. Le seul recours à la compréhension de l’apparition des fleurs sur terre semble donc une étude fonctionnelle évolutive des acteurs importants à cette transition.

Les gènes ABCE responsables de l’identité des organes floraux sont une cible de choix, et LFY en tant que régulateur de l’expression de ces gènes en est une autre.

Mon travail de thèse apporte des éléments de réflexion utiles à la compréhension des mécanismes ayant conduit à l’évolution des fonctions de LFY. Cependant expliquer comment LFY a évolué exigera un investissement de plusieurs années, voire décennies. En plus de l’étude sur le domaine conservé C-terminal, il nécessitera l’étude de régions nettement moins caractérisées comme la région conservée N-terminale et les régions non conservées. La difficulté sera d’autant plus accrue que cette évolution peut impliquer la coévolution de résidus qui indépendamment n’ont pas apporté de transition fonctionnelle majeure.

Pour soulager en partie ces difficultés, l’approche de synthèse fonctionnelle (‘functional

synthesis’; Dean and Thornton, 2007) alimente de grands espoirs sur le principe de résurrection de

protéines éteintes. Il est pour cela nécessaire de prédire à partir d’un alignement de séquences entre homologues de LFY issus des principaux groupes végétaux quelle était la séquence des protéines LFY présentent chez l’ancêtre des Angiospermes et l’ancêtre commun des Angiospermes et Gymnospermes. Parvenir à produire ces protéines ‘ancestrales’ et à analyser leurs propriétés par approche biochimique pourrait apporter des éléments de compréhension sur l’évolution du mode de fonctionnement de LFY, ce qui constituerait de précieuses indications sur le rôle évolutif joué par cette protéine. L’‘abominable mystère’ de Charles Darwin trouvera peut-être un jour une solution !

155

Références bibliographiques

Analysis of the genome sequence of the flowering plant Arabidopsis thaliana (2000). The Arabidopsis Genome Initiative. Nature, 408, 796-815.

Abe, M., Kobayashi, Y., Yamamoto, S., Daimon, Y., Yamaguchi, A., Ikeda, Y., Ichinoki, H., Notaguchi, M., Goto, K. and Araki, T. (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science, 309, 1052-1056. Ahn, J.H., Miller, D., Winter, V.J., Banfield, M.J., Lee, J.H., Yoo,

S.Y., Henz, S.R., Brady, R.L. and Weigel, D. (2006) A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. Embo J,

25, 605-614.

Albert, B., Godelle, B. and Gouyon, P. (1998) Evolution of the plant mitochondrial genome: dynamics of duplication and deletion of sequences. J Mol Evol, 46, 155-158. Alvarez-Buylla, E.R., Garcia-Ponce, B. and Garay-Arroyo, A.

(2006) Unique and redundant functional domains of APETALA1 and CAULIFLOWER, two recently duplicated Arabidopsis thaliana floral MADS-box genes. J Exp Bot, 57, 3099-3107.

Amasino, R. (2004a) Take a cold flower. Nat Genet, 36, 111- 112.

Amasino, R. (2004b) Vernalization, competence, and the epigenetic memory of winter. Plant Cell, 16, 2553- 2559.

Ansaldi, M., Simon, G., Lepelletier, M. and Mejean, V. (2000) The TorR high-affinity binding site plays a key role in both torR autoregulation and torCAD operon expression in Escherichia coli. J Bacteriol, 182, 961- 966.

Aravind, L., Anantharaman, V., Balaji, S., Babu, M.M. and Iyer, L.M. (2005) The many faces of the helix-turn-helix domain: transcription regulation and beyond. FEMS Microbiol. Rev., 29, 231-262.

Ausin, I., Alonso-Blanco, C. and Martinez-Zapater, J.M. (2005) Environmental regulation of flowering. Int J Dev Biol,

49, 689-705.

Baker, M.D., Gendlina, I., Collins, C.M. and Acharya, K.R. (2004) Crystal structure of a dimeric form of streptococcal pyrogenic exotoxin A (SpeA1). Protein Sci, 13, 2285-2290.

Baum, D.A. and Hileman, L.C. (2006) Flowering and its Manipulation. Blackwell, Oxford.

Ben-Naim, O., Eshed, R., Parnis, A., Teper-Bamnolker, P., Shalit, A., Coupland, G., Samach, A. and Lifschitz, E. (2006) The CCAAT binding factor can mediate interactions between CONSTANS-like proteins and DNA. Plant J, 46, 462-476.

Bernier, G. and Périlleux, C. (2005) A physiological overview of the genetics of flowering time control. Plant Biotechnology Journal, 3, 3–16.

Blazquez, M.A., Ahn, J.H. and Weigel, D. (2003) A thermosensory pathway controlling flowering time in Arabidopsis thaliana. Nat Genet, 33, 168-171. Blazquez, M.A., Green, R., Nilsson, O., Sussman, M.R. and

Weigel, D. (1998) Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. Plant Cell, 10, 791-800.

Blazquez, M.A., Soowal, L.N., Lee, I. and Weigel, D. (1997) LEAFY expression and flower initiation in Arabidopsis. Development, 124, 3835-3844. Blazquez, M.A. and Weigel, D. (2000) Integration of floral

inductive signals in Arabidopsis. Nature, 404, 889- 892.

Bomblies, K., Wang, R.L., Ambrose, B.A., Schmidt, R.J., Meeley, R.B. and Doebley, J. (2003) Duplicate

FLORICAULA/LEAFY homologs zfl1 and zfl2 control inflorescence architecture and flower patterning in maize. Development, 130, 2385-2395.

Borner, R., Kampmann, G., Chandler, J., Gleissner, R., Wisman, E., Apel, K. and Melzer, S. (2000) A MADS domain gene involved in the transition to flowering in Arabidopsis. Plant J, 24, 591-599.

Boss, P.K., Bastow, R.M., Mylne, J.S. and Dean, C. (2004) Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell, 16 Suppl, S18- 31.

Bourne, Y., Watson, M.H., Hickey, M.J., Holmes, W., Rocque, W., Reed, S.I. and Tainer, J.A. (1996) Crystal structure and mutational analysis of the human CDK2 kinase complex with cell cycle-regulatory protein CksHs1. Cell, 84, 863-874.

Bowman, J.L., Drews, G.N. and Meyerowitz, E.M. (1991) Expression of the Arabidopsis floral homeotic gene AGAMOUS is restricted to specific cell types late in flower development. Plant Cell, 3, 749-758. Bowman, J.L. and Meyerowitz, E.M. (1991) Genetic control of

pattern formation during flower development in Arabidopsis. Symp Soc Exp Biol, 45, 89-115. Bowman, J.L., Smyth, D.R. and Meyerowitz, E.M. (1989) Genes

directing flower development in Arabidopsis. Plant Cell, 1, 37-52.

Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.

Brown, A.K., Meng, G., Ghadbane, H., Scott, D.J., Dover, L.G., Nigou, J., Besra, G.S. and Futterer, K. (2007) Dimerization of inositol monophosphatase Mycobacterium tuberculosis SuhB is not constitutive, but induced by binding of the activator Mg2+. BMC Struct Biol, 7, 55.

Burz, D.S., Rivera-Pomar, R., Jackle, H. and Hanes, S.D. (1998) Cooperative DNA-binding by Bicoid provides a mechanism for threshold-dependent gene activation in the Drosophila embryo. Embo J., 17, 5998-6009.

Busch, M.A., Bomblies, K. and Weigel, D. (1999) Activation of a floral homeotic gene in Arabidopsis. Science, 285, 585-587.

Campbell, R.E., Tour, O., Palmer, A.E., Steinbach, P.A., Baird, G.S., Zacharias, D.A. and Tsien, R.Y. (2002) A monomeric red fluorescent protein. PNAS, 99, 7877- 7882.

Canet, D., Doering, K., Dobson, C.M. and Dupont, Y. (2001) High-sensitivity fluorescence anisotropy detection of protein-folding events: application to alpha- lactalbumin. Biophys J, 80, 1996-2003.

Carroll, S.B. (2000) Endless forms: the evolution of gene regulation and morphological diversity. Cell, 101, 577-580.

Chae, E., Tan, Q.K., Hill, T.A. and Irish, V.F. (2008) An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development. Development, 135, 1235-1245.

Cherry, J.L. and Adler, F.R. (2000) How to make a biological switch. J. Theor. Biol., 203, 117-133.

Chujo, A., Zhang, Z., Kishino, H., Shimamoto, K. and Kyozuka, J. (2003) Partial conservation of LFY function between rice and Arabidopsis. Plant Cell Physiol, 44, 1311-1319.

Clarke, J.H. and Dean, C. (1994) Mapping FRI, a locus controlling flowering time and vernalization response

156

in Arabidopsis thaliana. Mol. Gen. Genet., 242, 81- 89.

Clarke N. D., Kissinger C. R., Desjarlais J., Gilliland G. L. and O., P.C. (1994) Structural studies of the engrailed homeodomain. Protein Sci, 3, 1779-1787.

Coen, E.S. and Meyerowitz, E.M. (1991) The war of the whorls: genetic interactions controlling flower development. Nature, 353, 31-37.

Coen, E.S., Romero, J.M., Doyle, S., Elliott, R., Murphy, G. and Carpenter, R. (1990) FLORICAULA: a homeotic gene required for flower development in Antirrhinum majus. Cell, 63, 1311-1322.

Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., Giakountis, A., Farrona, S., Gissot, L., Turnbull, C. and Coupland, G. (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science, 316, 1030- 1033.

Cranz, S., Berger, C., Baici, A., Jelesarov, I. and Bosshard, H.R. (2004) Monomeric and dimeric bZIP transcription factor GCN4 bind at the same rate to their target DNA site. Biochemistry, 43, 718-727. Dean, A.M. and Thornton, J.W. (2007) Mechanistic approaches

to the study of evolution: the functional synthesis. Nat. Rev. Genet., 8, 675-688.

Deshaies, R.J. (1999) SCF and Cullin/Ring H2-based ubiquitin ligases. Annu Rev Cell Dev Biol, 15, 435-467. Ditta, G., Pinyopich, A., Robles, P., Pelaz, S. and Yanofsky,

M.F. (2004) The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr Biol, 14, 1935-1940.

Dong, Z.C., Zhao, Z., Liu, C.W., Luo, J.H., Yang, J., Huang, W.H., Hu, X.H., Wang, T.L. and Luo, D. (2005) Floral patterning in Lotus japonicus. Plant Physiol, 137, 1272-1282.

Dornelas, M.C. and Rodriguez, A.P. (2005) The rubber tree (Hevea brasiliensis Muell. Arg.) homologue of the LEAFY/FLORICAULA gene is preferentially expressed in both male and female floral meristems. J Exp Bot, 56, 1965-1974.

Dornelas, M.C. and Rodriguez, A.P. (2006) The tropical cedar tree (Cedrela fissilis Vell., Meliaceae) homolog of the Arabidopsis LEAFY gene is expressed in reproductive tissues and can complement Arabidopsis leafy mutants. Planta, 223, 306-314. Dummler, A., Lawrence, A.M. and de Marco, A. (2005)

Simplified screening for the detection of soluble fusion constructs expressed in E. coli using a modular set of vectors. Microb Cell Fact, 4, 34. Eriksson, S., Bohlenius, H., Moritz, T. and Nilsson, O. (2006)

GA4 is the active gibberellin in the regulation of LEAFY transcription and Arabidopsis floral initiation. Plant Cell, 18, 2172-2181.

Feild, T.S., Brodribb, T., and Holbrook, M. (2002) Hardly a relict: freezing and the evolution of vesselless wood in Winteraceae. Evolution, 56, 464-478.

Ferrandiz, C., Gu, Q., Martienssen, R. and Yanofsky, M.F. (2000) Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development, 127, 725-734. Fraenkel, E., Rould, M.A., Chambers, K.A. and Pabo, C.O.

(1998) Engrailed homeodomain-DNA complex at 2.2 A resolution: a detailed view of the interface and comparison with other engrailed structures. J Mol Biol, 284, 351-361.

Frohlich, M.W., and Parker,D.S. (2000) The Mostly male theory of flower evolutionary origins: from genes to fossils. Systematic Botany, 25, 155-170.

Frohlich, M.W. and Chase, M.W. (2007) After a dozen years of progress the origin of angiosperms is still a great mystery. Nature, 450, 1184-1189.

Garcia-Higuera, I., Taniguchi, T., Ganesan, S., Meyn, M.S., Timmers, C., Hejna, J., Grompe, M. and D'Andrea, A.D. (2001) Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol Cell, 7, 249-262.

Garman, E.F. and Grime, G.W. (2005) Elemental analysis of proteins by microPIXE. Prog Biophys Mol Biol, 89, 173-205.

Gehring, W.J., Qian, Y.Q., Billeter, M., Furukubo-Tokunaga, K., Schier, A.F., Resendez-Perez, D., Affolter, M., Otting, G. and Wuthrich, K. (1994) Homeodomain- DNA recognition. Cell, 78, 211-223.

Gerard, F.C., Ribeiro Ede, A., Jr., Albertini, A.A., Gutsche, I., Zaccai, G., Ruigrok, R.W. and Jamin, M. (2007) Unphosphorylated rhabdoviridae phosphoproteins form elongated dimers in solution. Biochemistry, 46, 10328-10338.

Gietz, R.D., Schiestl, R.H., Willems, A.R. and Woods, R.A. (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast,

11, 355-360.

Gocal, G.F., Sheldon, C.C., Gubler, F., Moritz, T., Bagnall, D.J., MacMillan, C.P., Li, S.F., Parish, R.W., Dennis, E.S., Weigel, D. and King, R.W. (2001) GAMYB-like genes, flowering, and gibberellin signaling in Arabidopsis. Plant Physiol, 127, 1682-1693. Gomez-Mena, C., Pineiro, M., Franco-Zorrilla, J.M., Salinas, J.,

Coupland, G. and Martinez-Zapater, J.M. (2001) early bolting in short days: an Arabidopsis mutation that causes early flowering and partially suppresses the floral phenotype of leafy. Plant Cell, 13, 1011- 1024.

Gouaux, E. (2004) Structure and function of AMPA receptors. J Physiol, 554, 249-253.

Grant, V. (1994) Modes and origins of mechanical and ethological isolation in angiosperms. PNAS, 91, 3- 10.

Gregory, P.D., Barbaric, S. and Horz, W. (1998) Analyzing chromatin structure and transcription factor binding in yeast. Methods, 15, 295-302.

Gregory, P.D., Wagner, K. and Horz, W. (2001) Histone acetylation and chromatin remodeling. Exp Cell Res,

265, 195-202.

Gromiha, M.M., Siebers, J.G., Selvaraj, S., Kono, H. and Sarai, A. (2005) Role of inter and intramolecular interactions in protein-DNA recognition. Gene, 364, 108-113.

Gu, Q., Ferrandiz, C., Yanofsky, M.F. and Martienssen, R. (1998) The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development, 125, 1509-1517. Guarente, L. (1983) Yeast promoters and lacZ fusions designed

to study expression of cloned genes in yeast. Methods Enzymol, 101, 181-191.

Hartmann, U., Hohmann, S., Nettesheim, K., Wisman, E., Saedler, H. and Huijser, P. (2000) Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis. Plant J, 21, 351-360.

He, Y., Michaels, S.D. and Amasino, R.M. (2003) Regulation of flowering time by histone acetylation in Arabidopsis. Science, 302, 1751-1754.

Helliwell, C.A., Wood, C.C., Robertson, M., James Peacock, W. and Dennis, E.S. (2006) The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex. Plant J, 46, 183-192.

157

Henderson, I.R. and Dean, C. (2004) Control of Arabidopsis flowering: the chill before the bloom. Development,

131, 3829-3838.

Hepworth, S.R., Klenz, J.E. and Haughn, G.W. (2006) UFO in the Arabidopsis inflorescence apex is required for floral-meristem identity and bract suppression. Planta, 223, 769-778.

Hepworth, S.R., Valverde, F., Ravenscroft, D., Mouradov, A. and Coupland, G. (2002) Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. Embo J, 21, 4327- 4337.

Hill, T.A., Day, C.D., Zondlo, S.C., Thackeray, A.G. and Irish, V.F. (1998) Discrete spatial and temporal cis-acting elements regulate transcription of the Arabidopsis floral homeotic gene APETALA3. Development, 125, 1711-1721.

Himi, S., Sano, R., Nishiyama, T., Tanahashi, T., Kato, M., Ueda, K. and Hasebe, M. (2001) Evolution of MADS- box gene induction by FLO/LFY genes. J Mol Evol,

53, 387-393.

Hofer, J., Turner, L., Hellens, R., Ambrose, M., Matthews, P., Michael, A. and Ellis, N. (1997) UNIFOLIATA regulates leaf and flower morphogenesis in pea. Curr Biol, 7, 581-587.

Hong, R.L., Hamaguchi, L., Busch, M.A. and Weigel, D. (2003) Regulatory elements of the floral homeotic gene AGAMOUS identified by phylogenetic footprinting and shadowing. Plant Cell, 15, 1296-1309. Honma, T. and Goto, K. (2000) The Arabidopsis floral homeotic

gene PISTILLATA is regulated by discrete cis- elements responsive to induction and maintenance signals. Development, 127, 2021-2030.

Honma, T. and Goto, K. (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature, 409, 525-529.

Hu, C.D., Chinenov, Y. and Kerppola, T.K. (2002) Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell, 9, 789-798.

Huala, E. and Sussex, I.M. (1992) LEAFY interacts with Floral Homeotic Genes to Regulate Arabidopsis Floral Development. Plant Cell, 4, 901-903.

Hurst, H.C. (1995) Transcription factors 1: bZIP proteins. Protein Profile, 2, 101-168.

Ingram, G.C., Goodrich, J., Wilkinson, M.D., Simon, R., Haughn, G.W. and Coen, E.S. (1995) Parallels between UNUSUAL FLORAL ORGANS and FIMBRIATA, genes controlling flower development in Arabidopsis and Antirrhinum. Plant Cell, 7, 1501- 1510.

Irish, V.F. and Sussex, I.M. (1990) Function of the apetala-1 Gene during Arabidopsis Floral Development. Plant Cell, 2, 741-753.

Jacobs, G.H. (1992) Determination of the base recognition positions of zinc fingers from sequence analysis. Embo J, 11, 4507-4517.

Jaeger, K.E. and Wigge, P.A. (2007) FT protein acts as a long- range signal in Arabidopsis. Curr Biol, 17, 1050- 1054.

Kardailsky, I., Shukla, V.K., Ahn, J.H., Dagenais, N., Christensen, S.K., Nguyen, J.T., Chory, J., Harrison, M.J. and Weigel, D. (1999) Activation tagging of the floral inducer FT. Science, 286, 1962-1965. Kempin, S.A., Mandel, M.A. and Yanofsky, M.F. (1993)

Conversion of perianth into reproductive organs by ectopic expression of the tobacco floral homeotic gene NAG1. Plant Physiol., 103, 1041-1046.

Kempin, S.A., Savidge, B. and Yanofsky, M.F. (1995) Molecular basis of the cauliflower phenotype in Arabidopsis. Science, 267, 522-525.

Kirsch, R.D. and Joly, E. (1998) An improved PCR-mutagenesis strategy for two-site mutagenesis or sequence swapping between related genes. Nucleic Acids Res., 26, 1848-1850.

Kobayashi, Y., Kaya, H., Goto, K., Iwabuchi, M. and Araki, T. (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science, 286, 1960- 1962.

Kobayashi, Y. and Weigel, D. (2007) Move on up, it's time for change--mobile signals controlling photoperiod- dependent flowering. Genes Dev, 21, 2371-2384. Kodadek, T. and Bachhawat-Sikder, K. (2006) Optimized

protocols for the isolation of specific protein-binding peptides or peptoids from combinatorial libraries displayed on beads. Mol Biosyst, 2, 25-35.

Kohler, J.J., Metallo, S.J., Schneider, T.L. and Schepartz, A. (1999) DNA specificity enhanced by sequential binding of protein monomers. PNAS, 96, 11735- 11739.

Kohler, J.J. and Schepartz, A. (2001) Kinetic studies of Fos.Jun.DNA complex formation: DNA binding prior to dimerization. Biochemistry, 40, 130-142. Koncz, C. and Schell, J. (1986) The promoter TL -DNA gene 5

controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium vector. Mol Gen Genet 204.

Koornneef, M., Hanhart, C.J. and van der Veen, J.H. (1991) A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol. Gen. Genet.,

229, 57-66.

Krizek, B.A. and Fletcher, J.C. (2005) Molecular mechanisms of flower development: an armchair guide. Nat Rev Genet, 6, 688-698.

Lamb, R.S., Hill, T.A., Tan, Q.K. and Irish, V.F. (2002) Regulation of APETALA3 floral homeotic gene expression by meristem identity genes. Development, 129, 2079-2086.

Lamber, E.P., Wilmanns, M. and Svergun, D.I. (2008) Low resolution structural models of the basic helix-loop- helix leucine zipper domain of upstream stimulatory factor 1 and its complexes with DNA from small angle X-ray scattering data. Biophys J, 94, 193-197. Laufs, P., Coen, E., Kronenberger, J., Traas, J. and Doonan, J.

(2003) Separable roles of UFO during floral development revealed by conditional restoration of gene function. Development, 130, 785-796. Laux, T., Mayer, K.F.X., Berger, J. and Jürgens, G. (1996) The

WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development, 122, 87-96.

Lavy, M., Bracha-Drori, K., Sternberg, H. and Yalovsky, S. (2002) A cell-specific, prenylation-independent mechanism regulates targeting of type II RACs. Plant Cell, 14, 2431-2450.

Lee, H., Suh, S.S., Park, E., Cho, E., Ahn, J.H., Kim, S.G., Lee, J.S., Kwon, Y.M. and Lee, I. (2000) The AGAMOUS- LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev, 14, 2366-2376.

Lee, I., Wolfe, D.S., Nilsson, O. and Weigel, D. (1997a) A LEAFY co-regulator encoded by UNUSUAL FLORAL ORGANS. Curr Biol, 7, 95-104.

Lee, J.H., Yoo, S.J., Park, S.H., Hwang, I., Lee, J.S. and Ahn, J.H. (2007) Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev, 21, 397-402.

158

Lenhard, M., Bohnert, A., Jurgens, G. and Laux, T. (2001) Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS. Cell, 105, 805-814.

Leonard, T.A., Butler, P.J. and Lowe, J. (2004) Structural analysis of the chromosome segregation protein Spo0J from Thermus thermophilus. Mol Microbiol,

53, 419-432.

Levin, J.Z. and Meyerowitz, E.M. (1995) UFO: an Arabidopsis gene involved in both floral meristem and floral organ development. Plant Cell, 7, 529-548. Levy, Y.Y., Mesnage, S., Mylne, J.S., Gendall, A.R. and Dean,

C. (2002) Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control. Science,

297, 243-246.

Liljegren, S.J., Gustafson-Brown, C., Pinyopich, A., Ditta, G.S. and Yanofsky, M.F. (1999) Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. Plant Cell, 11, 1007-1018. Lin, M.K., Belanger, H., Lee, Y.J., Varkonyi-Gasic, E., Taoka,

K., Miura, E., Xoconostle-Cazares, B., Gendler, K., Jorgensen, R.A., Phinney, B., Lough, T.J. and Lucas, W.J. (2007) FLOWERING LOCUS T protein may act as the long-distance florigenic signal in the cucurbits. Plant Cell, 19, 1488-1506.

Liu, C., Chen, H., Er, H.L., Soo, H.M., Kumar, P.P., Han, J.H., Liou, Y.C. and Yu, H. (2008) Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis. Development, 135, 1481-1491. Liu, C., Zhou, J., Bracha-Drori, K., Yalovsky, S., Ito, T. and Yu,

H. (2007) Specification of Arabidopsis floral meristem identity by repression of flowering time genes. Development, 134, 1901-1910.

Lohmann, J.U., Hong, R.L., Hobe, M., Busch, M.A., Parcy, F., Simon, R. and Weigel, D. (2001) A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell, 105, 793-803.

Lundblad, J.R., Laurance, M. and Goodman, R.H. (1996) Fluorescence polarization analysis of protein-DNA and protein-protein interactions. Mol Endocrinol, 10, 607-612.

Luscombe, N.M., Austin, S.E., Berman, H.M. and Thornton, J.M. (2000) An overview of the structures of protein- DNA complexes. Genome Biol., 1, REVIEWS001. Maizel, A., Busch, M.A., Tanahashi, T., Perkovic, J., Kato, M.,

Hasebe, M. and Weigel, D. (2005) The floral regulator LEAFY evolves by substitutions in the DNA binding domain. Science, 308, 260-263.

Mandel, M.A., Gustafson-Brown, C., Savidge, B. and Yanofsky, M.F. (1992) Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature, 360, 273-277.

Mathieu, J., Warthmann, N., Kuttner, F. and Schmid, M. (2007) Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis. Curr Biol,

17, 1055-1060.

Mayer, K.F., Schoof, H., Haecker, A., Lenhard, M., Jurgens, G. and Laux, T. (1998) Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell, 95, 805-815.

McGonigle, B., Bouhidel, K. and Irish, V.F. (1996) Nuclear localization of the Arabidopsis APETALA3 and PISTILLATA homeotic gene products depends on their simultaneous expression. Genes Dev., 10, 1812-1821.

Mellerowicz, E.J., Horgan, K., Walden, A., Coker, A. and Walter, C. (1998) PRFLL--a Pinus radiata homologue of FLORICAULA and LEAFY is expressed in buds containing vegetative shoot and

undifferentiated male cone primordia. Planta, 206, 619-629.

Michaels, S.D. and Amasino, R.M. (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell, 11, 949-956.

Michaels, S.D., Ditta, G., Gustafson-Brown, C., Pelaz, S., Yanofsky, M. and Amasino, R.M. (2003) AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalization. Plant J, 33, 867-874.

Molinero-Rosales, N., Jamilena, M., Zurita, S., Gomez, P., Capel, J. and Lozano, R. (1999) FALSIFLORA, the tomato orthologue of FLORICAULA and LEAFY, controls flowering time and floral meristem identity. Plant J, 20, 685-693.

Moon, J., Suh, S.S., Lee, H., Choi, K.R., Hong, C.B., Paek, N.C., Kim, S.G. and Lee, I. (2003) The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J, 35, 613-623.

Mouradov, A., Cremer, F. and Coupland, G. (2002) Control of flowering time: interacting pathways as a basis for diversity. Plant Cell, 14, S111-130.

Mouradov, A., Glassick, T., Hamdorf, B., Murphy, L., Fowler, B., Marla, S. and Teasdale, R.D. (1998) NEEDLY, a Pinus radiata ortholog of FLORICAULA/LEAFY genes, expressed in both reproductive and vegetative meristems. PNAS, 95, 6537-6542. Mouradov, A., Hamdorf, B., Teasdale, R.D., Kim, J.T., Winter,

K.U. and Theissen, G. (1999) A DEF/GLO-like MADS-box gene from a Gymnosperm: Pinus radiata contains an ortholog of Angiosperm B class floral homeotic genes. Dev Genet, 25, 245-252.

Mumberg, D., Muller, R. and Funk, M. (1995) Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene, 156, 119-122. Nagasaki, H., Matsuoka, M. and Sato, Y. (2005) Members of

TALE and WUS subfamilies of homeodomain proteins with potentially important functions in development form dimers within each subfamily in rice. Genes Genet Syst, 80, 261-267.

Nelson, P.C., Zurla, C., Brogioli, D., Beausang, J.F., Finzi, L. and Dunlap, D. (2006) Tethered particle motion as a diagnostic of DNA tether length. J Phys Chem B,

110, 17260-17267.

Ng, M. and Yanofsky, M.F. (2001) Function and evolution of the plant MADS-box gene family. Nat Rev Genet, 2, 186-195.

Ni, W., Xie, D., Hobbie, L., Feng, B., Zhao, D., Akkara, J. and