• Aucun résultat trouvé

Compte tenu des fortes exigences de fiabilité, propres au secteur spatial, certains assemblages ont été testés dans des conditions opératoires extrêmes. Ainsi, des essais de cisaillement ont montré que la tenue mécanique de la brasure n’était pas altérée par une exposition à 200 chocs thermiques entre -55 et +125°C.

L’étude de l’interface or-argent a montré que celle-ci était relativement abrupte, avec une fine couche d’interdiffusion. Des mesures par EDX ont mis en évidence trois configurations: une diffusion de l’or vers l’argent sur environ 200 nm, une diffusion de l’argent vers l’or en périphérie des grains sur 500-600 nm et enfin, une interdiffusion plus avancée des deux éléments dans une épaisseur d’environ 800 nm.

Après l’exposition à 125°C pendant 432 h (représentant un essai de déverminage), la diffusion de l’or dans l’argent semble favorisée, ce qui aura un effet positif sur l’accroche de la brasure.

L’argent est sensible à la migration électrochimique sous l’effet conjugué de la température, de l’humidité et d’une différence de potentiel. Dans ces conditions, une croissance de filaments dendritiques a été observée, ce qui représente un risque potentiel de court-circuit. Ces conditions environnementales ne concernent pas la fabrication et le fonctionnement normal d’un hybride hermétique. Mais face au risque d’une exposition accidentelle, l’ampleur de ce phénomène ne peut pas être estimée dans un cas général et doit être étudiée par des essais sur des assemblages réels.

CONCLUSION GENERALE

Face au besoin de développer un nouveau matériau de report à forte conductivité thermique, l’étude bibliographique nous a orientés vers les solutions à base d’argent métallique, excellent conducteur thermique, mis en œuvre sous forme de nanoparticules. Cette voie n’a cependant pas été retenue en raison de contraintes liées à la manipulation de nanomatériaux dans le milieu industriel et de la difficulté pour assurer la stabilité des suspensions, nécessitant l’emploi de dispersants.

Alternativement, notre choix s’est porté sur la réalisation d’une brasure par décomposition thermique d’un précurseur chimique, l’oxalate d’argent, capable de former une couche d’argent métallique poreux à des températures modérées. Dans un premier temps, la réaction de la décomposition thermique de ce composé a été étudiée, avec observation de la formation et du frittage des nanoparticules d’argent.

Ce composé a ensuite été mis en suspension dans l’éthylène glycol pour utilisation dans divers assemblages, réalisés en dessous de 300 °C en salle blanche. Les échantillons obtenus ont permis de caractériser la brasure d’argent. Celle-ci possède une microstructure « enchevêtrée » avec une forte porosité, proche de deux tiers. D’un point de vue mécanique, les assemblages ont une résistance en cisaillement suffisante vis-à-vis des exigences de l’électronique spatiale et le matériau métallique en lui-même peut-être qualifié de « souple », avec un faible module d’Young, proche de certains polymères. Malgré les difficultés pour mesurer la conductivité thermique de la brasure, celle-ci semble approcher 100 W/m.K, ce qui représente un progrès considérable pour le dimensionnement des assemblages, par rapport à l’utilisation de la brasure or-étain.

Les assemblages brasés ne montrent pas de signe d’altération après 200 chocs thermiques entre -55 et +125 °C. Les interfaces argent-or formés sont parfaitement homogènes, bien que relativement abruptes avec une fine couche d’interdiffusion. Enfin, l’argent métallique est sensible à la migration électrochimique lors de fonctionnement en présence d’humidité et des essais doivent être réalisés pour prévoir l’ampleur de ce phénomène dans les conditions à risque (stockage au sol, par exemple).

Outre la possibilité de réaliser des joints très conducteurs à une température modérée, la brasure d’argent présente l’avantage d’être stable à des températures bien plus hautes que sa température de mise en œuvre.

En perspective de ce travail, des améliorations considérables peuvent être réalisées sur la mise en œuvre de la brasure. Le développement d’un procédé de dispense automatisée permettra d’obtenir des résultats beaucoup plus répétitifs, avec un bon contrôle de l’épaisseur de la brasure, de sa planéité et une amélioration probable des effets de bord. La possibilité de réaliser des préformes à partir d’oxalate d’argent partiellement décomposé, et ainsi de s’affranchir totalement d’une étape de dispense mérite également d’être développée. Enfin, l’utilisation d’une atmosphère hydrogénée, moyen efficace pour améliorer la compaction du matériau et par conséquent sa conductivité thermique, et mérite d’être systématiquement intégrée dans le procédé de brasage.

[1] I. Alet, Technique et Technologies des Véhicules Spatiaux, CEPADUES E. 1998.

[2] K. S. W. Champion, A. E. Cole, and A. J. Kantor, “Standard and reference atmospheres,” in in Handbook of Geophysics and Space Environment, 1985, p. 14.1.

[3] A. C. Tribble, B. Boyadjian, J. Davis, J. Haffner, and E. McCullough, “Contamination Control Engineering Design Guidelines for Aerospace Community,” in SPIE’s 1996 International Symposium on Optical Science, Engineering, and Instrumentation, 1996, p. 4.

[4] E. M. Silverman, “Space Environmental Effects on Spacecraft: LEO Materials Selection Guide,” Aug. 1995.

[5] F. Alby, E. Lansard, and T. Michal, “Collision of CERISE with space debris,” in Secound European Conference On Space Debris, 1997, p. 589.

[6] P. Moskwa and F. Alby, “Overview on space debris activities in France,” Advances in Space Research, vol. 23, no. 1, p. 261, Jan. 1999.

[7] C. Bonnal and F. Alby, “Measures to reduce the growth or decrease the space debris population,” Acta Astronautica, vol. 47, no. 2–9, p. 699, Jul. 2000.

[8] B. A. Banks, “Atomic Oxygen,” in LDEF Material DATA Analysis Workshop, NASA CP, 1990, p. 191.

[9] R. Lyle, J. Leach, and L. Shubin, “Earth albedo and emitted radiation,” in NASA SP-8067, 1971.

[10] W. W. Vaughan, K. O. Niehuss, and M. B. Alexander, “Spacecraft Environments Interactions: Solar Activity and Effects on Spacecraft,” in NASA RP-1396, 1996.

[11] US Department of Defense, “Test Method Standard, Microcircuits, MIL-Std 883.” 2013. [12] S. K. Kang and S. Purushothaman, “Development of conducting adhesive materials for

microelectronic applications,” Journal of Electronic Materials, vol. 28, no. 11, p. 1314, Nov. 1999.

[13] W. Jia, R. Tchoudakov, R. Joseph, M. Narkis, and A. Siegmann, “The conductivity behavior of multi-component epoxy, metal particle, carbon black, carbon fibril composites,” Journal of Applied Polymer Science, vol. 85, no. 8, p. 1706, Aug. 2002.

[14] W. Jia, R. Tchoudakov, R. Joseph, M. Narkis, and A. Siegmann, “The role of a third component on the conductivity behavior of ternary epoxy/Ag conductive composites,” Polymer Composites, vol. 23, no. 4, p. 510, Aug. 2002.

[15] H. S. Tekce, D. Kumlutas, and I. H. Tavman, “Effect of Particle Shape on Thermal Conductivity of Copper Reinforced Polymer Composites,” Journal of Reinforced Plastics and Composites, vol. 26, no. 1, p. 113, Jan. 2007.

[16] G. Pinto and A. Jimenez-Martin, “Conducting aluminum-filled nylon 6 composites,” Polymer Composites, vol. 22, no. 1, p. 65, Feb. 2001.

[17] H. Wu, X. Wu, M. Ge, G. Zhang, Y. Wang, and J. Jiang, “Effect analysis of filler sizes on percolation threshold of isotropical conductive adhesives,” Composites Science and Technology, vol. 67, no. 6, p. 1116, May 2007.

[18] T. Zhou, X. Wang, X. Liu, and D. Xiong, “Improved thermal conductivity of epoxy composites using a hybrid multi-walled carbon nanotube/micro-SiC filler,” Carbon, vol. 48, no. 4, p. 1171, Apr. 2010.

[19] K. Sanada, Y. Tada, and Y. Shindo, “Thermal conductivity of polymer composites with close-packed structure of nano and micro fillers,” Composites Part A: Applied Science and Manufacturing, vol. 40, no. 6–7, p. 724, Jul. 2009.

[20] L. Xuechun and L. Feng, “The improvement on the properties of silver-containing conductive adhesives by the addition of carbon nanotube,” in Proceedings of the Sixth IEEE CPMT Conference on High Density Microsystem Design and Packaging and Component Failure Analysis, 2004, p. 382.

[21] F. Marcq, “Elaboration, caractérisation et vieillissement d’adhésifs conducteurs hybrides époxy/microparticules d'argent/nanotubes de carbone.” 09-Mar-2012.

[22] F. Marcq, P. Demont, P. Monfraix, A. Peigney, C. Laurent, T. Falat, F. Courtade, and T. Jamin, “Carbon nanotubes and silver flakes filled epoxy resin for new hybrid conductive adhesives,” Microelectronics Reliability, vol. 51, no. 7, p. 1230, Jul. 2011.

[23] S. Rane, V. Puri, and D. Amalnerkar, “A study on sintering and microstructure development of fritless silver thick film conductors,” Journal of Materials Science: Materials in Electronics, vol. 11, no. 9, p. 667, Dec. 2000.

[24] C.-R. Chang and J.-H. Jean, “Effects of Silver-Paste Formulation on Camber Development during the Cofiring of a Silver-Based, Low-Temperature-Cofired Ceramic Package,” Journal of the American Ceramic Society, vol. 81, no. 11, p. 2805, Jan. 2005.

[25] R. Manepalli, F. Stepniak, S. A. Bidstrup-Allen, and P. A. Kohl, “Silver metallization for advanced interconnects,” IEEE Transactions on Advanced Packaging, vol. 22, no. 1, p. 4, 1999.

[26] H. Schwarzbauer and R. Kuhnert, “Novel large area joining technique for improved power device performance,” IEEE Transactions on Industry Applications, vol. 27, no. 1, p. 93, 1991.

[27] H. Schwarzbauer, “Method of securing electronic components to a substrate,” US48106721991.

[28] S. Klaka and R. Sittig, “Reduction of thermomechanical stress by applying a low temperature joining technique,” in Proceedings of the 6th International Symposium on Power Semiconductor Devices and Ics, p. 259.

[29] Z. Zhang and G. Q. Lu, “Pressure-assisted low-temperature sintering of silver paste as an alternative die-attach solution to solder reflow,” IEEE Transactions on Electronics Packaging Manufacturing, vol. 25, no. 4, p. 279, Oct. 2002.

[30] R. W. Chuang and C. C. Lee, “Silver-indium joints produced at low temperature for high temperature devices,” IEEE Transactions on Components and Packaging Technologies, vol. 25, no. 3, p. 453, Sep. 2002.

[31] Y. N. Zhou and A. Hu, “From Microjoining to Nanojoining,” The Open Surface Science Journal, vol. 3, p. 32, 2011.

[32] J. G. Bai, Z. Z. Zhang, J. N. Calata, and G. Q. Lu, “Low-Temperature Sintered Nanoscale Silver as Substrate Interconnect Material,” IEEE Transactions on Components and Packaging Technologies, vol. 29, no. 3, p. 589, 2006.

[33] W. Schmitt, “New silver contact pastes from high pressure sintering to low pressure sintering,” in Electronic System and Integration technology Conference, 2010, vol. 49, no. 0, p. 1.

[34] J. Yan, G. Zou, A. Wu, J. Ren, A. Hu, and Y. N. Zhou, “Improvement of Bondability by Depressing the Inhomogeneous Distribution of Nanoparticles in a Sintering Bonding Process with Silver Nanoparticles,” Journal of Electronic Materials, vol. 41, no. 7, p. 1924, Mar. 2012.

[35] J. W. Gibbs, “On the Equilibrium of Heterogeneous Substances,” Transactions of the Connecticut Academy of Arts and Sciences., vol. 3, p. 108; 343, Mar. 1879.

[36] J. Yan, G. Zou, A. Wu, J. Ren, J. Yan, A. Hu, L. Liu, and Y. N. Zhou, “Effect of PVP on the low temperature bonding process using polyol prepared Ag nanoparticle paste for electronic packaging application,” Journal of Physics: Conference Series, vol. 379, p. 012024, Aug. 2012.

[37] J. Yan, G. Zou, A. Wu, J. Ren, J. Yan, A. Hu, and Y. Zhou, “Pressureless bonding process using Ag nanoparticle paste for flexible electronics packaging,” Scripta Materialia, vol. 66, no. 8, p. 582, Apr. 2012.

[38] J. Yan, G. Zou, A. Wu, J. Ren, A. Hu, and Y. N. Zhou, “Polymer-Protected Cu-Ag Mixed NPs for Low-Temperature Bonding Application,” Journal of Electronic Materials, vol. 41, no. 7, p. 1886, Mar. 2012.

[39] E. Ide, S. Angata, A. Hirose, and K. Kobayashi, “Metal-metal bonding process using Ag metallo-organic nanoparticles,” Acta Materialia, vol. 53, no. 8, p. 2385, May 2005.

[40] A. Hu, P. Peng, H. Alarifi, X.-Y. Zhang, J. Y. Guo, Y. Zhou, and W. W. Duley, “Femtosecond laser welded nanostructures and plasmonic devices,” Journal Of Laser Applications, no. July, p. 1, 2012.

[41] A. Hu, S. K. Panda, M. I. Khan, and T. Zhou, “Laser welding, microwelding, nanowelding and nanoprocessing,” Chenese Journal of Lasers, vol. 36, no. 12, 2009.

[42] K. Maekawa, M. Mita, K. Yamasaki, T. Niizeki, Y. Matsuba, N. Terada, and H. Saito, “Packaging of electronic modules through completely dry process,” in Electronic Components and Technology Conference, IEEE conference publications, 2008, no. c, p. 950.

[43] P. Peng, A. Hu, B. Zhao, A. P. Gerlich, and Y. N. Zhou, “Reinforcement of Ag nanoparticle paste with nanowires for low temperature pressureless bonding,” Journal of Materials Science, vol. 47, no. 19, p. 6801, Jun. 2012.

[44] P. Peng, A. Hu, H. Huang, A. P. Gerlich, B. Zhao, and Y. N. Zhou, “Room-temperature pressureless bonding with silver nanowire paste: towards organic electronic and heat- sensitive functional devices packaging,” Journal of Materials Chemistry, vol. 22, no. 26, p. 12997, 2012.

[45] Y. Jianfeng, Z. Guisheng, H. Anming, and Y. N. Zhou, “Preparation of PVP coated Cu NPs and the application for low-temperature bonding,” Journal of Materials Chemistry, vol. 21, no. 40, p. 15981, 2011.

[46] W. Wu, A. Hu, X. Li, J. Q. Wei, Q. Shu, K. L. Wang, M. Yavuz, and Y. N. Zhou, “Vacuum brazing of carbon nanotube bundles,” Materials Letters, vol. 62, no. 30, p. 4486, Dec. 2008. [47] X.-Y. Zhang, A. Hu, T. Zhang, W. Lei, X.-J. Xue, Y. Zhou, and W. W. Duley, “Self-

assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties.,” ACS nano, vol. 5, no. 11, p. 9082, Nov. 2011.

[48] L. Liu, L. Xiao, J. Feng, L. Li, S. Esmaeili, and Y. Zhou, “Bonding of immiscible Mg and Fe via a nanoscale Fe2Al5 transition layer,” Scripta Materialia, vol. 65, no. 11, p. 982, Dec. 2011.

[49] K. Sasaki, “Development of Low Temperature Sintered Nano Silver Pastes using MO Technology and Resin Reinforcing Technology,” in 46th International Symposium on Microelectronics (IMAPS 2013), 2013, pp. 842–847.

[50] G. Bai, “Low-Temperature Sintering of Nanoscale Silver Paste for Semiconductor Device Interconnection,” Nov. 2005.

[51] S. Rochette, O. Vendier, D. Langrez, J. Cazaux, M. Buchta, M. Kuball, and A. Xiong, “182W L Band GaN High Power Module With 66 % Power Added Efficiency Based On European Technologies,” in CS MANTECH Conference, 2013, no. 1, p. 263.

[52] R. R. Tummala and E. J. Rymaszewski, Microelectronics Packaging Handbook. 1989, p. 37. [53] J. S. Kim, P. J. Wang, and C. C. Lee, “Ag–Copper Structure for Bonding Large

Semiconductor Chips,” IEEE Transactions on Components and Packaging Technologies, vol. 31, no. 4, p. 875, Dec. 2008.

[54] “Online Materials Information Resource - MatWeb.” [Online]. Available: http://www.matweb.com/. [Accessed: 30-Jul-2013].

[55] European Commission, “Commission Recommendation of 18 October 2011 on the Definition of Nanomaterial,” Official Journal, vol. L, no. 275(20), p. 10, 2011.

[56] E. Gaffet, “Nanotechnologies et santé publique,” Actualité et Sossier en Santé Publique, vol. 64, p. 18, 2008.

[57] D. Charlac’h and Y. Hemery, “Etude prospective sur les nanomatériaux,” DIGITIP synthèse, 2004.

[58] B. Honnert and R. Vincent, “Production et utilisation industrielle des particules nanostructurées,” Hygiène et Sécurité du Travail, vol. 209, 2007.

[59] AFFSET, “Nanomatériaux et sécurité au travail,” 2008.

[60] P. Buffat and J.-P. Borel, “Size effect on the melting temperature of gold particles,” Physical Review A, vol. 13, no. 6, p. 2287, Jun. 1976.

[61] M. Takagi, “Electron-Diffraction Study of Liquid-Solid Transition of Thin Metal Films,” Journal of the Physical Society of Japan, vol. 9, no. 3, p. 359, Mar. 1954.

[62] M. Blackman and A. E. Curzon, Structure and properties of thin films. Wiley, 1959, p. 217. [63] C. R. M. Wronski, “The size dependence of the melting point of small particles of tin,”

[64] C. J. Coombes, “The melting of small particles of lead and indium,” Journal of Physics, vol. 2, no. 3, p. 441, May 1972.

[65] N. T. Gladkich, R. Niedermayer, and K. Spiegel, “Nachweis großer Schmelzpunktserniedrigungen bei dünnen Metallschichten,” Physica Status Solidi (b), vol. 15, no. 1, p. 181, 1966.

[66] P. Pawlow, “The dependency of the melting point on the surface energy of a solid body,” Z. Phys. Chem, vol. 65, p. 545, 1909.

[67] S. J. Zhao, S. Q. Wang, D. Y. Cheng, and H. Q. Ye, “Three distinctive melting mechanisms in isolated nanoparticles,” The Journal of Physical Chemistry B, vol. 105, no. 51, p. 12857, 2001.

[68] K.-S. Moon, H. Dong, R. Maric, S. Pothukuchi, A. Hunt, Y. Li, and C. P. Wong, “Thermal behavior of silver nanoparticles for low-temperature interconnect applications,” Journal of Electronic Materials, vol. 34, no. 2, pp. 168–175, Feb. 2005.

[69] I. Shyjumon, M. Gopinadhan, O. Ivanova, M. Quaas, H. Wulff, C. A. Helm, and R. Hippler, “Structural deformation, melting point and lattice parameter studies of size selected silver clusters,” The European Physical Journal D, vol. 37, no. 3, pp. 409–415, Nov. 2005.

[70] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics. New York: Wiley, 1976.

[71] S. W. Wang, L. D. Chen, and T. Hirai, “Densification of Al2O3 Powder Using Spark Plasma Sintering,” Journal of Materials Research, vol. 15, no. 04, p. 982, Jan. 2011.

[72] J. Freim, J. McKittrick, J. Katz, and K. Sickafus, “Microwave sintering of nanocrystalline γ- Al2O3,” Nanostructured Materials, vol. 4, no. 4, p. 371, Jul. 1994.

[73] J. R. Groza and R. J. Dowding, “Nanoparticulate materials densification,” Nanostructured Materials, vol. 7, no. 7, p. 749, Sep. 1996.

[74] G. Xu, I. K. Lloyd, Y. Carmel, T. Olorunyolemi, and O. C. Wilson, “Microwave sintering of ZnO at ultra high heating rates,” Journal of Materials Research, vol. 16, no. 10, p. 2850, Oct. 2001.

[75] J.-M. Haussonne, L. B. James, P. Bowen, and C. P. Carry, Traité des Matériaux : Tome 16, Céramiques et verres : principes et techniques d’élaboration. 2005, p. 815.

[76] R. M. German, Fundamentals of Sintering in Engineered Materials Handbook, 4. ASM International, 1991.

[77] W. D. Kingery and M. Berg, “Study of the Initial Stages of Sintering Solids by Viscous Flow, Evaporation-Condensation, and Self-Diffusion,” Journal of Applied Physics, vol. 26, no. 10, p. 1205, Oct. 1955.

[78] G. C. Kuczynski, “Self-diffusion in sintering of metallic particles,” Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers, vol. 185, no. 2, p. 169, 1949.

[79] R. L. Coble, “Sintering Crystalline Solids. I. Intermediate and Final State Diffusion Models,” Journal of Applied Physics, vol. 32, no. 5, p. 787, May 1961.

[80] R. L. Coble, “Mechanisms of densification during hot pressing,” in Sintering and Related Phenomena. Proceedings of the International Conference, 1968, p. 329.

[81] J. K. Mackenzie and R. Shuttleworth, “A Phenomenological Theory of Sintering,” Proceedings of the Physical Society. Section B, vol. 62, no. 12, p. 833, Dec. 1949.

[82] J. C. Kim, K. H. Auh, and D. M. Martin, “Multi-level particle packing model of ceramic agglomerates,” Modelling and Simulation in Materials Science and Engineering, vol. 8, no. 2, pp. 159–168, Mar. 2000.

[83] P. Bowen and C. Carry, “From powders to sintered pieces: forming, transformations and sintering of nanostructured ceramic oxides,” Powder Technology, vol. 128, no. 2–3, pp. 248– 255, Dec. 2002.

[84] M. J. Mayo, “Processing of nanocrystalline ceramics from ultrafine particles,” International Materials Reviews, vol. 41, no. 3, pp. 85–115, Jan. 1996.

[85] J. R. Peralta-Videa, L. Zhao, M. L. Lopez-Moreno, G. de la Rosa, J. Hong, and J. L. Gardea- Torresdey, “Nanomaterials and the environment: a review for the biennium 2008-2010.,” Journal of hazardous materials, vol. 186, no. 1, p. 1, Mar. 2011.

[86] K. Donaldson, V. Stone, C. L. Tran, W. Kreyling, and P. J. A. Borm, “Nanotoxicology.,” Occupational and environmental medicine, vol. 61, no. 9, p. 727, Sep. 2004.

[87] K. Savolainen, L. Pylkkänen, H. Norppa, G. Falck, H. Lindberg, T. Tuomi, M. Vippola, H. Alenius, K. Hämeri, J. Koivisto, D. Brouwer, D. Mark, D. Bard, M. Berges, E. Jankowska, M. Posniak, P. Farmer, R. Singh, F. Krombach, P. Bihari, G. Kasper, and M. Seipenbusch, “Nanotechnologies, engineered nanomaterials and occupational health and safety – A review,” Safety Science, vol. 48, no. 8, p. 957, Oct. 2010.

[88] C. Ostiguy, B. Soucy, G. Lapointe, C. Woods, L. Ménard, and M. E. Trottier, “Les effets sur la santé reliés aux nanoparticules,” Montréal: Institut de recherche Robert-Sauvé en santé et en sécurité du travail du Québec, 2006.

[89] E. Gaffet, Aspects sécurité des nanomatériaux et nanoparticules manufacturés. 2009.

[90] Y. Qin, “Silver-containing alginate fibres and dressings,” International Wound Journal, vol. 2, no. 2, p. 172, Jun. 2005.

[91] European Commission, “Directive on the approximation of laws, regulations and administrative provisions relating to the classification, packaging and labelling of dangerous substances in order to adapt it to Regulation (EC) No 1907/2006 concerning the Registration, Evaluation,” 2006.

[92] H. J. Johnston, G. Hutchison, F. M. Christensen, S. Peters, S. Hankin, and V. Stone, “A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity.,” Critical Reviews in Toxicology, vol. 40, no. 4, p. 328, Apr. 2010.

[93] M. Ahamed, M. S. Alsalhi, and M. K. J. Siddiqui, “Silver nanoparticle applications and human health,” Clinica Chimica Acta, vol. 411, no. 23–24, p. 1841, Dec. 2010.

[94] V. V. Boldyrev, “Thermal decomposition of silver oxalate,” Thermochimica Acta, vol. 388, no. 1–2, p. 63, Jun. 2002.

[95] D. Dollimore and T. A. Evans, “The thermal decomposition of oxalates, part 23. An isothermal kinetic study into the effect of the environmental atmosphere on the thermal decomposition of silver oxalate,” Thermochimica Acta Acta, vol. 178, p. 63, 1991.

[96] G. A. Branitsky, G. A. Sviridov, and A. I. Lesnikovich, Heterogeneous Reactions and Reactivity. Minsk: Vysshaya shkola, 1964, p. 149.

[97] V. V. Boldyrev, I. S. Nevyantsev, Y. I. Mikhailov, and E. F. Khayretdinov, “К вопросу о механизме термического разложения оксалатов,” Kinetika i Kataliz, vol. 11, no. 2, p. 367, 1970.

[98] D. Dollimore, “The thermal decomposition of oxalates. A review,” Thermochimica Acta, vol. 117, p. 331, 1987.

[99] V. P. Kornienko, “Influence of cation nature on the thermal decomposition of oxalates,” Ukr. Chem. J., vol. 23, p. 159, 1957.

[100] D. Dollimore, D. L. Griffiths, and D. Nicholson, “The thermal decomposition of oxalates. Part II. Thermogravimetric analysis of various oxalates in air and in nitrogen,” Journal of the Chemical Society, p. 2617, Jan. 1963.

[101] V. V. Boldyrev, I. S. Nevyantsev, Y. I. Mikhailov, and E. F. Khayretdinov, “K voprosu o myekhanizmye tyermichyeskogo razlozhyeniya oksalatov.,” Kinetika i Kataliz, vol. 11, p. 367, 1970.

[102] D. Dollimore, “The influence of the environment on the thermal decomposition of oxysalts,” Journal of Thermal Analysis and Calorimetry, vol. 11, p. 185, 1977.

[103] E. L. Simons and A. E. Newkirk, “New studies on calcium oxalate monohydrate. A guide to the interpretation of thermogravimetric measurements,” Talanta, vol. 11, no. 3, p. 549, Mar. 1964.

[104] B. Topley and M. L. Smith, “Kinetics of salt-hydrate dissociations: MnC2O4,2H2O = MnC2O4+ 2H2O,” Journal of the Chemical Society, p. 321, Jan. 1935.

[105] E. Koch, Non-isothermal reaction analysis. London: Academic Press, 1977, p. 58.

[106] D. Y. Naumov, N. V. Podberezskaya, A. V. Virovets, and E. V. Boldyreva, “Crystal strcture analysis of silver oxalate, Ag2C204 , and X-ray diffraction study of its single crystal at the initial stage of photolysis,” Journal of Structural Chemistry, vol. 35, no. 6, 1995.

[107] F. C. Tompkins, “The thermal decomposition of silver oxalate,” Transactions of the Faraday Society, vol. 44, p. 206, Jan. 1948.

[108] B. V. Erofeev, P. I. Bel’kevitch, and A. A. Volkova, “Кинетика термического распада оксалата серебра,” Zhurnal Fizicheskoj Khimii, vol. 20, p. 1103, 1946.

[109] V. V. Boldyrev, V. V. Zakharov, V. M. Lykhin, and L. A. Votinova, “Изучение механизма влияния добавки ионов кадмия на термическую устойчивость оксалата серебра,” Kinetika i Kataliz, vol. 4, p. 672, 1963.

[110] A. Finch, P. W. M. Jacobs, and F. C. Tompkins, “The decomposition of silver oxalate,” Journal of the Chemical Society, p. 2053, Jan. 1954.

[111] V. V. Boldyrev, Влияние дефектов в кристаллах на скорость термического разложения твердых веществ. Tomsk: Tomsk State University Publishers, 1963, p. 246. [112] D. Y. Naumov, E. V. Boldyreva, N. V. Podberezskaya, and J. A. K. Howard, “The role of

‘ideal’ and ‘real’ crystal structure in the solid-state decomposition of silver oxalate: experimental diffraction studies and theoretical calculations,” Solid State Ionics, vol. 101– 103, p. 1315, 1997.

[113] R. L. Griffith, “The Crystal Structure of Silver Oxalate,” The Journal of Chemical Physics, vol. 11, no. 11, p. 499, Nov. 1943.

[114] V. N. Kolesnikov and V. N. Baumer, “Формы углерода,образующиеся при термолизе оксалатов металлов подгруппы железа,” Vestnik Khar’kovskogo Universiteta, vol. 127, no. 6, p. 38, 1975.

[115] V. V. Boldyrev, “Reactivity of solids,” Journal of Thermal Analysis and Calorimetry, vol. 40, p. 1041, 1993.

[116] V. V. Boldyrev, V. I. Eroshkin, V. T. Pismenko, I. A. Ryzhak, A. A. Medvinsky, I. V. Schmidt, and L. M. Kefeli, “Влияние добавки ионов двухвалентной меди на скорость термического разложения и фотолиза оксалата серебра,” Kinetika i Kataliz, vol. 9, no. 2, p. 260, 1968.

[117] J. Y. Macdonald and C. N. Hinshelwood, “The formation and growth of silver nuclei in the decomposition of silver oxalate,” Journal of the Chemical Society, Transactions, vol. 127, p. 2764, Jan. 1925.

[118] J. Y. Macdonald, “The thermal decomposition of silver oxalate, part I,” Journal of the Chemical Society, p. 832, 1936.

[119] D. A. Young, “Kinetic evidence for nucleus cluster formation in solid decompositions,” Nature, vol. 204, no. 4955, p. 281, Oct. 1964.

[120] A. G. Leiga, “Decomposition of silver oxalate. I. Microscopic Observations of Partially Decomposed Crystals,” The Journal of Physical Chemistry, vol. 70, no. 10, p. 3254, 1966. [121] A. G. Leiga, “Decomposition of silver oxalate. II. Kinetics of the thermal decomposition,”

The Journal of Physical Chemistry, vol. 70, no. 10, p. 3260, 1966.

[122] R. M. Haynes and D. A. Young, “The effect of reactor irradiation on the thermal decomposition of silver oxalate,” Discussions of the Faraday Society, vol. 31, p. 229, Jan. 1961.

[123] G. G. Saveliev and V. V. Zakharov, “Изменение добавками физико-химических свойств твердых тел,” Известия высших учебных заведений. Химия и химическая технология, vol. 7, no. 5, p. 768, 1964.

[124] S. E. Sheppard and W. Vanselow, “Catalysis of the thermal decomposition of silver oxalate