• Aucun résultat trouvé

Les études cliniques et les études in vitro confirment l’importance des galectines-1 et -3 dans l’angiogenèse.

Nous avons démontré que l’expression endothéliale de galectine-3 et l’hyperplasie endothéliocapillaire sont des facteurs de mauvais pronostic chez les patients immunocompétents atteints de lymphome primitif du système nerveux central.

Ces données doivent être validées au sein d’une plus large série de lymphomes primitifs du système nerveux central. Il faudrait également évaluer le potentiel de l’expression endothéliale de galectine-3 comme biomarqueur théranostique prédictif d’une réponse à un traitement anti-angiogénique dans une étude clinique.

Ce travail identifie également les VEGFRs comme biomarqueurs des cellules endothéliales dans un contexte tumoral, celles-ci étant caractérisées par une augmentation d’expression de VEGFR1 et une diminution d’expression de VEGFR2 en comparaison aux cellules endothéliales normales.

Ces résultats soulignent la nécessité de mieux caractériser, à partir de tissus humains, les cellules endothéliales dans un contexte tumoral et les cellules endothéliales quiescentes. Ceci permettrait de proposer de nouvelles cibles thérapeutiques spécifiques de l’angiogenèse tumorale.

Nous avons également mis en évidence la nécessité d’étudier l’angiogenèse in vitro à partir de lignées différentes de cellules endothéliales. Nos résultats nous permettent de proposer la lignée EA.hy926 comme modèle in vitro de cellules endothéliales dans un contexte tumoral. Il serait intéressant de caractériser plus précisément ce modèle (cellules EA.hy926), par exemple, à partir d’études de perméabilité, de coculture ou de modèles animaux. Afin de mieux appréhender l’hétérogénéité des cellules endothéliales, nous pourrions également comparer cette lignée avec des cellules endothéliales isolées à partir de différentes tumeurs humaines.

Nous démontrons que les galectines-1 et -3 sont des molécules antigéniques. Cependant, les voies de signalisation activées par les galectines semblent être les mêmes que celles du VEGF via l’activation du VEGFR2 dans nos modèles de cellules endothéliales normales et de cellules endothéliales dans un contexte tumoral. Alors que le rôle du VEGFR1 est encore controversé, nos données démontrent que la stimulation de l’angiogenèse tumorale par la combinaison des galectines-1 et -3 est liée à l’activation de ce recepteur. Nos résultats, intégrés aux données de la littérature, nous ont permis de poser l’hypothèse que la réponse endothéliale aux galectines-1 et -3 varie selon le microenvironnement (Figure 52). Dans un environnement normal, les galectines-1 et -3 extracellulaires stimulent l’angiogenèse via l’activation du VEGFR2 avec un effet additif lorsque les deux galectines sont présentes. Dans un environnement tumoral, chacune de ces galectines stimule l’angiogenèse via l’activation du VEGFR2 alors que la combinaison des deux galectines crée un effet synergique sur l’angiogenèse via l’activation du VEGFR1.

Ces résultats ouvrent de nouvelles perspectives de recherche sur les interactions entre la galectine-1 et -3 ainsi que sur les mécanismes d’action de ces galectines sur les VEGFRs. Parmi les pistes potentielles, nous favorisons l’hypothèse que les galectines, par la formation d’un treillis à la surface cellulaire, pourraient moduler l’endocytose des VEGFRs. Cette inhibition de l’endocytose des VEGFRs par les galectines permettrait une amplification du signal transmis par ces récepteurs.

Ce travail souligne que les galectines-1 et -3 représentent une cible thérapeutique intéressante en terme de thérapie anti-angiogénique. Toutefois, comme l’expression endothéliale des galectines-1 et -3 est différente selon la localisation tumorale, il faudra tenir compte de l’hétérogénéité des cellules endothéliales pour évaluer l’efficacité d’un traitement anti-angiogénique ciblant la galectine-1 ou la galectine-3. De plus, l’effet synergique des galectines-1 et -3 observé in vitro pour l’angiogenèse tumorale doit faire envisager une thérapie couplée ciblant ces deux galectines. La combinaison de ces thérapies avec des inhibiteurs des VEGFRs devra également être évaluée.

REFERENCES

Abdelrahim, M.,S. Konduri,R. Basha,P. A. Philip et C. H. Baker (2010). Angiogenesis: an update and potential drug approaches (review). Int J Oncol 36: 5-18.

Abrey, L. E.,L. Ben-Porat,K. S. Panageas,J. Yahalom,B. Berkey,W. Curran,C. Schultz,S. Leibel,D. Nelson,M. Mehta et L. M. DeAngelis (2006). Primary central nervous system lymphoma: the Memorial Sloan-Kettering Cancer Center prognostic model. J Clin Oncol 24: 5711-5.

Alizadeh, A. A.,M. B. Eisen,R. E. Davis,C. Ma,I. S. Lossos,A. Rosenwald,J. C. Boldrick,H. Sabet,T. Tran,X. Yu,J. I. Powell,L. Yang,G. E. Marti,T. Moore,J. Hudson, Jr.,L. Lu,D. B. Lewis,R. Tibshirani,G. Sherlock,W. C. Chan,T. C. Greiner,D. D. Weisenburger,J. O. Armitage,R. Warnke,R. Levy,W. Wilson,M. R. Grever,J. C. Byrd,D. Botstein,P. O. Brown et L. M. Staudt (2000). Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403: 503-11.

Alshenawy, H. A. (2010). Prognostic significance of vascular endothelial growth factor, basic fibroblastic growth factor, and microvessel density and their relation to cell proliferation in B-cell non-Hodgkin's lymphoma. Ann Diagn Pathol 14: 321-7.

Andreasson, U.,M. Dictor,M. Jerkeman,M. Berglund,C. Sundstrom,J. Linderoth,R. Rosenquist,C. A. Borrebaeck et S. Ek (2009). Identification of molecular targets associated with transformed diffuse large B cell lymphoma using highly purified tumor cells. Am J Hematol 84: 803-8.

Ansell, S. M. et J. Armitage (2005). Non-Hodgkin lymphoma: diagnosis and treatment. Mayo Clin Proc 80: 1087-97.

Ansell, S. M. et J. O. Armitage (2006). Management of Hodgkin lymphoma. Mayo Clin Proc

81: 419-26.

Arias, V. et F. A. Soares (2000). Vascular density (tumor angiogenesis) in non-Hodgkin's lymphomas and florid follicular hyperplasia: a morphometric study. Leuk Lymphoma

40: 157-66.

Autiero, M.,J. Waltenberger,D. Communi,A. Kranz,L. Moons,D. Lambrechts,J. Kroll,S. Plaisance,M. De Mol,F. Bono,S. Kliche,G. Fellbrich,K. Ballmer-Hofer,D. Maglione,U. Mayr-Beyrle,M. Dewerchin,S. Dombrowski,D. Stanimirovic,P. Van Hummelen,C. Dehio,D. J. Hicklin,G. Persico,J. M. Herbert,D. Communi,M. Shibuya,D. Collen,E. M. Conway et P. Carmeliet (2003). Role of PlGF in the intra-

and intermolecular cross talk between the VEGF receptors Flt1 and Flk1. Nat Med 9: 936-43.

Baranska, P.,H. Jerczynska,Z. Pawlowska,W. Koziolkiewicz et C. Cierniewski (2005). Expression of integrins and adhesive properties of human endothelail cell line EA.hy926. Cancer genomics & proteomics 2: 265-70.

Batchelor, T. et J. S. Loeffler (2006). Primary CNS lymphoma. J Clin Oncol 24: 1281-8. Baum, L. G.,M. Pang,N. L. Perillo,T. Wu,A. Delegeane,C. H. Uittenbogaart,M. Fukuda et J.

J. Seilhamer (1995). Human thymic epithelial cells express an endogenous lectin, galectin-1, which binds to core 2 O-glycans on thymocytes and T lymphoblastoid cells. J Exp Med 181: 877-87.

Baum, L. G.,J. J. Seilhamer,M. Pang,W. B. Levine,D. Beynon et J. A. Berliner (1995). Synthesis of an endogeneous lectin, galectin-1, by human endothelial cells is up-regulated by endothelial cell activation. Glycoconj J 12: 63-8.

Bergers, G. et D. Hanahan (2008). Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8: 592-603.

Bertolini, F.,L. Fusetti,P. Mancuso,A. Gobbi,C. Corsini,P. F. Ferrucci,G. Martinelli et G. Pruneri (2000). Endostatin, an antiangiogenic drug, induces tumor stabilization after chemotherapy or anti-CD20 therapy in a NOD/SCID mouse model of human high-grade non-Hodgkin lymphoma. Blood 96: 282-287.

Bertolini, F.,M. Paolucci,F. Peccatori,S. Cinieri,A. Agazzi,P. F. Ferrucci,E. Cocorocchio,A. Goldhirsch et G. Martinelli (1999). Angiogenic growth factors and endostatin in non-Hodgkin's lymphoma. Br J Haematol 106: 504-9.

Boerma, M.,G. R. Burton,J. Wang,L. M. Fink,R. E. McGehee, Jr. et M. Hauer-Jensen (2006). Comparative expression profiling in primary and immortalized endothelial cells: changes in gene expression in response to hydroxy methylglutaryl-coenzyme A reductase inhibition. Blood Coagul Fibrinolysis 17: 173-80.

Bono, P.,L. Teerenhovi et H. Joensuu (2003). Elevated serum endostatin is associated with poor outcome in patients with non-Hodgkin lymphoma. Cancer 97: 2767-75.

Braaten, K. M.,R. A. Betensky,L. de Leval,Y. Okada,F. H. Hochberg,D. N. Louis,N. L. Harris et T. T. Batchelor (2003). BCL-6 expression predicts improved survival in patients with primary central nervous system lymphoma. Clin Cancer Res 9: 1063-9.

Brat, D. J. et E. G. Van Meir (2001). Glomeruloid microvascular proliferation orchestrated by VPF/VEGF: a new world of angiogenesis research. Am J Pathol 158: 789-96.

Brem, S. S. et M. Mrugala (2010). NCCN Clinical Practice Guidelines in Oncology. Central Nervous System Cancers

http://www.nccn.org/professionals/physician_gls/PDF/cns.pdf.

Bresalier, R. S.,P. S. Yan,J. C. Byrd,R. Lotan et A. Raz (1997). Expression of the endogenous galactose-binding protein galectin-3 correlates with the malignant potential of tumors in the central nervous system. Cancer 80: 776-87.

Califice, S., V. Castronovo, M. Bracke et F. van den Brûle (2004). Dual activities of galectin-3 in human prostate cancer: tumor suppression of nuclear galectin-3 vs tumor promotion of cytoplasmic galectin-3. Oncogene 23: 7527-36.

Camby, I.,M. Le Mercier,F. Lefranc et R. Kiss (2006). Galectin-1: a small protein with major functions. Glycobiology 16: 137R-157R.

Cao, Y. (2010). Angiogenesis: What can it offer for future medicine? Exp Cell Res 316: 1304-8.

Cardesa-Salzmann, T. M.,L. Colomo,F. Climent,E. Gonzalez-Barca,A. Lopez-Guillermo,G. Gutierrez,S. Mercadal,R. D. Gascoyne,J. M. Connors,L. M. Rimsza,R. M. Braziel,J. R. Cook,R. R. Tubbs,A. Rosenwald,G. Ott,J. L. Mate,J.-M. Ribera,L. Arenillas,S. Serrano,N. Combalia,J. Delabie,G. Lenz,G. Wright,E. S. Jaffe,L. M. Staudt,W. C. Chan,D. Weissenburger et E. Campo (2009). High Microvascular Density Correlates with Poor Outcome in Patients with Diffuse Large B-Cell Lymphoma (DLBCL) Treated with Rituximab Plus Chemotherapy (R-CT). Blood (ASH Annual Meeting Abstracts) 114: 1948.

Carmeliet, P. (2000). Mechanisms of angiogenesis and arteriogenesis. Nat Med 6: 389-95. Carmeliet, P. (2003). Angiogenesis in health and disease. Nat Med 9: 653-60.

Carmeliet, P. (2005). Angiogenesis in life, disease and medicine. Nature 438: 932-6.

Carmeliet, P.,F. De Smet,S. Loges et M. Mazzone (2009). Branching morphogenesis and antiangiogenesis candidates: tip cells lead the way. Nat Rev Clin Oncol 6: 315-26. Carmeliet, P. et R. K. Jain (2000). Angiogenesis in cancer and other diseases. Nature 407:

249-57.

Carmeliet, P.,L. Moons,A. Luttun,V. Vincenti,V. Compernolle,M. De Mol,Y. Wu,F. Bono,L. Devy,H. Beck,D. Scholz,T. Acker,T. DiPalma,M. Dewerchin,A. Noel,I. Stalmans,A. Barra,S. Blacher,T. Vandendriessche,A. Ponten,U. Eriksson,K. H. Plate,J. M. Foidart,W. Schaper,D. S. Charnock-Jones,D. J. Hicklin,J. M. Herbert,D. Collen et M. G. Persico (2001). Synergism between vascular endothelial growth factor and

placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 7: 575-83.

Chang, Y. S.,E. di Tomaso,D. M. McDonald,R. Jones,R. K. Jain et L. L. Munn (2000). Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. Proc Natl Acad Sci U S A 97: 14608-13.

Chen, Y. et D. H. Gorski (2008). Regulation of angiogenesis through a microRNA (miR-130a) that down-regulates antiangiogenic homeobox genes GAX and HOXA5. Blood

111: 1217-26.

Chung, A. S.,J. Lee et N. Ferrara (2010). Targeting the tumour vasculature: insights from physiological angiogenesis. Nat Rev Cancer 10: 505-14.

Citak, E. C.,A. Oguz,C. Karadeniz et N. Akyurek (2008). Immunohistochemical expression of angiogenic cytokines in childhood Hodgkin lymphoma. Pathol Res Pract 204: 89-96. Citak, E. C.,A. Oguz,C. Karadeniz et N. Akyurek (2008). Role of gelatinases (MMP-2 and

MMP-9), TIMP-1, vascular endothelial growth factor (VEGF), and microvessel density on the clinicopathological behavior of childhood non-Hodgkin lymphoma.

Pediatr Hematol Oncol 25: 55-66.

Claise, C.,M. Edeas,N. Chaouchi,J. Chalas,L. Capel,S. Kalimouttou,A. Vazquez et A. Lindenbaum (1999). Oxidized-LDL induce apoptosis in HUVEC but not in the endothelial cell line EA.hy 926. Atherosclerosis 147: 95-104.

Clausse, N.,F. van den Brule,D. Waltregny,F. Garnier et V. Castronovo (1999). Galectin-1 expression in prostate tumor-associated capillary endothelial cells is increased by prostate carcinoma cells and modulates heterotypic cell-cell adhesion. Angiogenesis 3: 317-25.

Clear, A. J.,A. M. Lee,M. Calaminici,A. G. Ramsay,K. J. Morris,S. Hallam,G. Kelly,F. Macdougall,T. A. Lister et J. G. Gribben (2010). Increased angiogenic sprouting in poor prognosis FL is associated with elevated numbers of CD163+ macrophages within the immediate sprouting microenvironment. Blood 115: 5053-6.

Cotran, R.,V. Kumar et T. Collins (2000). Robbins - Anatomie Pathologique. Bases morphologiques et physiopathologiques des maladies. Philadelphia, Saunders Company.

De Bock, K.,F. De Smet,R. Leite De Oliveira,K. Anthonis et P. Carmeliet (2009). Endothelial oxygen sensors regulate tumor vessel abnormalization by instructing phalanx endothelial cells. J Mol Med 87: 561-9.

Decaestecker, C.,X. M. Lopez,N. D'Haene,I. Roland,S. Guendouz,C. Duponchelle,A. Berton,O. Debeir et I. Salmon (2009). Requirements for the valid quantification of immunostains on tissue microarray materials using image analysis. Proteomics 9: 4478-94.

Dejana, E.,F. Orsenigo et M. G. Lampugnani (2008). The role of adherens junctions and VE-cadherin in the control of vascular permeability. j Cell Sci 121: 2115-2122.

Delmonte, A.,M. Ghielmini et C. Sessa (2009). Beyond monoclonal antibodies: new therapeutic agents in non-Hodgkin's lymphomas. Oncologist 14: 511-25.

Denizot, F. et R. Lang (1986). Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89: 271-7.

Dincaslan, H. U.,G. Yavuz,E. Unal,N. Tacyildiz,A. Ikinciogullari,F. Dogu,D. Guloglu,N. Yuksek et U. Ertem (2010). Does serum soluble vascular endothelial growth factor levels have different importance in pediatric acute leukemia and malignant lymphoma patients? Pediatr Hematol Oncol 27: 503-16.

Dome, B.,M. J. Hendrix,S. Paku,J. Tovari et J. Timar (2007). Alternative vascularization mechanisms in cancer: Pathology and therapeutic implications. Am J Pathol 170: 1-15.

Doussis-Anagnostopoulou, I. A.,K. L. Talks,H. Turley,P. Debnam,D. C. Tan,G. Mariatos,V. Gorgoulis,C. Kittas et K. C. Gatter (2002). Vascular endothelial growth factor (VEGF) is expressed by neoplastic Hodgkin-Reed-Sternberg cells in Hodgkin's disease. J Pathol 197: 677-83.

Dumic, J.,S. Dabelic et M. Flogel (2006). Galectin-3: an open-ended story. Biochim Biophys Acta 1760: 616-35.

Eberhard, A.,S. Kahlert,V. Goede,B. Hemmerlein,K. H. Plate et H. G. Augustin (2000). Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res 60: 1388-93.

Ebos, J. M.,C. R. Lee et R. S. Kerbel (2009). Tumor and host-mediated pathways of resistance and disease progression in response to antiangiogenic therapy. Clin Cancer Res 15: 5020-5.

Edgell, C. J.,C. C. McDonald et J. B. Graham (1983). Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proc Natl Acad Sci U S A 80: 3734-7.

Elad-Sfadia, G.,R. Haklai,E. Balan et Y. Kloog (2004). Galectin-3 augments K-Ras activation and triggers a Ras signal that attenuates ERK but not phosphoinositide 3-kinase activity. J Biol Chem 279: 34922-30.

Ellis, L. M. et D. J. Hicklin (2008). VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer 8: 579-91.

Elola, M. T.,C. Wolfenstein-Todel,M. F. Troncoso,G. R. Vasta et G. A. Rabinovich (2007). Galectins: matricellular glycan-binding proteins linking cell adhesion, migration, and survival. Cell Mol Life Sci 64: 1679-700.

Erdreich-Epstein, A.,H. Shimada,S. Groshen,M. Liu,L. S. Metelitsa,K. S. Kim,M. F. Stins,R. C. Seeger et D. L. Durden (2000). Integrins alpha(v)beta3 and alpha(v)beta5 are expressed by endothelium of high-risk neuroblastoma and their inhibition is associated with increased endogenous ceramide. Cancer Res 60: 712-21.

Evans, L. S. et B. W. Hancock (2003). Non-Hodgkin lymphoma. Lancet 362: 139-46.

Farinha, P.,A. Kyle,A. Minchinton,J. Connors,A. Karsan et R. Gascoyne (2010). Vascularization predicts overall survival and risk of transformation in follicular lymphoma. Haematologica 95: 2157-60.

Ferlay, J.,H. Shin,F. Bray,D. Forman,C. Mathers et D. Parkin (2010). GLOBOCAN 2008, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 10, Lyon, France: International Agency for Research on Cancer - http://globocan.iarc.fr

Feron, O. (2004). Targeting the tumor vascular compartment to improve conventional cancer therapy. Trends Pharmacol Sci 25: 536-42.

Ferrara, N. (2004). Vascular endothelial growth factor: basic science and clinical progress.

Endocr Rev 25: 581-611.

Ferrara, N. (2010). Pathways mediating VEGF-independent tumor angiogenesis. Cytokine Growth Factor Rev 21: 21-6.

Ferreri, A. J.,J. Y. Blay,M. Reni,F. Pasini,M. Spina,A. Ambrosetti,A. Calderoni,A. Rossi,V. Vavassori,A. Conconi,L. Devizzi,F. Berger,M. Ponzoni,B. Borisch,M. Tinguely,M. Cerati,M. Milani,E. Orvieto,J. Sanchez,C. Chevreau,S. Dell'Oro,E. Zucca et F. Cavalli

(2003). Prognostic scoring system for primary CNS lymphomas: the International Extranodal Lymphoma Study Group experience. J Clin Oncol 21: 266-72.

Figg, W. et J. Folkman (2008). Angiogenesis. An Integrative Approach from Science to Medicine, Springer.

Fischer, C.,M. Mazzone,B. Jonckx et P. Carmeliet (2008). FLT1 and its ligands VEGFB and PlGF: drug targets for anti-angiogenic therapy? Nat Rev Cancer 8: 942-56.

Foss, H. D.,I. Araujo,G. Demel,H. Klotzbach,M. Hummel et H. Stein (1997). Expression of vascular endothelial growth factor in lymphomas and Castleman's disease. J Pathol

183: 44-50.

Fukumori, T.,H. O. Kanayama et A. Raz (2007). The role of galectin-3 in cancer drug resistance. Drug Resist Updat 10: 101-8.

Fukushima, N.,T. Satoh,M. Sano et O. Tokunaga (2001). Angiogenesis and mast cells in non-Hodgkin's lymphoma: a strong correlation in angioimmunoblastic T-cell lymphoma.

Leuk Lymphoma 42: 709-20.

Furuya, M.,Y. Yonemitsu et I. Aoki (2009). III. Angiogenesis: complexity of tumor vasculature and microenvironment. Curr Pharm Des 15: 1854-67.

Gandhi, M. K.,G. Moll,C. Smith,U. Dua,E. Lambley,O. Ramuz,D. Gill,P. Marlton,J. F. Seymour et R. Khanna (2007). Galectin-1 mediated suppression of Epstein-Barr virus specific T-cell immunity in classic Hodgkin lymphoma. Blood 110: 1326-9.

Ganjoo, K. N.,C. S. An,M. J. Robertson,L. I. Gordon,J. A. Sen,J. Weisenbach,S. Li,E. A. Weller,A. Orazi et S. J. Horning (2006). Rituximab, bevacizumab and CHOP (RA-CHOP) in untreated diffuse large B-cell lymphoma: safety, biomarker and pharmacokinetic analysis. Leuk Lymphoma 47: 998-1005.

Ganjoo, K. N.,A. M. Moore,A. Orazi,J. A. Sen,C. S. Johnson et C. S. An (2008). The importance of angiogenesis markers in the outcome of patients with diffuse large B cell lymphoma: a retrospective study of 97 patients. J Cancer Res Clin Oncol 134: 381-7.

Ge, X. N.,N. S. Bahaie,B. N. Kang,M. R. Hosseinkhani,S. G. Ha,E. M. Frenzel,F. T. Liu,S. P. Rao et P. Sriramarao (2010). Allergen-induced airway remodeling is impaired in galectin-3-deficient mice. J Immunol 185: 1205-14.

Glinskii, O. V.,J. R. Turk,K. J. Pienta,V. H. Huxley et V. V. Glinsky (2004). Evidence of porcine and human endothelium activation by cancer-associated carbohydrates expressed on glycoproteins and tumour cells. J Physiol 554: 89-99.

Gratzinger, D.,R. Advani,S. Zhao,N. Talreja,R. J. Tibshirani,R. Shyam,S. Horning,L. H. Sehn,P. Farinha,J. Briones,I. S. Lossos,R. D. Gascoyne et Y. Natkunam (2010). Lymphoma cell VEGFR2 expression detected by immunohistochemistry predicts poor overall survival in diffuse large B cell lymphoma treated with immunochemotherapy (R-CHOP). Br J Haematol 148: 235-44.

Gratzinger, D.,S. Zhao,R. J. Marinelli,A. V. Kapp,R. J. Tibshirani,A. S. Hammer,S. Hamilton-Dutoit et Y. Natkunam (2007). Microvessel density and expression of vascular endothelial growth factor and its receptors in diffuse large B-cell lymphoma subtypes. Am J Pathol 170: 1362-9.

Gratzinger, D.,S. Zhao,R. J. Tibshirani,E. D. Hsi,C. P. Hans,B. Pohlman,M. Bast,A. Avigdor,G. Schiby,A. Nagler,G. E. Byrne, Jr.,I. S. Lossos et Y. Natkunam (2008). Prognostic significance of VEGF, VEGF receptors, and microvessel density in diffuse large B cell lymphoma treated with anthracycline-based chemotherapy. Lab Invest 88: 38-47.

Griffioen, A. W.,M. J. Coenen,C. A. Damen,S. M. Hellwig,D. H. van Weering,W. Vooys,G. H. Blijham et G. Groenewegen (1997). CD44 is involved in tumor angiogenesis; an activation antigen on human endothelial cells. Blood 90: 1150-9.

Griffioen, A. W.,C. A. Damen,S. Martinotti,G. H. Blijham et G. Groenewegen (1996). Endothelial intercellular adhesion molecule-1 expression is suppressed in human malignancies: the role of angiogenic factors. Cancer Res 56: 1111-17.

Gutierrez, A.,F. Mestre,R. Ramos,J. Martinez-Serra,A. Bautista,J. Fuster,P. Lopez-Marti,M. Casasus,C. Nicolau,J. Rifa,J. Besalduch,J. F. Garcia et J. Rodriguez (2009). Vascular Endothelial Growth Factor (VEGF) Expression by Neoplastic Hodgkin-Reed-Sternberg Cells Is An Independent Adverse Prognostic Factor for Relapse in Hodgkin Lymphoma. Blood (ASH Annual Meeting Abstracts) 114: Abstract 1561.

Harris, N. L.,H. Stein,S. E. Coupland,M. Hummel,R. D. Favera,L. Pasqualucci et W. C. Chan

(2001). New approaches to lymphoma diagnosis. Hematology Am Soc Hematol Educ Program: 194-220.

Hasenclever, D. et V. Diehl (1998). A prognostic score for advanced Hodgkin's disease. International Prognostic Factors Project on Advanced Hodgkin's Disease. N Engl J Med 339: 1506-14.

Hazar, B.,S. Paydas,S. Zorludemir,B. Sahin et I. Tuncer (2003). Prognostic significance of microvessel density and vascular endothelial growth factor (VEGF) expression in non-Hodgkin's lymphoma. Leuk Lymphoma 44: 2089-93.

He, J. et L. G. Baum (2006). Endothelial cell expression of galectin-1 induced by prostate cancer cells inhibits T-cell transendothelial migration. Lab Invest 86: 578-90.

Hellwig, S. M.,C. A. Damen,N. P. van Adrichem,G. H. Blijham,G. Groenewegen et A. W. Griffioen (1997). Endothelial CD34 is suppressed in human malignancies: role of angiogenic factors. Cancer Lett 120: 203-11.

Henderson, N. C.,A. C. Mackinnon,S. L. Farnworth,F. Poirier,F. P. Russo,J. P. Iredale,C. Haslett,K. J. Simpson et T. Sethi (2006). Galectin-3 regulates myofibroblast activation and hepatic fibrosis. Proc Natl Acad Sci U S A 103: 5060-5.

Hendrix, M. J.,E. A. Seftor,A. R. Hess et R. E. Seftor (2003). Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat Rev Cancer 3: 411-21.

Hicklin, D. J. et L. M. Ellis (2005). Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23: 1011-27.

Higgins, R. A.,J. E. Blankenship et M. C. Kinney (2008). Application of immunohistochemistry in the diagnosis of non-Hodgkin and Hodgkin lymphoma.

Arch Pathol Lab Med 132: 441-61.

Ho, C. L.,L. F. Sheu et C. Y. Li (2002). Immunohistochemical expression of basic fibroblast growth factor, vascular endothelial growth factor, and their receptors in stage IV non-Hodgkin lymphoma. Appl Immunohistochem Mol Morphol 10: 316-21.

Ho, C. L.,L. F. Sheu et C. Y. Li (2003). Immunohistochemical expression of angiogenic cytokines and their receptors in reactive benign lymph nodes and non-Hodgkin lymphoma. Ann Diagn Pathol 7: 1-8.

Hochberg, F. H.,J. M. Baehring et E. P. Hochberg (2007). Primary CNS lymphoma. Nat Clin Pract Neurol 3: 24-35.

Hoppe, R. T. (2010). NCCN Clinical Practice Guidelines in Oncology. Hodgkin Lymphoma - http://www.nccn.org/professionals/physician_gls/PDF/hodgkins.pdf.

Hoyer, K. K.,M. Pang,D. Gui,I. P. Shintaku,I. Kuwabara,F. T. Liu,J. W. Said,L. G. Baum et M. A. Teitell (2004). An anti-apoptotic role for galectin-3 in diffuse large B-cell lymphomas. Am J Pathol 164: 893-902.

Hsieh, S. H.,N. W. Ying,M. H. Wu,W. F. Chiang,C. L. Hsu,T. Y. Wong,Y. T. Jin,T. M. Hong et Y. L. Chen (2008). Galectin-1, a novel ligand of neuropilin-1, activates VEGFR-2 signaling and modulates the migration of vascular endothelial cells. Oncogene 27: 3746-53.

Hsu, D. K.,R. Y. Yang et F. T. Liu (2006). Galectins in apoptosis. Methods Enzymol 417: 256-73. http://www.angio.org. http://www.lgcstandards-atcc.org. http://www.ncbi.nlm.nih.gov/geo/. http://www.ncbi.nlm.nih.gov/pubmed. http://www.ocular-angiogenesis.nl.

http://www.rcsb.org.

Imoukhuede, P.I. et A.S. Popel (2011). Quantification and cell-to-cell variation of vascular endothelial growth factor receptors. Exp Cell Res 317: 955-65.

Jaffe, E. S. et N. L. Harris (2001). World Health Organization Classification of Tumors. Pathology and genetics of tumors of haematopoietic and lymphoid tissues. Lyon, IARC Press.

Jaffe, E. S.,N. L. Harris,H. Stein et P. G. Isaacson (2008). Classification of lymphoid neoplasms: the microscope as a tool for disease discovery. Blood 112: 4384-99.

Jain, R. K. (2005). Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307: 58-62.

Jia, J.,J. Wang,M. Teh,W. Sun,J. Zhang,I. Kee,P. K. Chow,R. C. Liang,M. C. Chung et R. Ge

(2010). Identification of proteins differentially expressed between capillary endothelial cells of hepatocellular carcinoma and normal liver in an orthotopic rat tumor model using 2-D DIGE. Proteomics 10: 224-34.

Jorgensen, J. M.,F. B. Sorensen,K. Bendix,J. L. Nielsen,M. L. Olsen,A. M. Funder et F. d'Amore (2007). Angiogenesis in non-Hodgkin's lymphoma: clinico-pathological correlations and prognostic significance in specific subtypes. Leuk Lymphoma 48: 584-95.

Juszczynski, P.,J. Ouyang,S. Monti,S. J. Rodig,K. Takeyama,J. Abramson,W. Chen,J. L. Kutok,G. A. Rabinovich et M. A. Shipp (2007). The AP1-dependent secretion of galectin-1 by Reed Sternberg cells fosters immune privilege in classical Hodgkin lymphoma. Proc Natl Acad Sci U S A 104: 13134-9.

Kadowaki, I.,R. Ichinohasama,H. Harigae,K. Ishizawa,Y. Okitsu,J. Kameoka et T. Sasaki

(2005). Accelerated lymphangiogenesis in malignant lymphoma: possible role of VEGF-A and VEGF-C. Br J Haematol 130: 869-77.

Kasamon, Y. L. et R. F. Ambinder (2005). AIDS-related primary central nervous system lymphoma. Hematol Oncol Clin North Am 19: 665-87, vi-vii.

Kawai, N.,H. N. Zhen,K. Miyake,Y. Yamamaoto,Y. Nishiyama et T. Tamiya (2010). Prognostic value of pretreatment (18)F-FDG PET in patients with primary central nervous system lymphoma: SUV-based assessment. J Neurooncol 100: 225-232. Kerbel, R. S. (2008). Tumor angiogenesis. N Engl J Med 358: 2039-49.