• Aucun résultat trouvé

La médecine régénérative porte un grand intérêt aux hiPSCs en raison de leurs caractéristiques de pluripotence et d’auto-renouvellement. Pour qu’elles soient utilisées dans le traitement de myopathies héréditaires, elles doivent d’abord être corrigées génétiquement, puis différenciées efficacement en cellules myogéniques.

Ce mémoire démontre qu’il est possible de corriger génétiquement des MSCs provenant d’hiPSCs dérivées de fibroblastes de patient DMD et de permettre une expression d’une micro-dystrophine, une version tronquée de la dystrophine, dans les muscles de souris, et ce, à l’aide d’un vecteur lentiviral. Le protocole de transformation myogénique utilisé lors de ce projet requerrait l’emploi d’un milieu myogénique développé au laboratoire, le MB-1, ainsi qu’un vecteur adénoviral codant pour MyoD. Toutefois, ce protocole demande d’être optimisé pour augmenter l’efficacité et la reproductibilité et réduire les dangers associés au vecteur viral lors d’essais cliniques.

De plus, des outils de correction génique sont toujours en cours de développement au laboratoire. La version actuelle de la micro-dystrophine sera éventuellement remplacée par une version permettant l’échafaudage de tout le complexe glycoprotéique associé. Dans un contexte clinique utilisant ce type de thérapie cellulaire, il sera plus facile et sécuritaire de corriger les fibroblastes du patient DMD avant de les induire à la pluripotence. Ainsi, les cellules qui seront greffées au patient proviendront d’un clone dont le site d’insertion de la micro-dystrophine sera connu, réduisant les risques associés à la mutagenèse d’insertion.

La deuxième partie de ma recherche décrit la production de protéines recombinantes afin d’induire la myogenèse à partir d’hiPSCs. Il a été démontré que MyoD, Pax3 et Pax7, trois régulateurs de la myogenèse, pouvaient être couplés à Tat, un CPP permettant l’entrée des protéines dans les cellules. Ces facteurs de transcription ont été produits et purifiés d'un système bactérien avec succès. Toutefois, dû aux faibles quantités de protéines obtenues, seulement 6x[His]-Tat-MyoD a pu être testée in vitro à ce jour. Il a finalement été démontré que cette protéine pouvait entrer dans les

La prochaine étape de ces études se concentra sur l’optimisation du protocole de différenciation des hiPSCs en myoblastes. Les protéines recombinantes seront produites à plus grande échelle afin de permettre différentes analyses in vitro, notamment leur impact sur la dynamique de l’expression des gènes myogéniques. De plus, il sera impératif de développer un protocole de purification des cellules myogéniques afin d’éviter que des cellules à un stade de différenciation trop précoce n’engendrent le développement de tumeurs in vivo. Cette étape sera essentielle lorsque des myoblastes dérivés d’hiPSCs seront utilisés pour traiter un patient DMD.

Bibliographie

1. Cossu, G. and U. Borello, Wnt signaling and the activation of myogenesis in mammals. Embo J, 1999. 18(24): p. 6867-72.

2. Gilbert, S.F., Developmental Biology. 10e ed. 2013, Stamfordz: Sinauer Associates, Inc. 719.

3. Maroto, M., et al., Ectopic Pax-3 activates MyoD and Myf-5 expression in embryonic mesoderm and

neural tissue. Cell, 1997. 89(1): p. 139-48.

4. Zammit, P.S., et al., Muscle satellite cells adopt divergent fates: a mechanism for self-renewal? J Cell Biol, 2004. 166(3): p. 347-57.

5. Charge, S.B. and M.A. Rudnicki, Cellular and molecular regulation of muscle regeneration. Physiol Rev, 2004. 84(1): p. 209-38.

6. Bentzinger, C.F., Y.X. Wang, and M.A. Rudnicki, Building muscle: molecular regulation of

myogenesis. Cold Spring Harb Perspect Biol. 4(2).

7. Rahimov, F. and L.M. Kunkel, The cell biology of disease: cellular and molecular mechanisms

underlying muscular dystrophy. J Cell Biol. 201(4): p. 499-510.

8. Tortora, G.J., S. R. Grabowski, et al., Principes d'anatomie et de physiologie. 1994, Anjou: CEC collégial et universitaire.

9. Ervasti, J.M., Costameres: the Achilles' heel of Herculean muscle. J Biol Chem, 2003. 278(16): p. 13591-4.

10. Marieb, E.N., Anatomie et physiologie humaines. 3e ed, ed. É.d.R. Pédagogique. 2005, Saint- Laurent: Édition du Renouveau Pédagogique Inc. 1288.

11. Ciciliot, S. and S. Schiaffino, Regeneration of mammalian skeletal muscle. Basic mechanisms and

clinical implications. Curr Pharm Des. 16(8): p. 906-14.

12. Buckingham, M. and D. Montarras, Skeletal muscle stem cells. Curr Opin Genet Dev, 2008. 18(4): p. 330-6.

13. Lagha, M., et al., Regulation of skeletal muscle stem cell behavior by Pax3 and Pax7. Cold Spring Harb Symp Quant Biol, 2008. 73: p. 307-15.

14. Montarras, D., A. L'Honore, and M. Buckingham, Lying low but ready for action: the quiescent muscle

satellite cell. Febs J. 280(17): p. 4036-50.

15. Collins, C.A., et al., Stem cell function, self-renewal, and behavioral heterogeneity of cells from the

adult muscle satellite cell niche. Cell, 2005. 122(2): p. 289-301.

16. Kakulas, B.A. and F.L. Mastaglia, Pathogenesis and Therapy of Duchenne and Becker Muscular

Dystrophy. 1990, New York: Raven Press Ltd. 273.

17. Engel, A., et C. Franzini-Armstrong, Myology : basic and clinical. 1994, New York: McGraw-Hill. 18. Wicklund, M.P., The muscular dystrophies. Continuum (Minneap Minn). 19(6 Muscle Disease): p.

1535-70.

19. Verhaart, I.E. and A. Aartsma-Rus, Gene therapy for Duchenne muscular dystrophy. Curr Opin Neurol. 25(5): p. 588-96.

20. Goudenege, S., et al., Myoblasts derived from normal hESCs and dystrophic hiPSCs efficiently fuse

with existing muscle fibers following transplantation. Mol Ther. 20(11): p. 2153-67.

21. Monaco, A.P., et al., Detection of deletions spanning the Duchenne muscular dystrophy locus using a

tightly linked DNA segment. Nature, 1985. 316(6031): p. 842-5.

25. Blake, D.J., et al., Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol Rev, 2002. 82(2): p. 291-329.

26. Constantin, B., Dystrophin complex functions as a scaffold for signalling proteins. Biochim Biophys Acta.

27. Hoffman, E.P., R.H. Brown, Jr., and L.M. Kunkel, Dystrophin: the protein product of the Duchenne

muscular dystrophy locus. Cell, 1987. 51(6): p. 919-28.

28. Koenig, M., A.P. Monaco, and L.M. Kunkel, The complete sequence of dystrophin predicts a rod-

shaped cytoskeletal protein. Cell, 1988. 53(2): p. 219-28.

29. Zubrzycka-Gaarn, E.E., et al., The Duchenne muscular dystrophy gene product is localized in

sarcolemma of human skeletal muscle. Nature, 1988. 333(6172): p. 466-9.

30. Sancar, F., et al., The dystrophin-associated protein complex maintains muscle excitability by

regulating Ca(2+)-dependent K(+) (BK) channel localization. J Biol Chem. 286(38): p. 33501-10.

31. Pilgram, G.S., et al., The roles of the dystrophin-associated glycoprotein complex at the synapse. Mol Neurobiol. 41(1): p. 1-21.

32. Ehmsen, J., E. Poon, and K. Davies, The dystrophin-associated protein complex. J Cell Sci, 2002.

115(Pt 14): p. 2801-3.

33. Kim, J.H., et al., Contribution of oxidative stress to pathology in diaphragm and limb muscles with

Duchenne muscular dystrophy. J Muscle Res Cell Motil. 34(1): p. 1-13.

34. Davies, K.E. and K.J. Nowak, Molecular mechanisms of muscular dystrophies: old and new players. Nat Rev Mol Cell Biol, 2006. 7(10): p. 762-73.

35. Benedetti, S., H. Hoshiya, and F.S. Tedesco, Repair or replace? Exploiting novel gene and cell

therapy strategies for muscular dystrophies. Febs J. 280(17): p. 4263-80.

36. Tinsley, J.M., et al., Amelioration of the dystrophic phenotype of mdx mice using a truncated utrophin

transgene. Nature, 1996. 384(6607): p. 349-53.

37. Li, D., et al., Sarcolemmal nNOS anchoring reveals a qualitative difference between dystrophin and

utrophin. J Cell Sci. 123(Pt 12): p. 2008-13.

38. Goyenvalle, A., et al., Therapeutic approaches to muscular dystrophy. Hum Mol Genet. 20(R1): p. R69-78.

39. Welch, E.M., et al., PTC124 targets genetic disorders caused by nonsense mutations. Nature, 2007.

447(7140): p. 87-91.

40. Finkel, R.S., et al., Phase 2a study of ataluren-mediated dystrophin production in patients with

nonsense mutation duchenne muscular dystrophy. PLoS One. 8(12): p. e81302.

41. England, S.B., et al., Very mild muscular dystrophy associated with the deletion of 46% of dystrophin. Nature, 1990. 343(6254): p. 180-2.

42. Fairclough, R.J., M.J. Wood, and K.E. Davies, Therapy for Duchenne muscular dystrophy: renewed

optimism from genetic approaches. Nat Rev Genet. 14(6): p. 373-8.

43. GlaxoSmithKline. [En ligne] [cited 10-01-2014]; Available from: http://www.gsk.com/media/press-

releases/2013/gsk-and-prosensa-announce-primary-endpoint-not-met-in-phase-iii-.html.

44. Chapdelaine, P., et al., Meganucleases can restore the reading frame of a mutated dystrophin. Gene Ther. 17(7): p. 846-58.

45. Lee, S.J., Speed and endurance: you can have it all. J Appl Physiol (1985). 109(3): p. 621-2.

46. Harper, S.Q., et al., Modular flexibility of dystrophin: implications for gene therapy of Duchenne

muscular dystrophy. Nat Med, 2002. 8(3): p. 253-61.

47. Lai, Y., et al., Dystrophins carrying spectrin-like repeats 16 and 17 anchor nNOS to the sarcolemma

and enhance exercise performance in a mouse model of muscular dystrophy. J Clin Invest, 2009.

119(3): p. 624-35.

48. Vannucci, L., et al., Viral vectors: a look back and ahead on gene transfer technology. New Microbiol.

36(1): p. 1-22.

49. Raper, S.E., et al., Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase

50. Marshall, E., Gene therapy death prompts review of adenovirus vector. Science, 1999. 286(5448): p. 2244-5.

51. Hacein-Bey-Abina, S., et al., A serious adverse event after successful gene therapy for X-linked

severe combined immunodeficiency. N Engl J Med, 2003. 348(3): p. 255-6.

52. Evans, C.H., S.C. Ghivizzani, and P.D. Robbins, Arthritis gene therapy's first death. Arthritis Res Ther, 2008. 10(3): p. 110.

53. Mendell, J.R., et al., Gene therapy for muscular dystrophy: lessons learned and path forward. Neurosci Lett. 527(2): p. 90-9.

54. Partridge, T.A., et al., Conversion of mdx myofibres from dystrophin-negative to -positive by injection

of normal myoblasts. Nature, 1989. 337(6203): p. 176-9.

55. Gussoni, E., et al., Normal dystrophin transcripts detected in Duchenne muscular dystrophy patients

after myoblast transplantation. Nature, 1992. 356(6368): p. 435-8.

56. Tremblay, J.P., et D. Skuk, ''Engineering'' myoblast transplantation. Graft, 2001. 4: p. 558-70.

57. Vilquin, J.T., et al., Cyclophosphamide immunosuppression does not permit successful myoblast

allotransplantation in mouse. Neuromuscul Disord, 1995. 5(6): p. 511-7.

58. Huard, J., et al., Human myoblast transplantation in immunodeficient and immunosuppressed mice:

evidence of rejection. Muscle Nerve, 1994. 17(2): p. 224-34.

59. Tremblay, J.P., et al., A case for immunosuppression for myoblast transplantation in duchenne

muscular dystrophy. Mol Ther, 2009. 17(7): p. 1122-4.

60. Skuk, D., et al., Efficacy of myoblast transplantation in nonhuman primates following simple

intramuscular cell injections: toward defining strategies applicable to humans. Exp Neurol, 2002.

175(1): p. 112-26.

61. Lafreniere, J.F., et al., Growth factors improve the in vivo migration of human skeletal myoblasts by

modulating their endogenous proteolytic activity. Transplantation, 2004. 77(11): p. 1741-7.

62. Skuk, D., et al., Resetting the problem of cell death following muscle-derived cell transplantation:

detection, dynamics and mechanisms. J Neuropathol Exp Neurol, 2003. 62(9): p. 951-67.

63. Mendell, J.R., et al., Dystrophin immunity in Duchenne's muscular dystrophy. N Engl J Med. 363(15): p. 1429-37.

64. Flanigan, K.M., et al., Anti-dystrophin T cell responses in Duchenne muscular dystrophy: prevalence

and a glucocorticoid treatment effect. Hum Gene Ther. 24(9): p. 797-806.

65. Nakamura, A. and S. Takeda, Mammalian models of Duchenne Muscular Dystrophy: pathological

characteristics and therapeutic applications. J Biomed Biotechnol. 2011: p. 184393.

66. Im, W.B., et al., Differential expression of dystrophin isoforms in strains of mdx mice with different

mutations. Hum Mol Genet, 1996. 5(8): p. 1149-53.

67. Sharp, N.J., et al., An error in dystrophin mRNA processing in golden retriever muscular dystrophy,

an animal homologue of Duchenne muscular dystrophy. Genomics, 1992. 13(1): p. 115-21.

68. Walmsley, G.L., et al., A duchenne muscular dystrophy gene hot spot mutation in dystrophin-deficient

cavalier king charles spaniels is amenable to exon 51 skipping. PLoS One. 5(1): p. e8647.

69. Gaschen, F.P., et al., Dystrophin deficiency causes lethal muscle hypertrophy in cats. J Neurol Sci, 1992. 110(1-2): p. 149-59.

70. Wilmut, I., et al., Viable offspring derived from fetal and adult mammalian cells. Nature, 1997.

385(6619): p. 810-3.

71. Reseau de cellules souches. [En ligne] [cited 29 décembre 2013]; Available from:

75. Eiselleova, L., et al., Comparative study of mouse and human feeder cells for human embryonic stem

cells. Int J Dev Biol, 2008. 52(4): p. 353-63.

76. Richards, M., et al., Comparative evaluation of various human feeders for prolonged undifferentiated

growth of human embryonic stem cells. Stem Cells, 2003. 21(5): p. 546-556.

77. Skottman, H., M.S. Dilber, and O. Hovatta, The derivation of clinical-grade human embryonic stem

cell lines. Febs Letters, 2006. 580(12): p. 2875-2878.

78. Ludwig, T.E., et al., Feeder-independent culture of human embryonic stem cells. Nature Methods, 2006. 3(8): p. 637-646.

79. Draper, J.S., et al., Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem

cells. Nat Biotechnol, 2004. 22(1): p. 53-4.

80. Brimble, S.N., et al., Karyotypic stability, genotyping, differentiation, feeder-free maintenance, and

gene expression sampling in three human embryonic stem cell lines derived prior to August 9, 2001.

Stem Cells Dev, 2004. 13(6): p. 585-97.

81. Trounson, A., The production and directed differentiation of human embryonic stem cells. Endocr Rev, 2006. 27(2): p. 208-19.

82. Niwa, H., J. Miyazaki, and A.G. Smith, Quantitative expression of Oct-3/4 defines differentiation,

dedifferentiation or self-renewal of ES cells. Nat Genet, 2000. 24(4): p. 372-6.

83. Chambers, I., et al., Functional expression cloning of Nanog, a pluripotency sustaining factor in

embryonic stem cells. Cell, 2003. 113(5): p. 643-55.

84. Okumura-Nakanishi, S., et al., Oct-3/4 and Sox2 regulate Oct-3/4 gene in embryonic stem cells. J Biol Chem, 2005. 280(7): p. 5307-17.

85. Niwa, H., How is pluripotency determined and maintained? Development, 2007. 134(4): p. 635-46. 86. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult

fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-76.

87. Ferreira, L.M. and M.A. Mostajo-Radji, How induced pluripotent stem cells are redefining

personalized medicine. Gene. 520(1): p. 1-6.

88. Takahashi, K., et al., Induction of pluripotent stem cells from adult human fibroblasts by defined

factors. Cell, 2007. 131(5): p. 861-72.

89. Yu, J., et al., Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007.

318(5858): p. 1917-20.

90. Shi, Y., et al., Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4

with small-molecule compounds. Cell Stem Cell, 2008. 3(5): p. 568-74.

91. Durcova-Hills, G. and A. Surani, Reprogramming primordial germ cells (PGC) to embryonic germ

(EG) cells. Curr Protoc Stem Cell Biol, 2008. Chapter 1: p. Unit1A 3.

92. Anokye-Danso, F., et al., Highly efficient miRNA-mediated reprogramming of mouse and human

somatic cells to pluripotency. Cell Stem Cell. 8(4): p. 376-88.

93. Fusaki, N., et al., Efficient induction of transgene-free human pluripotent stem cells using a vector

based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad

Ser B Phys Biol Sci, 2009. 85(8): p. 348-62.

94. Rinaldi, F. and R.C. Perlingeiro, Stem cells for skeletal muscle regeneration: therapeutic potential and

roadblocks. Transl Res.

95. Tanaka, A., et al., Efficient and reproducible myogenic differentiation from human iPS cells: prospects

for modeling Miyoshi Myopathy in vitro. PLoS One. 8(4): p. e61540.

96. Barberi, T., et al., Derivation of engraftable skeletal myoblasts from human embryonic stem cells. Nat Med, 2007. 13(5): p. 642-8.

97. Darabi, R., et al., Functional myogenic engraftment from mouse iPS cells. Stem Cell Rev. 7(4): p. 948-57.

98. Wang, B., et al., A canine minidystrophin is functional and therapeutic in mdx mice. Gene Ther, 2008.

15(15): p. 1099-106.

99. Dull, T., et al., A third-generation lentivirus vector with a conditional packaging system. J Virol, 1998.

100. Sambrook, J. and D.W. Russell, Calcium-phosphate-mediated Transfection of Eukaryotic Cells with

Plasmid DNAs. CSH Protoc, 2006. 2006(1).

101. Fujii, I., et al., Adenoviral mediated MyoD gene transfer into fibroblasts: myogenic disease diagnosis. Brain Dev, 2006. 28(7): p. 420-5.

102. Park, I.H., et al., Disease-specific induced pluripotent stem cells. Cell, 2008. 134(5): p. 877-86. 103. Wessel, D. and U.I. Flugge, A method for the quantitative recovery of protein in dilute solution in the

presence of detergents and lipids. Anal Biochem, 1984. 138(1): p. 141-3.

104. Skuk, D., et al., First test of a "high-density injection" protocol for myogenic cell transplantation

throughout large volumes of muscles in a Duchenne muscular dystrophy patient: eighteen months follow-up. Neuromuscul Disord, 2007. 17(1): p. 38-46.

105. Filareto, A., et al., An ex vivo gene therapy approach to treat muscular dystrophy using inducible

pluripotent stem cells. Nat Commun. 4: p. 1549.

106. Kimura, E., et al., Dystrophin delivery to muscles of mdx mice using lentiviral vectors leads to

myogenic progenitor targeting and stable gene expression. Mol Ther. 18(1): p. 206-13.

107. Ziegler, A., et al., The cationic cell-penetrating peptide CPP(TAT) derived from the HIV-1 protein TAT

is rapidly transported into living fibroblasts: optical, biophysical, and metabolic evidence.

Biochemistry, 2005. 44(1): p. 138-48.

108. Eguchi, A., et al., Protein transduction domain of HIV-1 Tat protein promotes efficient delivery of DNA

into mammalian cells. J Biol Chem, 2001. 276(28): p. 26204-10.

109. Torchilin, V.P., Tat peptide-mediated intracellular delivery of pharmaceutical nanocarriers. Adv Drug Deliv Rev, 2008. 60(4-5): p. 548-58.

110. Duchardt, F., et al., A comprehensive model for the cellular uptake of cationic cell-penetrating

peptides. Traffic, 2007. 8(7): p. 848-66.

111. BVTech Plasmid. [cited 2013 31-12]; Available from: http://www.biovisualtech.com/bvplasmid/pET- 16b.htm.

112. The Zarivach Laboratory for Macromolecular Crystallography, pET System Manual. [cited 2013 31-

12]; Available from:

http://lifeserv.bgu.ac.il/wb/zarivach/media/protocols/Novagen%20pET%20system%20manual.pdf. 113. Cold Spring Harbor Protocols, Purification of Nucleic Acids by Extraction with Phenol:Chloroform.

[cited 2013 12-31]; Available from: http://cshprotocols.cshlp.org/content/2006/1/pdb.prot4455.full. 114. Cold Spring Harbor Protocols, Standard Ethanol Precipitation of DNA in Microcentrifuge Tubes [cited

2013 12-31]; Available from: http://cshprotocols.cshlp.org/content/2006/1/pdb.prot4456.

115. Carlos F. Barbas III, D.R.B., Jamie K. Scott, Gregg J. Silverman. Cold Spring Harbor Protocols,

Quantification of DNA and RNA. [En ligne] [cited 31 décembre 2013]; Available from:

http://cshprotocols.cshlp.org/content/2007/11/pdb.ip47.full?sid=ca676c9e-4a2e-47e6-8cbc- dc3dc95272ea.

116. Chang, S.Y., E.C. McGary, and S. Chang, Methionine aminopeptidase gene of Escherichia coli is

essential for cell growth. J Bacteriol, 1989. 171(7): p. 4071-2.

117. Bornhorst, J.A. and J.J. Falke, Purification of proteins using polyhistidine affinity tags. Methods Enzymol, 2000. 326: p. 245-54.

118. Sung, M.S., et al., Efficient myogenic differentiation of human adipose-derived stem cells by the

transduction of engineered MyoD protein. Biochem Biophys Res Commun. 437(1): p. 156-61.

119. Noda, T., et al., Transduction of MyoD protein into myoblasts induces myogenic differentiation without

Documents relatifs