• Aucun résultat trouvé

CHAPITRE 3 : Tau gene deletion does not influence axonal regeneration and retinal neuron

4. Discussion générale

Les travaux présentés dans le cadre de cette thèse mettent en évidence un nouveau rôle de Tau dans la physiologie rétinienne et dans les mécanismes de neuroplasticité dans le système visuel chez la souris adulte. Contrairement à l’hippocampe, le système visuel ne semble pas être affecté par la surexpression de Tau humaine dans un modèle de tauopathie soulevant ainsi la question d’une possible toxicité différentielle de Tau au sein même du système nerveux central. La modulation de l’expression des isoformes de Tau lors de la réactivation de la plasticité fonctionnelle chez l’adulte est très intéressante et devrait être également étudiée au cours de la période critique. Bien que le modèle de souris Tau KO présente ses limites, il a permis de démontrer l’importance de Tau dans la plasticité de la dominance oculaire chez l’adulte. Par ailleurs, à la vue des résultats portant sur l’influence de Tau dans la régénération axonale, la modulation d’isoformes spécifiques de Tau semble prometteuse. Pris ensemble, ces résultats viennent donc enrichir les connaissances quant au rôle de Tau dans la physiologie rétinienne et l’établissement de mécanismes de plasticité dans le système visuel chez la souris adulte. Ces résultats soulèvent également de nombreuses nouvelles questions concernant l’implication de Tau dans la neuroplasticité visuelle.

CONCLUSION GÉNÉRALE

La vision est inséparable de notre conception du monde. Cependant, cette perception de notre monde résulte de processus physiologiques et adaptatifs complexes. Ces processus adaptatifs font référence aux mécanismes de plasticité et à leur capacité à remodeler structurellement et fonctionnellement les circuits neuronaux. Fondamentale, la plasticité neuronale permet de s’adapter à son environnement. Les processus neurodéveloppementaux et adaptatifs consécutifs à une lésion dépendent en grande partie de mécanismes de plasticité, retrouvés dans l’ensemble du système nerveux central. De nombreux acteurs de la physiologie et de la plasticité neuro-visuelle ont été étudiés, souvent avec un objectif thérapeutique. Associée aux processus neurodégénératifs sous-jacents à de nombreuses neuropathologies, Tau, une protéine associée aux microtubules, n’a jamais été étudiée dans la physiologie rétinienne et la plasticité visuelle.

Dans ce contexte, les travaux présentés dans cette thèse visaient à étudier le rôle de Tau dans la physiologie rétinienne au cours du vieillissement et dans deux mécanismes de neuro- plasticité soit l’expérience dépendante de l’expérience visuelle et la régénération axonale chez la souris adulte.

Nos résultats démontrent pour la première fois que la protéine Tau n’influence pas la physiologie rétinienne au cours du vieillissement. Par ailleurs, en utilisant un modèle modéré de tauopathie, nous avons mis en évidence une toxicité différentielle de Tau entre le système visuel et l’hippocampe. En utilisant le modèle de privation monoculaire chez la souris adulte, nos résultats ont mis en avant une nouvelle fonction de Tau en tant que modulateur dans les mécanismes adaptatifs de plasticité oculaire opérant dans le cerveau adulte soumis à des changements d'expérience sensorielle. Enfin, en utilisant le modèle de lésion du nerf optique, nos résultats ont montré que Tau n’influence pas la survie neuronale et la régénération axonale même lorsque la croissance axonale est stimulée.

En conclusion, au-delà de nos résultats obtenus dans le système visuel, nos travaux mettent en évidence l’importance de continuer à disséquer l’implication de Tau dans la physiologie et la plasticité du système nerveux central adulte. En ce sens, plusieurs stratégies préventives ou thérapeutiques ont été ou sont actuellement testées et impliquent une modulation de l’expression de Tau.

Bibliographie

Aboelnour, A., Van der Spuy, J., Powner, M., and Jeffery, G. (2017). Primate retinal cones express phosphorylated tau associated with neuronal degeneration yet survive in old age. Exp Eye Res 165, 105-108.

Acquarone, E., Argyrousi, E.K., van den Berg, M., Gulisano, W., Fa, M., Staniszewski, A., Calcagno, E., Zuccarello, E., D'Adamio, L., Deng, S.X., et al. (2019). Synaptic and memory dysfunction induced by tau oligomers is rescued by up-regulation of the nitric oxide cascade. Mol Neurodegener 14, 26.

Aggarwal, P., Nag, T.C., and Wadhwa, S. (2007). Age-related decrease in rod bipolar cell density of the human retina: an immunohistochemical study. J Biosci 32, 293-298.

Ahmed, T., Van der Jeugd, A., Blum, D., Galas, M.C., D'Hooge, R., Buee, L., and Balschun, D. (2014). Cognition and hippocampal synaptic plasticity in mice with a homozygous tau deletion. Neurobiol Aging 35, 2474-2478.

Allen, B., Ingram, E., Takao, M., Smith, M.J., Jakes, R., Virdee, K., Yoshida, H., Holzer, M., Craxton, M., Emson, P.C., et al. (2002). Abundant tau filaments and nonapoptotic neurodegeneration in transgenic mice expressing human P301S tau protein. J Neurosci 22, 9340-9351.

Andorfer, C., Acker, C.M., Kress, Y., Hof, P.R., Duff, K., and Davies, P. (2005). Cell-cycle reentry and cell death in transgenic mice expressing nonmutant human tau isoforms. J Neurosci 25, 5446-5454.

Andorfer, C., Kress, Y., Espinoza, M., de Silva, R., Tucker, K.L., Barde, Y.A., Duff, K., and Davies, P. (2003). Hyperphosphorylation and aggregation of tau in mice expressing normal human tau isoforms. J Neurochem 86, 582-590.

Andreadis, A. (2005). Tau gene alternative splicing: expression patterns, regulation and modulation of function in normal brain and neurodegenerative diseases. Biochim Biophys Acta 1739, 91-103.

Andreadis, A., Broderick, J.A., and Kosik, K.S. (1995). Relative exon affinities and suboptimal splice site signals lead to non-equivalence of two cassette exons. Nucleic Acids Res 23, 3585-3593.

Andreadis, A., Brown, W.M., and Kosik, K.S. (1992). Structure and novel exons of the human tau gene. Biochemistry 31, 10626-10633.

Antonini, A., Fagiolini, M., and Stryker, M.P. (1999). Anatomical correlates of functional plasticity in mouse visual cortex. J Neurosci 19, 4388-4406.

Assali, A., Gaspar, P., and Rebsam, A. (2014). Activity dependent mechanisms of visual map formation--from retinal waves to molecular regulators. Semin Cell Dev Biol 35, 136-146. Avila, J., Lim, F., Moreno, F., Belmonte, C., and Cuello, A.C. (2002). Tau function and dysfunction in neurons: its role in neurodegenerative disorders. Mol Neurobiol 25, 213-231. Badea, T.C., and Nathans, J. (2004). Quantitative analysis of neuronal morphologies in the mouse retina visualized by using a genetically directed reporter. J Comp Neurol 480, 331- 351.

Baden, T., Berens, P., Franke, K., Roman Roson, M., Bethge, M., and Euler, T. (2016). The functional diversity of retinal ganglion cells in the mouse. Nature 529, 345-350.

Baglietto-Vargas, D., Kitazawa, M., Le, E.J., Estrada-Hernandez, T., Rodriguez-Ortiz, C.J., Medeiros, R., Green, K.N., and LaFerla, F.M. (2014). Endogenous murine tau promotes

neurofibrillary tangles in 3xTg-AD mice without affecting cognition. Neurobiol Dis 62, 407- 415.

Balaram, P., and Kaas, J.H. (2014). Towards a unified scheme of cortical lamination for primary visual cortex across primates: insights from NeuN and VGLUT2 immunoreactivity. Front Neuroanat 8, 81.

Balog, J., Matthies, U., Naumann, L., Voget, M., Winter, C., and Lehmann, K. (2014). Social experience modulates ocular dominance plasticity differentially in adult male and female mice. Neuroimage 103, 454-461.

Bareyre, F.M., Garzorz, N., Lang, C., Misgeld, T., Buning, H., and Kerschensteiner, M. (2011). In vivo imaging reveals a phase-specific role of STAT3 during central and peripheral nervous system axon regeneration. Proc Natl Acad Sci U S A 108, 6282-6287.

Baroncelli, L., Sale, A., Viegi, A., Maya Vetencourt, J.F., De Pasquale, R., Baldini, S., and Maffei, L. (2010). Experience-dependent reactivation of ocular dominance plasticity in the adult visual cortex. Exp Neurol 226, 100-109.

Baudier, J., and Cole, R.D. (1988). Interactions between the microtubule-associated tau proteins and S100b regulate tau phosphorylation by the Ca2+/calmodulin-dependent protein kinase II. J Biol Chem 263, 5876-5883.

Baumann, K., Mandelkow, E.M., Biernat, J., Piwnica-Worms, H., and Mandelkow, E. (1993). Abnormal Alzheimer-like phosphorylation of tau-protein by cyclin-dependent kinases cdk2 and cdk5. FEBS Lett 336, 417-424.

Bavelier, D., and Neville, H.J. (2002). Cross-modal plasticity: where and how? Nat Rev Neurosci 3, 443-452.

Belin, S., Nawabi, H., Wang, C., Tang, S., Latremoliere, A., Warren, P., Schorle, H., Uncu, C., Woolf, C.J., He, Z., and Steen, J.A. (2015). Injury-induced decline of intrinsic regenerative ability revealed by quantitative proteomics. Neuron 86, 1000-1014.

Benoist, M., Palenzuela, R., Rozas, C., Rojas, P., Tortosa, E., Morales, B., Gonzalez-Billault, C., Avila, J., and Esteban, J.A. (2013). MAP1B-dependent Rac activation is required for AMPA receptor endocytosis during long-term depression. Embo J 32, 2287-2299.

Benowitz, L.I., and Yin, Y. (2010). Optic nerve regeneration. Arch Ophthalmol 128, 1059- 1064.

Berkelaar, M., Clarke, D.B., Wang, Y.C., Bray, G.M., and Aguayo, A.J. (1994). Axotomy results in delayed death and apoptosis of retinal ganglion cells in adult rats. J Neurosci 14, 4368-4374.

Bertrand, J., Winton, M.J., Rodriguez-Hernandez, N., Campenot, R.B., and McKerracher, L. (2005). Application of Rho antagonist to neuronal cell bodies promotes neurite growth in compartmented cultures and regeneration of retinal ganglion cell axons in the optic nerve of adult rats. J Neurosci 25, 1113-1121.

Bhaskar, K., Yen, S.H., and Lee, G. (2005). Disease-related modifications in tau affect the interaction between Fyn and Tau. J Biol Chem 280, 35119-35125.

Biernat, J., Mandelkow, E.M., Schroter, C., Lichtenberg-Kraag, B., Steiner, B., Berling, B., Meyer, H., Mercken, M., Vandermeeren, A., Goedert, M., and et al. (1992). The switch of tau protein to an Alzheimer-like state includes the phosphorylation of two serine-proline motifs upstream of the microtubule binding region. Embo J 11, 1593-1597.

Biernat, J., Wu, Y.Z., Timm, T., Zheng-Fischhofer, Q., Mandelkow, E., Meijer, L., and Mandelkow, E.M. (2002). Protein kinase MARK/PAR-1 is required for neurite outgrowth and establishment of neuronal polarity. Mol Biol Cell 13, 4013-4028.

Binder, L.I., Frankfurter, A., and Rebhun, L.I. (1985). The distribution of tau in the mammalian central nervous system. J Cell Biol 101, 1371-1378.

Birch, D.G., and Anderson, J.L. (1992). Standardized full-field electroretinography. Normal values and their variation with age. Arch Ophthalmol 110, 1571-1576.

Biswas, S., and Kalil, K. (2018). The Microtubule-Associated Protein Tau Mediates the Organization of Microtubules and Their Dynamic Exploration of Actin-Rich Lamellipodia and Filopodia of Cortical Growth Cones. J Neurosci 38, 291-307.

Biundo, F., Del Prete, D., Zhang, H., Arancio, O., and D'Adamio, L. (2018). A role for tau in learning, memory and synaptic plasticity. Sci Rep 8, 3184.

Blackman, M.P., Djukic, B., Nelson, S.B., and Turrigiano, G.G. (2012). A critical and cell- autonomous role for MeCP2 in synaptic scaling up. J Neurosci 32, 13529-13536.

Blanks, J.C., Torigoe, Y., Hinton, D.R., and Blanks, R.H. (1991). Retinal degeneration in the macula of patients with Alzheimer's disease. Ann N Y Acad Sci 640, 44-46.

Blanquie, O., and Bradke, F. (2018). Cytoskeleton dynamics in axon regeneration. Curr Opin Neurobiol 51, 60-69.

Boggio, E.M., Putignano, E., Sassoe-Pognetto, M., Pizzorusso, T., and Giustetto, M. (2007). Visual stimulation activates ERK in synaptic and somatic compartments of rat cortical neurons with parallel kinetics. PLoS One 2, e604.

Bolkan, B.J., and Kretzschmar, D. (2014). Loss of Tau results in defects in photoreceptor development and progressive neuronal degeneration in Drosophila. Dev Neurobiol 74, 1210- 1225.

Bonhoeffer, T., and Grinvald, A. (1991). Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns. Nature 353, 429-431.

Boyne, L.J., Tessler, A., Murray, M., and Fischer, I. (1995). Distribution of Big tau in the central nervous system of the adult and developing rat. J Comp Neurol 358, 279-293. Bradbury, E.J., Moon, L.D., Popat, R.J., King, V.R., Bennett, G.S., Patel, P.N., Fawcett, J.W., and McMahon, S.B. (2002). Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416, 636-640.

Brandt, R., Leger, J., and Lee, G. (1995). Interaction of tau with the neural plasma membrane mediated by tau's amino-terminal projection domain. J Cell Biol 131, 1327-1340.

Bray, E.R., Noga, M., Thakor, K., Wang, Y., Lemmon, V.P., Park, K.K., and Tsoulfas, P. (2017). 3D Visualization of Individual Regenerating Retinal Ganglion Cell Axons Reveals Surprisingly Complex Growth Paths. eNeuro 4.

Bray, E.R., Yungher, B.J., Levay, K., Ribeiro, M., Dvoryanchikov, G., Ayupe, A.C., Thakor, K., Marks, V., Randolph, M., Danzi, M.C., et al. (2019). Thrombospondin-1 Mediates Axon Regeneration in Retinal Ganglion Cells. Neuron 103, 642-657 e647.

Brion, J.P., Guilleminot, J., Couchie, D., Flament-Durand, J., and Nunez, J. (1988). Both adult and juvenile tau microtubule-associated proteins are axon specific in the developing and adult rat cerebellum. Neuroscience 25, 139-146.

Bromberg, J.F., Wrzeszczynska, M.H., Devgan, G., Zhao, Y., Pestell, R.G., Albanese, C., and Darnell, J.E., Jr. (1999). Stat3 as an oncogene. Cell 98, 295-303.

Buee, L., Bussiere, T., Buee-Scherrer, V., Delacourte, A., and Hof, P.R. (2000). Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev 33, 95-130.

Bullmann, T., Holzer, M., Mori, H., and Arendt, T. (2009). Pattern of tau isoforms expression during development in vivo. Int J Dev Neurosci 27, 591-597.

Butler, M., and Shelanski, M.L. (1986). Microheterogeneity of microtubule-associated tau proteins is due to differences in phosphorylation. J Neurochem 47, 1517-1522.

Butner, K.A., and Kirschner, M.W. (1991). Tau protein binds to microtubules through a flexible array of distributed weak sites. J Cell Biol 115, 717-730.

Butt, S.J., Fuccillo, M., Nery, S., Noctor, S., Kriegstein, A., Corbin, J.G., and Fishell, G. (2005). The temporal and spatial origins of cortical interneurons predict their physiological subtype. Neuron 48, 591-604.

Caceres, A., and Kosik, K.S. (1990). Inhibition of neurite polarity by tau antisense oligonucleotides in primary cerebellar neurons. Nature 343, 461-463.

Caleo, M., Restani, L., Gianfranceschi, L., Costantin, L., Rossi, C., Rossetto, O., Montecucco, C., and Maffei, L. (2007). Transient synaptic silencing of developing striate cortex has persistent effects on visual function and plasticity. J Neurosci 27, 4530-4540. Camero, S., Benitez, M.J., Barrantes, A., Ayuso, J.M., Cuadros, R., Avila, J., and Jimenez, J.S. (2014). Tau protein provides DNA with thermodynamic and structural features which are similar to those found in histone-DNA complex. J Alzheimers Dis 39, 649-660.

Cancedda, L., Putignano, E., Sale, A., Viegi, A., Berardi, N., and Maffei, L. (2004). Acceleration of visual system development by environmental enrichment. J Neurosci 24, 4840-4848.

Cantrup, R., Dixit, R., Palmesino, E., Bonfield, S., Shaker, T., Tachibana, N., Zinyk, D., Dalesman, S., Yamakawa, K., Stell, W.K., et al. (2012). Cell-type specific roles for PTEN in establishing a functional retinal architecture. PLoS One 7, e32795.

Carlier, M.F., Simon, C., Cassoly, R., and Pradel, L.A. (1984). Interaction between microtubule-associated protein tau and spectrin. Biochimie 66, 305-311.

Case, L.C., and Tessier-Lavigne, M. (2005). Regeneration of the adult central nervous system. Curr Biol 15, R749-753.

Catterall, W.A. (2018). Dravet Syndrome: A Sodium Channel Interneuronopathy. Curr Opin Physiol 2, 42-50.

Chan-Ling, T., Hughes, S., Baxter, L., Rosinova, E., McGregor, I., Morcos, Y., van Nieuwenhuyzen, P., and Hu, P. (2007). Inflammation and breakdown of the blood-retinal barrier during "physiological aging" in the rat retina: a model for CNS aging. Microcirculation 14, 63-76.

Chen, C., and Regehr, W.G. (2000). Developmental remodeling of the retinogeniculate synapse. Neuron 28, 955-966.

Chen, J., Kanai, Y., Cowan, N.J., and Hirokawa, N. (1992). Projection domains of MAP2 and tau determine spacings between microtubules in dendrites and axons. Nature 360, 674- 677.

Chen, J.L., Flanders, G.H., Lee, W.C., Lin, W.C., and Nedivi, E. (2011). Inhibitory dendrite dynamics as a general feature of the adult cortical microcircuit. J Neurosci 31, 12437-12443. Chen, W.S., and Bear, M.F. (2007). Activity-dependent regulation of NR2B translation contributes to metaplasticity in mouse visual cortex. Neuropharmacology 52, 200-214. Chen, W.T., Liu, W.K., and Yen, S.H. (1994). Expression of tau exon 8 in different species. Neurosci Lett 172, 167-170.

Cheng, L., Sapieha, P., Kittlerova, P., Hauswirth, W.W., and Di Polo, A. (2002). TrkB gene transfer protects retinal ganglion cells from axotomy-induced death in vivo. J Neurosci 22, 3977-3986.

Chiasseu, M., Alarcon-Martinez, L., Belforte, N., Quintero, H., Dotigny, F., Destroismaisons, L., Vande Velde, C., Panayi, F., Louis, C., and Di Polo, A. (2017). Tau

accumulation in the retina promotes early neuronal dysfunction and precedes brain pathology in a mouse model of Alzheimer's disease. Mol Neurodegener 12, 58.

Chiasseu, M., Cueva Vargas, J.L., Destroismaisons, L., Vande Velde, C., Leclerc, N., and Di Polo, A. (2016). Tau Accumulation, Altered Phosphorylation, and Missorting Promote Neurodegeneration in Glaucoma. J Neurosci 36, 5785-5798.

Chidlow, G., Wood, J.P., Manavis, J., Finnie, J., and Casson, R.J. (2017). Investigations into Retinal Pathology in the Early Stages of a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 56, 655-675.

Chiku, T., Hayashishita, M., Saito, T., Oka, M., Shinno, K., Ohtake, Y., Shimizu, S., Asada, A., Hisanaga, S.I., Iijima, K.M., and Ando, K. (2018). S6K/p70S6K1 protects against tau- mediated neurodegeneration by decreasing the level of tau phosphorylated at Ser262 in a Drosophila model of tauopathy. Neurobiol Aging 71, 255-264.

Cho, J.H., and Johnson, G.V. (2003). Glycogen synthase kinase 3beta phosphorylates tau at both primed and unprimed sites. Differential impact on microtubule binding. J Biol Chem 278, 187-193.

Cho, J.H., and Johnson, G.V. (2004). Primed phosphorylation of tau at Thr231 by glycogen synthase kinase 3beta (GSK3beta) plays a critical role in regulating tau's ability to bind and stabilize microtubules. J Neurochem 88, 349-358.

Cho, K.K., Khibnik, L., Philpot, B.D., and Bear, M.F. (2009). The ratio of NR2A/B NMDA receptor subunits determines the qualities of ocular dominance plasticity in visual cortex. Proc Natl Acad Sci U S A 106, 5377-5382.

Chrysostomou, V., and Crowston, J.G. (2013). The photopic negative response of the mouse electroretinogram: reduction by acute elevation of intraocular pressure. Invest Ophthalmol Vis Sci 54, 4691-4697.

Cleveland, D.W., Hwo, S.Y., and Kirschner, M.W. (1977a). Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly. J Mol Biol 116, 227-247. Cleveland, D.W., Hwo, S.Y., and Kirschner, M.W. (1977b). Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin. J Mol Biol 116, 207-225.

Coizet, V., Overton, P.G., and Redgrave, P. (2007). Collateralization of the tectonigral projection with other major output pathways of superior colliculus in the rat. J Comp Neurol 500, 1034-1049.

Constantinople, C.M., and Bruno, R.M. (2013). Deep cortical layers are activated directly by thalamus. Science 340, 1591-1594.

Correas, I., Padilla, R., and Avila, J. (1990). The tubulin-binding sequence of brain microtubule-associated proteins, tau and MAP-2, is also involved in actin binding. Biochem J 269, 61-64.

Couchie, D., Mavilia, C., Georgieff, I.S., Liem, R.K., Shelanski, M.L., and Nunez, J. (1992). Primary structure of high molecular weight tau present in the peripheral nervous system. Proc Natl Acad Sci U S A 89, 4378-4381.

Cregg, J.M., DePaul, M.A., Filous, A.R., Lang, B.T., Tran, A., and Silver, J. (2014). Functional regeneration beyond the glial scar. Exp Neurol 253, 197-207.

Cunea, A., Powner, M.B., and Jeffery, G. (2014). Death by color: differential cone loss in the aging mouse retina. Neurobiol Aging 35, 2584-2591.

Dan, W., Gao, N., Li, L., Zhu, J.X., Diao, L., Huang, J., Han, Q.J., Wang, S., Xue, H., Wang, Q., et al. (2018). alpha-Tubulin Acetylation Restricts Axon Overbranching by Dampening Microtubule Plus-End Dynamics in Neurons. Cereb Cortex 28, 3332-3346.

Dawson, H.N., Ferreira, A., Eyster, M.V., Ghoshal, N., Binder, L.I., and Vitek, M.P. (2001). Inhibition of neuronal maturation in primary hippocampal neurons from tau deficient mice. J Cell Sci 114, 1179-1187.

de Vivo, L., Melone, M., Rothstein, J.D., and Conti, F. (2010). GLT-1 Promoter Activity in Astrocytes and Neurons of Mouse Hippocampus and Somatic Sensory Cortex. Front Neuroanat 3, 31.

Dehmelt, L., and Halpain, S. (2005). The MAP2/Tau family of microtubule-associated proteins. Genome Biol 6, 204.

Delacourte, A. (2003). Le retour de la protéine Tau. La recherche Hors Série n10.

Derkinderen, P., Scales, T.M., Hanger, D.P., Leung, K.Y., Byers, H.L., Ward, M.A., Lenz, C., Price, C., Bird, I.N., Perera, T., et al. (2005). Tyrosine 394 is phosphorylated in Alzheimer's paired helical filament tau and in fetal tau with c-Abl as the candidate tyrosine kinase. J Neurosci 25, 6584-6593.

Dhande, O.S., Stafford, B.K., Lim, J.A., and Huberman, A.D. (2015). Contributions of Retinal Ganglion Cells to Subcortical Visual Processing and Behaviors. Annu Rev Vis Sci 1, 291-328.

Di Cristo, G., Berardi, N., Cancedda, L., Pizzorusso, T., Putignano, E., Ratto, G.M., and Maffei, L. (2001). Requirement of ERK activation for visual cortical plasticity. Science 292, 2337-2340.

Dieterich, D.C., Trivedi, N., Engelmann, R., Gundelfinger, E.D., Gordon-Weeks, P.R., and Kreutz, M.R. (2002). Partial regeneration and long-term survival of rat retinal ganglion cells after optic nerve crush is accompanied by altered expression, phosphorylation and distribution of cytoskeletal proteins. Eur J Neurosci 15, 1433-1443.

DiLoreto, D., Jr., Ison, J.R., Bowen, G.P., Cox, C., and del Cerro, M. (1995). A functional analysis of the age-related degeneration in the Fischer 344 rat. Curr Eye Res 14, 303-310. Dixit, R., Ross, J.L., Goldman, Y.E., and Holzbaur, E.L. (2008). Differential regulation of dynein and kinesin motor proteins by tau. Science 319, 1086-1089.

Dotti, C.G., Banker, G.A., and Binder, L.I. (1987). The expression and distribution of the microtubule-associated proteins tau and microtubule-associated protein 2 in hippocampal neurons in the rat in situ and in cell culture. Neuroscience 23, 121-130.

Doustar, J., Torbati, T., Black, K.L., Koronyo, Y., and Koronyo-Hamaoui, M. (2017). Optical Coherence Tomography in Alzheimer's Disease and Other Neurodegenerative Diseases. Front Neurol 8, 701.

Drager, U.C. (1975). Receptive fields of single cells and topography in mouse visual cortex. J Comp Neurol 160, 269-290.

Drager, U.C. (1978). Observations on monocular deprivation in mice. J Neurophysiol 41, 28- 42.

Drager, U.C., and Olsen, J.F. (1980). Origins of crossed and uncrossed retinal projections in pigmented and albino mice. J Comp Neurol 191, 383-412.

Drechsel, D.N., Hyman, A.A., Cobb, M.H., and Kirschner, M.W. (1992). Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau. Mol Biol Cell 3, 1141-1154.

Drescher, U., Kremoser, C., Handwerker, C., Loschinger, J., Noda, M., and Bonhoeffer, F. (1995). In vitro guidance of retinal ganglion cell axons by RAGS, a 25 kDa tectal protein related to ligands for Eph receptor tyrosine kinases. Cell 82, 359-370.

Drewes, G., Trinczek, B., Illenberger, S., Biernat, J., Schmitt-Ulms, G., Meyer, H.E., Mandelkow, E.M., and Mandelkow, E. (1995). Microtubule-associated protein/microtubule

affinity-regulating kinase (p110mark). A novel protein kinase that regulates tau-microtubule interactions and dynamic instability by phosphorylation at the Alzheimer-specific site serine 262. J Biol Chem 270, 7679-7688.

Drubin, D.G., Feinstein, S.C., Shooter, E.M., and Kirschner, M.W. (1985). Nerve growth factor-induced neurite outgrowth in PC12 cells involves the coordinate induction of microtubule assembly and assembly-promoting factors. J Cell Biol 101, 1799-1807.

Du, K., Zheng, S., Zhang, Q., Li, S., Gao, X., Wang, J., Jiang, L., and Liu, K. (2015). Pten Deletion Promotes Regrowth of Corticospinal Tract Axons 1 Year after Spinal Cord Injury. J Neurosci 35, 9754-9763.

Duan, X., Qiao, M., Bei, F., Kim, I.J., He, Z., and Sanes, J.R. (2015). Subtype-specific regeneration of retinal ganglion cells following axotomy: effects of osteopontin and mTOR signaling. Neuron 85, 1244-1256.

Dubey, M., Chaudhury, P., Kabiru, H., and Shea, T.B. (2008). Tau inhibits anterograde axonal transport and perturbs stability in growing axonal neurites in part by displacing kinesin cargo: neurofilaments attenuate tau-mediated neurite instability. Cell Motil Cytoskeleton 65, 89-99.

Duff, K., Knight, H., Refolo, L.M., Sanders, S., Yu, X., Picciano, M., Malester, B., Hutton, M., Adamson, J., Goedert, M., et al. (2000). Characterization of pathology in transgenic mice over-expressing human genomic and cDNA tau transgenes. Neurobiol Dis 7, 87-98.

Dujardin, S., Begard, S., Caillierez, R., Lachaud, C., Delattre, L., Carrier, S., Loyens, A., Galas, M.C., Bousset, L., Melki, R., et al. (2014). Ectosomes: a new mechanism for non- exosomal secretion of tau protein. PLoS One 9, e100760.

Duncan, J.E., and Goldstein, L.S. (2006). The genetics of axonal transport and axonal transport disorders. PLoS Genet 2, e124.

Dutescu, R.M., Li, Q.X., Crowston, J., Masters, C.L., Baird, P.N., and Culvenor, J.G. (2009). Amyloid precursor protein processing and retinal pathology in mouse models of Alzheimer's disease. Graefes Arch Clin Exp Ophthalmol 247, 1213-1221.

Ebneth, A., Godemann, R., Stamer, K., Illenberger, S., Trinczek, B., and Mandelkow, E. (1998). Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer's disease. J Cell Biol 143, 777-794.

Edelmann, W., Zervas, M., Costello, P., Roback, L., Fischer, I., Hammarback, J.A., Cowan, N., Davies, P., Wainer, B., and Kucherlapati, R. (1996). Neuronal abnormalities in microtubule-associated protein 1B mutant mice. Proc Natl Acad Sci U S A 93, 1270-1275. Edwards, M., Balldin, V.H., Hall, J., and O'Bryant, S. (2014). Combining select neuropsychological assessment with blood-based biomarkers to detect mild Alzheimer's disease: a molecular neuropsychology approach. J Alzheimers Dis 42, 635-640.