• Aucun résultat trouvé

A.7 Probabilit´es libres

A.7.4 Mouvement brownien libre

Dans cette sous-section, on se place dans un C

-espace de probabilit´e

(A,∗,k · k, φ) muni d’une filtration, c’est-`a-dire d’une famille (A

t

)

t0

de

sous-alg`ebres ferm´ees pour la topologie faible-∗ sur A telles que pour tous

s≤t, on aA

s

⊂ A

t

.

D´efinition A.54. Unmouvement brownien libre est une famille (S

t

)

t0

de

variables non commutatives telle que :

– pour tout t≥0,S

t

est un ´el´ement auto-adjoint de A

t

, dont la

distri-bution est la loi semi-circulaire de variance t, d´efinie par

sc,t

(x) = 1

2πt

p

4t−x

2

1

[2√ t,2√ t]

(x) dx;

– pour tous s≤t, l’´el´ement S

t

−S

s

est libre avec A

s

et sa distribution

est la loi semi-circulaire de variance t−s.

On remarquera que cette d´efinition est l’analogue libre de la d´efinition

du mouvement brownien

classique

.

Le mouvement brownien libre peut ˆetre interpr´et´e en termes de matrices

al´eatoires.

Proposition A.55(voir [Voi1]). Pour tout N ∈N

, on d´efinit le processus

matriciel (X

N

(t))

t0

sur H

N

(C) par :

– pour tout j∈J1, NK, X

N

j,j

est un mouvement brownien r´eel standard ;

– pour tous j, k ∈J1, NK tels que j < k, √

2 ReX

j,kN

et √

2 ImX

j,kN

sont

deux mouvements browniens r´eels standards ind´ependants.

Le processus(X

N

(t)/√

N)

t0

converge en distribution quandN →+∞vers

un mouvement brownien libre.

[ABC

+

] C. An´e, S. Blach`ere, D. Chafa¨ı, P. Foug`eres, I. Gentil, F. Malrieu,

C. Roberto, and G. Scheffer. Sur les in´egalit´es de Sobolev

loga-rithmiques, volume 10 of Panoramas et Synth`eses [Panoramas

and Syntheses]. Soci´et´e Math´ematique de France, Paris, 2000.

With a preface by Dominique Bakry and Michel Ledoux.

[ABDF] G. Akemann, J. Baik, and P. Di Francesco. Introduction and

guide to the handbook. InThe Oxford handbook of random matrix

theory, pages 3–14. Oxford Univ. Press, Oxford, 2011.

[AD] R. Allez and L. Dumaz. Random matrices in non-confining

po-tentials. J. Stat. Phys., 160(3) :681–714, 2015.

[AGS] L. Ambrosio, N. Gigli, and G. Savar´e. Gradient flows in metric

spaces and in the space of probability measures. Lectures in

Ma-thematics ETH Z¨urich. Birkh¨auser Verlag, Basel, second edition,

2008.

[AGZ] G. W. Anderson, A. Guionnet, and O. Zeitouni. An introduction

to random matrices, volume 118 ofCambridge Studies in

Advan-ced Mathematics. Cambridge University Press, Cambridge, 2010.

[AL] D. Aldous and R. Lyons. Processes on unimodular random

net-works. Electron. J. Probab., 12 :no. 54, 1454–1508, 2007.

[AS] D. Aldous and J. M. Steele. The objective method :

probabilis-tic combinatorial optimization and local weak convergence. In

Probability on discrete structures, volume 110 of Encyclopaedia

Math. Sci., pages 1–72. Springer, Berlin, 2004.

[Aug1] F. Augeri. Large deviations principle for the largest eigenvalue

of Wigner matrices without Gaussian tails. Electron. J. Probab.,

21 :Paper No. 32, 49, 2016.

[Aug2] F. Augeri. On the large deviations of traces of random matrices.

arXiv :1605.03894v1, 2016.

[BADG] G. Ben Arous, A. Dembo, and A. Guionnet. Aging of spherical

spin glasses. Probab. Theory Related Fields, 120(1) :1–67, 2001.

[BAG] G. Ben Arous and A. Guionnet. Large deviations for Wigner’s

law and Voiculescu’s non-commutative entropy. Probab. Theory

Related Fields, 108(4) :517–542, 1997.

[BAZ] G. Ben Arous and O. Zeitouni. Large deviations from the circular

law. ESAIM Probab. Statist., 2 :123–134 (electronic), 1998.

[BC] C. Bordenave and P. Caputo. A large deviation principle for

Wi-gner matrices without Gaussian tails. Ann. Probab., 42(6) :2454–

2496, 2014.

[BCCP] D. Benedetto, E. Caglioti, J. A. Carrillo, and M. Pulvirenti. A

non-Maxwellian steady distribution for one-dimensional granular

media. J. Statist. Phys., 91(5-6) :979–990, 1998.

[BCP] D. Benedetto, E. Caglioti, and M. Pulvirenti. A kinetic

equa-tion for granular media. RAIRO Mod´el. Math. Anal. Num´er.,

31(5) :615–641, 1997.

[BE] D. Bakry and M. ´Emery. Diffusions hypercontractives. In

S´eminaire de probabilit´es, XIX, 1983/84, volume 1123 ofLecture

Notes in Math., pages 177–206. Springer, Berlin, 1985.

[BG1] F. Benaych-Georges. Rectangular random matrices, related

convolution. Probab. Theory Related Fields, 144(3-4) :471–515,

2009.

[BG2] F. Benaych-Georges. On a surprising relation between the

Marchenko-Pastur law, rectangular and square free convolutions.

Ann. Inst. Henri Poincar´e Probab. Stat., 46(3) :644–652, 2010.

[BG3] G. Borot and A. Guionnet. Asymptotic expansion of β matrix

models in the one-cut regime. Comm. Math. Phys., 317(2) :447–

483, 2013.

[BGG1] F. Bolley, I. Gentil, and A. Guillin. Convergence to equilibrium

in Wasserstein distance for Fokker-Planck equations. J. Funct.

Anal., 263(8) :2430–2457, 2012.

[BGG2] F. Bolley, I. Gentil, and A. Guillin. Uniform convergence to

equilibrium for granular media. Arch. Ration. Mech. Anal.,

208(2) :429–445, 2013.

[BGM] F. Bolley, A. Guillin, and F. Malrieu. Trend to equilibrium and

particle approximation for a weakly selfconsistent

Vlasov-Fokker-Planck equation. M2AN Math. Model. Numer. Anal., 44(5) :867–

884, 2010.

[Bia1] P. Biane. Free Brownian motion, free stochastic calculus and

ran-dom matrices. In Free probability theory (Waterloo, ON, 1995),

volume 12 of Fields Inst. Commun., pages 1–19. Amer. Math.

Soc., Providence, RI, 1997.

[Bia2] P. Biane. Logarithmic Sobolev inequalities, matrix models and

free entropy. Acta Math. Sin. (Engl. Ser.), 19(3) :497–506,

2003. International Workshop on Operator Algebra and

Ope-rator Theory (Linfen, 2001).

[BIPZ] E. Br´ezin, C. Itzykson, G. Parisi, and J. B. Zuber. Planar

dia-grams. Comm. Math. Phys., 59(1) :35–51, 1978.

[BLS] C. Bordenave, M. Lelarge, and J. Salez. The rank of diluted

random graphs. Ann. Probab., 39(3) :1097–1121, 2011.

[BRTV] S. Benachour, B. Roynette, D. Talay, and P. Vallois. Nonlinear

self-stabilizing processes. I. Existence, invariant probability,

pro-pagation of chaos. Stochastic Process. Appl., 75(2) :173–201,

1998.

[BRV] S. Benachour, B. Roynette, and P. Vallois. Nonlinear

self-stabilizing processes. II. Convergence to invariant probability.

Stochastic Process. Appl., 75(2) :203–224, 1998.

[BS1] Z. Bai and J. W. Silverstein. Spectral analysis of large

dimensio-nal random matrices. Springer Series in Statistics. Springer, New

York, second edition, 2010.

[BS2] I. Benjamini and O. Schramm. Recurrence of distributional limits

of finite planar graphs. Electron. J. Probab., 6 :no. 23, 13 pp.

(electronic), 2001.

[BS3] P. Biane and R. Speicher. Stochastic calculus with respect to free

Brownian motion and analysis on Wigner space. Probab. Theory

Related Fields, 112(3) :373–409, 1998.

[BS4] P. Biane and R. Speicher. Free diffusions, free entropy and free

Fisher information. Ann. Inst. H. Poincar´e Probab. Statist.,

37(5) :581–606, 2001.

[BV] P. Biane and D. Voiculescu. A free probability analogue of the

Wasserstein metric on the trace-state space. Geom. Funct. Anal.,

11(6) :1125–1138, 2001.

[BY1] Z. D. Bai and Y. Q. Yin. Necessary and sufficient conditions

for almost sure convergence of the largest eigenvalue of a Wigner

matrix. Ann. Probab., 16(4) :1729–1741, 1988.

[BY2] Z. D. Bai and Y. Q. Yin. Limit of the smallest eigenvalue of

a large-dimensional sample covariance matrix. Ann. Probab.,

21(3) :1275–1294, 1993.

[CCV] J. A. Carrillo, D. Castorina, and B. Volzone. Ground states for

diffusion dominated free energies with logarithmic interaction.

SIAM J. Math. Anal., 47(1) :1–25, 2015.

[CDMFF] M. Capitaine, C. Donati-Martin, D. F´eral, and M. F´evrier. Free

convolution with a semicircular distribution and eigenvalues of

Documents relatifs