• Aucun résultat trouvé

Ondes d’interface avec tension superficielle - Introduction aux instabilit´es

Dans le document M´ecanique des fluides (Page 46-49)

Afin notamment de pr´eparer l’´etude, qui sera faite en TD6, de ph´enom`enes d’instabilit´es, et d’autre part de s’initier `a l’´etude de ph´enom`enes diphasiques7, nous d´eveloppons un mod`ele `a un seul fluide pesant des ondes `a l’interface entre deux fluides. Nous ´etudions donc la dynamique d’une interface entre un liquide, typiquement de l’eau, et un gaz, typiquement de l’air, comme repr´esent´ee sur la figure3.1. On utilise le mod`ele des fluides parfaits incompressibles, dans le cas d’´ecoulements potentiels. Le gaz est suppos´e«non pesant», donc en pratique il sera isobare et les ´ecoulements qui pourraient y avoir lieu ne joueront aucun rˆole.

3.3.1 Principes de l’analyse lin´eaire de stabilit´e

On suppose que l’´etendue de liquide a une profondeurh, et on consid`ere desmodes lin´eaires de perturbation, ou « modes normaux », de cette surface libre correspondant `a une position de la surface libre :

z = h+ζ avec ζ = ζ(x,t) = Re[Aexp(ikx) exp(σt)] . (3.17) Ces modes sont en fait des modes de Fourier en x : ce passage en modes de Fourier est judicieux, et permettra des calculs relativement «simples », parce que la configuration de base du syst`eme est ind´ependante de x. Cette proportionnalit´e en ´ecriture complexe `a Aexp(ikx+σt) doit ˆetre v´erifi´ee par tous les champs du mode normal, par exemple le potentiel de l’´ecoulement du mode consid´er´e est de la forme

φ = φ(x,z,t) = Ren

A f(z) exp(ikx+σt)o

. (3.18)

Ainsi tous les champs ont le mˆeme type de d´ependance en x et t, coordonn´ees d’invariance de la configuration de base. Dans les formules (3.17) et (3.18), A est l’amplitude complexe du mode consid´er´e, suppos´ee petite. Lenombre d’onde kdu mode, ´egal `a 2π/λavec λla p´eriode spatiale, est un param`etre g´eom´etrique que l’on se donne, et que l’on va faire varier. Enfinσ est un nombre complexe que l’on veut calculer, fonction de k (et des param`etres de contrˆole du syst`eme) et qui va caract´eriser la r´eponse du syst`eme `a ce mode de perturbation. L’adjectif « lin´eaire » signifie que l’on va lin´eariser les ´equations de la m´ecanique des fluides `a l’ordre A, en n´egligeant tous les termes non lin´eaires d’ordreA2. Ainsi chaque mode (3.17) est unepetite perturbation de la configuration de base, au repos, et nous menons une« analyse lin´eaire de stabilit´e »de cette configuration de base.

La signification pr´ecise de cette analyse se comprend en raisonnant en terme de r´eponse du syst`eme

`

a de petites perturbations initiales quelconques. Une condition initiale quelconque, engendr´ee par toutes sortes de «bruits», pourrait en effet, par transform´ee de Fourier, s’´ecrire

ζ(x,t= 0) = Ren X

k

A(k) exp(ikx) o

. (3.19)

Par lin´earit´e, la solution aux temps courts serait alors ζ(x,t) = Ren X

k

A(k) exp(ikx+σ(k)t) o

, (3.20)

superposition des solutions pour chaque mode normal...

6. Cf. le probl`eme3.3sur les instabilit´es de Kelvin-Helmholtz et Rayleigh-Taylor.

7. `A ce stade la lecture du chapitre2devient indispensable.

3.3 Ondes d’interface avec tension superficielle - Introduction aux instabilit´es 47

p p

n

g

x z

z=h+ζ

Fig. 3.1Sch´ema de principe de la configuration bidimensionnelle ´etudi´ee pour le calcul d’ondes `a l’interface entre deux fluides.

Revenant au cas d’un seul mode normal (3.17), (3.18), pour simplifier, il faut bien r´ealiser que Aet σ sont des variables complexes,

A = |A| exp(iargA) , σ=σr+iσi . (3.21) Du fait que

Re[Aexp(ikx+σt)] = |A| cos(kx+σit+ argA) exp(σrt) , (3.22) trois cas sont `a distinguer, concernant le caract`ere amplifi´e ou non des modes :

• soit σr > 0, auquel cas on a affaire `a un mode amplifi´e; la configuration de base est instable ;

• soitσr= 0, auquel cas on a affaire `a un mode neutre; la configuration de base est margi-nalement stable vis-`a-vis de ce mode ;

• soitσr <0, auquel cas on a affaire `a un modeamorti; la configuration de base est stable vis-`a-vis de ce mode.

Dans le casσr >0, σrest letaux de croissance du mode amplifi´e ; dans le casσr<0, −σr est le taux d’amortissement du mode amorti. Dans le premier cas, le mode amplifi´e par l’instabilit´e est unepetite perturbation qui devient unegrande perturbation : ce ph´enom`ene, illustr´e par exemple sur les figures3.5et3.6, est l’essence mˆeme d’une instabilit´e.

De mˆeme, trois cas sont `a distinguer concernant le caract`ere propagatif ou non des modes :

• soit σi > 0, auquel cas on pose σi = ω et le mode consid´er´e est une onde gauche se propageant `a la vitesse de phase−ω/k;

• soitσi = 0, auquel cas le mode consid´er´e eststationnaire non propagatif ;

• soit σi < 0, auquel cas on pose σi = −ω et le mode consid´er´e est une onde droite se propageant `a la vitesse de phaseω/k.

Dans les casσi6= 0,ω=|σi|est lafr´equence angulaire de l’onde, ´egale `a 2π/T avecT la p´eriode temporelle de l’onde.

Les cas o`u les modes les plus « dangereux », de σr > 0 maximum, correspondent `a k 6= 0, conduisent `a l’´emergence de motifs structur´es de longueur d’onde λ= 2π/k finie, on appelle donc ces instabilit´esstructurantes. Au contraire, si les modes les plus« dangereux» correspondent `a k= 0, on appelle les instabilit´es homog`enes.

Cette ´etude se fait effectivement en fonction des param`etres de contrˆole du syst`eme. Lorsque l’on observe un changement des propri´et´es de stabilit´e d’une configuration par variation d’un param`etre de contrˆole, on a une « bifurcation », comme d´ej`a ´evoqu´e dans le compl´ement 1.1.

De fa¸con moins g´en´erale, dans le cas pr´esent, nous allons trouver que σr = 0, σi 6= 0 toujours,

i.e. nous avons affaire `a des ondes neutres, indiff´erement droites ou gauches, ce qui se comprend puisqu’il n’y a pas de direction privil´egi´ee dans le syst`eme. Des exemples d’instabilit´es conduisant

`

a des ondes droites seulement seront donn´es dans le probl`eme 3.3.

3.3.2 Analyse des ondes d’interface

Revenant `a la physique de notre probl`eme, grˆace `a la condition d’incompressibilit´e et `a la condition cin´ematique `a l’interface, qui stipule qu’une particule qui s’y trouve `a un instant donn´e y reste toujours8,

d

dt[z−(h+ζ)] = 0 si z=h+ζ , (3.23) on montre que le potentiel de l’´ecoulement dans le liquide est donn´e par

φ = φ(x,z,t) = Ren

A σ

ksinh(kh) exp(ikx+σt) cosh(kz)o

. (3.24)

En prenant en compte l’effet d’unetension de surface γnon nulle, il existe, d’apr`es le chapitre2, un saut de pression `a l’interface donn´e par laloi de Laplace

p−p0 = γ div n

, (3.25)

avec n la normale sortante unitaire `a l’interface, prolong´ee de fa¸con r´eguli`ere de part et d’autre de l’interface. On obtient alors, apr`es calcul du champ de pression dans le fluide pesant par un th´eor`eme de Bernoulli, que les valeurs possibles deσ `akfix´e v´erifient l’´equation caract´eristique

ρσ2 = −ρgktanh(kh) − γk3tanh(kh) (3.26)

o`uρest la densit´e du liquide. Il est normal que l’amplitudeAn’apparaisse pas dans cette relation : elle peut ˆetre factoris´ee et sa valeur pr´ecise ne joue pas de rˆole ici, tant qu’elle reste petite9. Ainsiσ est un imaginaire pur, ce qui confirme que l’on a affaire `a des ondes neutres. Posantσ=iω, on obtient la relation de dispersion donnant lavitesse de phase cde l’onde :

c2 = ω

La fonction ω(k) donn´ee par (3.27) est strictement croissante, ce qui signifie qu’`a fr´equence ω donn´ee ne se propagent que des ondes, indiff´eremment droite ou gauche, de nombre d’ondek bien d´efini.

Pour une interface eau-air le coefficient de tension superficielleγ = 0,074 N/m donc le terme capillaire ne domine que pour des longueurs d’ondes λ = 2π/k plus petites que la longueur capillaire

lc = r γ

ρg = 2,7 mm , (3.28)

auquel cas on a affaire `a des ondes capillaires. Compte tenu de la petitesse de lc, on a plus souvent affaire `a des ondes de gravit´e v´erifiant λlc etc2 'gtanh(kh)/k. On m´editera avec profit les courbes exemples pr´esent´ees en cours.

8. Cf. la premi`ere section du chapitre2.

9. Cette remarque vaut pour toute analyse lin´eaire de stabilit´e.

Dans le document M´ecanique des fluides (Page 46-49)