• Aucun résultat trouvé

Conclusion : quelles possibilités d’accroissement des stocks de carbone organique du sol par l’apport au sol de nouvelles sources de carbone exogène ?

MATIERES ORGANIQUES

Encadré 3.8.2-1. Equations de calcul classiquement utilisées pour estimer la quantité de carbone restituée au sol par les résidus de culture

3.8.5. Les apports de carbone exogène par les produits résiduaires organiques (PRO)

3.8.5.6. Conclusion : quelles possibilités d’accroissement des stocks de carbone organique du sol par l’apport au sol de nouvelles sources de carbone exogène ?

La quasi-totalité des effluents d’élevage produits en France retournent au sol et il n’y a donc pas de possibilité d’accroitre les stocks de C organique des sols par une mobilisation supplémentaire de ce gisement. On observe cependant qu’une part croissante de ces effluents subit des transformations avant épandage, allant d’une simple séparation de phase à une digestion anaérobie, dont les conséquences sur la composition des produits et le stockage de C après retour au sol doivent être étudiés. D’autres produits organiques comme les boues d’épuration ne reviennent que partiellement au sol, le reste étant incinéré. Sous réserve que l’épandage puisse être fait sans risque de contamination des sols, il y a là un gisement supplémentaire de carbone qui pourrait être mobilisé pour accroitre le stockage de C dans les sols. L’analyse bibliographique a par ailleurs confirmé l’intérêt, en termes de stockage additionnel de C, d’autres produits organiques comme les composts et les digestats. Ces produits sont actuellement presque toujours recyclés en agriculture mais les volumes produits sont faibles. La mobilisation de nouvelles ressources comme les biodéchets et les déchets verts et leur transformation par compostage ou méthanisation permettraient d’augmenter les volumes produits et donc le retour au sol. Un chiffrage des volumes mobilisables est nécessaire mais difficile à faire compte tenu de la multiplicité des étapes et facteurs à considérer (réseau de collecte, type de tri, mode de transformation…). L’acceptabilité sociale des scénarios envisagés doit cependant être soigneusement considérée. Enfin l’analyse tout juste esquissée dans le paragraphe précédent montre que la mobilisation de nouvelles ressources organiques pour accroitre le retour au sol et le stockage de C a plusieurs conséquences susceptibles d’impacter le bilan gaz à effet de serre global des scénarios envisagées (émissions liées à la collecte et au transport des matières, effets de substitution par éventuelle production d’énergie, modification des apports d’engrais minéraux et des émissions associées, etc.). En termes d’atténuation du changement climatique le chiffrage du stockage additionnel de carbone lié à la mobilisation de ces nouvelles

ressources organiques doit donc être complété par des informations sur les autres postes du bilan gaz à effet de serre global.

Références bibliographiques

Bamminger, C.; Marschner, B.; Juschke, E., 2014. An incubation study on the stability and biological effects of pyrogenic and hydrothermal biochar in two soils. European Journal of Soil Science, 65 (1): 72-82. http://dx.doi.org/10.1111/ejss.12074

Biederman, L.A.; Harpole, W.S., 2013. Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. Global Change

Biology Bioenergy, 5 (2): 202-214. http://dx.doi.org/10.1111/gcbb.12037

Bodilis, A.-M.; Trochard, R.; Lechat, G.; Airiaud, A.; Lambert, L.; Hruschka, S., 2015. Impact de l’introduction d’unités de méthanisation à la ferme sur le bilan humique des sols. Analyse sur 10 exploitations agricoles de la région Pays de la Loire. Fourrages, 223: 233-239. Brown, S.; Kurtz, K.; Bary, A.; Cogger, C., 2011. Quantifying Benefits Associated with Land Application of Organic Residuals in Washington

State. Environmental Science & Technology, 45 (17): 7451-7458. http://dx.doi.org/10.1021/es2010418

Bruun, E.W.; Ambus, P.; Egsgaard, H.; Hauggaard-Nielsen, H., 2012. Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics. Soil Biology & Biochemistry, 46: 73-79. http://dx.doi.org/10.1016/j.soilbio.2011.11.019

Bruun, S.; Hansen, T.L.; Christensen, T.H.; Magid, J.; Jensen, L.S., 2006. Application of processed organic municipal solid waste on agricultural land - a scenario analysis. Environmental Modeling & Assessment, 11 (3): 251-265. http://dx.doi.org/10.1007/s10666-005-9028-0

Cayuela, M.L.; Oenema, O.; Kuikman, P.J.; Bakker, R.R.; van Groenigen, J.W., 2010a. Bioenergy by-products as soil amendments? Implications for carbon sequestration and greenhouse gas emissions. Global Change Biology Bioenergy, 2 (4): 201-213. http://dx.doi.org/10.1111/j.1757-1707.2010.01055.x

Cayuela, M.L.; Velthof, G.L.; Mondini, C.; Sinicco, T.; van Groenigen, J.W., 2010b. Nitrous oxide and carbon dioxide emissions during initial decomposition of animal by-products applied as fertilisers to soils. Geoderma, 157 (3-4): 235-242. http://dx.doi.org/10.1016/j.geoderma.2010.04.026

Chantigny, M.H.; Angers, D.A.; Beauchamp, C.J., 1999. Aggregation and organic matter decomposition in soils amended with de-inking paper sludge. Soil Science Society of America Journal, 63 (5): 1214-1221. http://dx.doi.org/10.2136/sssaj1999.6351214x

Chaudhary, S.; Dheri, G.S.; Brar, B.S., 2017. Long-term effects of NPK fertilizers and organic manures on carbon stabilization and management index under rice-wheat cropping system. Soil & Tillage Research, 166: 59-66. http://dx.doi.org/10.1016/j.still.2016.10.005 Diacono, M.; Montemurro, F., 2010. Long-term effects of organic amendments on soil fertility. A review. Agronomy for Sustainable

Development, 30 (2): 401-422. http://dx.doi.org/10.1051/agro/2009040

Dong, X.L.; Singh, B.P.; Li, G.T.; Lin, Q.M.; Zhao, X.R., 2018. Biochar application constrained native soil organic carbon accumulation from wheat residue inputs in a long-term wheat-maize cropping system. Agriculture Ecosystems & Environment, 252: 200-207. http://dx.doi.org/10.1016/j.agee.2017.08.026

Galvez, A.; Sinicco, T.; Cayuela, M.L.; Mingorance, M.D.; Fornasier, F.; Mondini, C., 2012. Short term effects of bioenergy by-products on soil C and N dynamics, nutrient availability and biochemical properties. Agriculture Ecosystems & Environment, 160: 3-14. http://dx.doi.org/10.1016/j.agee.2011.06.015

Ghosh, A.; Bhattacharyya, R.; Meena, M.C.; Dwivedi, B.S.; Singh, G.; Agnihotri, R.; Sharma, C., 2018. Long-term fertilization effects on soil organic carbon sequestration in an Inceptisol. Soil & Tillage Research, 177: 134-144. http://dx.doi.org/10.1016/j.still.2017.12.006 Haynes, R.J.; Naidu, R., 1998. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions:

a review. Nutrient Cycling in Agroecosystems, 51 (2): 123-137. http://dx.doi.org/10.1023/a:1009738307837

Hernandez-Soriano, M.C.; Kerre, B.; Goos, P.; Hardy, B.; Dufey, J.; Smolders, E., 2016. Long-term effect of biochar on the stabilization of recent carbon: soils with historical inputs of charcoal. Global Change Biology Bioenergy, 8 (2): 371-381. http://dx.doi.org/10.1111/gcbb.12250

Houot, S.; Pons, M.-N.; Pradel, M.; Aubry, C.; Augusto, L.; Barbier, R.; Benoit, P.; Brugère, H.; Casellas, M.; Chatelet, A.; Dabert, P.; Doussan, I.; Etrillard, C.; Fuchs, J.; Genermont, S.; Giamberini, L.; Helias, A.; Jardé, E.; Lupton, S.; Marron, N.; Menasseri-Aubry, S.; Mollier, A.; Morel, C.; Mougin, C.; Parnaudeau, V.; Pourcher, A.-M.; Rychen, G.; Smolders, E.; Topp, E.; Vieublé, L.; Viguie, C.; Tibi, A.; Caillaud, M.A.; Girard, F.; Savini, I.; De Marechal, S.; Le Perchec, S., 2014. Valorisation des matières fertilisantes d'origine résiduaire

sur les sols à usage agricole ou forestier : impacts agronomiques, environnementaux, socio économiques Rapport final de l'expertise scientifique collective. Paris: INRA-CNRS-Irstea, 930 p. http://institut.inra.fr/Missions/Eclairer-les-decisions/Expertises/Toutes-les-actualites/Expertise-Mafor-effluents-boues-et-dechets-organiques#

Janssen, B.H., 1984. A simple method for calculating decomposition and accumulation of young soil organic-matter. Plant and Soil, 76 (1-3): 297-304. http://dx.doi.org/10.1007/bf02205588

Janzen, H.H., 1995. The role of long-term sites in agroecological research - A case study. Canadian Journal of Soil Science, 75 (1): 123-133. http://dx.doi.org/10.4141/cjss95-016

Jenkinson, D.S., 1991. The Rothamsted long-term experiments - Are they still of use. Agronomy Journal, 83 (1): 2-10. http://dx.doi.org/10.2134/agronj1991.00021962008300010008x

Jimenez, J.; Lei, H.; Steyer, J.P.; Houot, S.; Patureau, D., 2017. Methane production and fertilizing value of organic waste: Organic matter characterization for a better prediction of valorization pathways. Bioresource Technology, 241: 1012-1021. http://dx.doi.org/10.1016/j.biortech.2017.05.176

Katterer, T.; Borjesson, G.; Kirchmann, H., 2014. Changes in organic carbon in topsoil and subsoil and microbial community composition caused by repeated additions of organic amendments and N fertilisation in a long-term field experiment in Sweden. Agriculture

Ecosystems & Environment, 189: 110-118. http://dx.doi.org/10.1016/j.agee.2014.03.025

Lashermes, G.; Nicolardot, B.; Parnaudeau, V.; Thuriès, L.; Chaussod, R.; Guillotin, M.L.; Linères, M.; Mary, B.; Metzger, L.; Morvan, T.; Tricaud, A.; Villette, C.; Houot, S., 2009. Indicator of potential residual carbon in soils after exogenous organic matter application.

European Journal of Soil Science, 60 (2): 297-310. http://dx.doi.org/10.1111/j.1365-2389.2008.01110.x

Linères, M.; Djakovitch, J., 1993. Caractérisation de la stabilité biologique des apports organiques par l’analyse biochimique. Matières

organiques et agricultures. GEMAS-COMIFER, Paris: 59-68.

Lutfalla, S.; Abiven, S.; Barre, P.; Wiedemeier, D.B.; Christensen, B.T.; Houot, S.; Katterer, T.; Macdonald, A.J.; van Oort, F.; Chenu, C., 2017. Pyrogenic Carbon Lacks Long-Term Persistence in Temperate Arable Soils. Frontiers in Earth Science, 5. http://dx.doi.org/10.3389/feart.2017.00096

Maestrini, B.; Nannipieri, P.; Abiven, S., 2015. A meta-analysis on pyrogenic organic matter induced priming effect. Global Change Biology

Bioenergy, 7 (4): 577-590. http://dx.doi.org/10.1111/gcbb.12194

Maillard, E.; Angers, D.A., 2014. Animal manure application and soil organic carbon stocks: a meta-analysis. Global Change Biology, 20 (2): 666-679. http://dx.doi.org/10.1111/gcb.12438

Marcato, C.E.; Mohtar, R.; Revel, J.C.; Pouech, P.; Hafidi, M.; Guiresse, M., 2009. Impact of anaerobic digestion on organic matter quality in pig slurry. International Biodeterioration & Biodegradation, 63 (3): 260-266. http://dx.doi.org/10.1016/j.ibiod.2008.10.001

Moller, K., 2015. Effects of anaerobic digestion on soil carbon and nitrogen turnover, N emissions, and soil biological activity. A review.

Agronomy for Sustainable Development, 35 (3): 1021-1041. http://dx.doi.org/10.1007/s13593-015-0284-3

Morvan, T.; Nicolardot, B., 2003. Decomposition of soluble compounds obtained after fractionation of different animal wastes. In: Hatch, D.J.; Chadwick, D.R.; Jarvis, S.C.; Roker, J.A., eds. Controlling N flows and losses: 12th nitrogen workshop, 21-24 September 2003,

University of Exeter (UK). Wageningen: Wageningen Academic Publishers, 200-202.

Morvan, T.; Nicolardot, B., 2009. Role of organic fractions on C decomposition and N mineralization of animal wastes in soil. Biology and

Fertility of Soils, 45 (5): 477-486. http://dx.doi.org/10.1007/s00374-009-0355-1

Morvan, T.; Nicolardot, B.; Pean, L., 2006. Biochemical composition and kinetics of C and N mineralization of animal wastes: a typological approach. Biology and Fertility of Soils, 42 (6): 513-522. http://dx.doi.org/10.1007/s00374-005-0045-6

Nkoa, R., 2014. Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: a review. Agronomy for

Sustainable Development, 34 (2): 473-492. http://dx.doi.org/10.1007/s13593-013-0196-z

Pan, W.L.; Port, L.E.; Xiao, Y.; Bary, A.I.; Cogger, C.G., 2017. Soil Carbon and Nitrogen Fraction Accumulation with Long-Term Biosolids Applications. Soil Science Society of America Journal, 81 (6): 1381-1388. http://dx.doi.org/10.2136/sssaj2017.03.0075

Pansu, M.; Thuries, L., 2003. Kinetics of C and N mineralization, N immobilization and N volatilization of organic inputs in soil. Soil Biology

& Biochemistry, 35 (1): 37-48. http://dx.doi.org/10.1016/s0038-0717(02)00234-1

Parnaudeau, V.; Nicolardot, B.; Pages, J., 2004. Relevance of organic matter fractions as predictors of wastewater sludge mineralization in soil. Journal of Environmental Quality, 33 (5): 1885-1894. http://dx.doi.org/10.2134/jeq2004.1885

Parnaudeau, V.; Nicolardot, B.; Robert, P.; Alavoine, G.; Pages, J.; Duchiron, F., 2006. Organic matter characteristics of food processing industry wastewaters affecting their C and N mineralization in soil incubation. Bioresource Technology, 97 (11): 1284-1295. http://dx.doi.org/10.1016/j.biortech.2005.05.023

Peltre, C.; Christensen, B.T.; Dragon, S.; Icard, C.; Katterer, T.; Houot, S., 2012. RothC simulation of carbon accumulation in soil after repeated application of widely different organic amendments. Soil Biology & Biochemistry, 52: 49-60. http://dx.doi.org/10.1016/j.soilbio.2012.03.023

Peters, K.; Jensen, L.S., 2011. Biochemical characteristics of solid fractions from animal slurry separation and their effects on C and N mineralisation in soil. Biology and Fertility of Soils, 47 (4): 447-455. http://dx.doi.org/10.1007/s00374-011-0550-8

Powlson, D.S.; Bhogal, A.; Chambers, B.J.; Coleman, K.; Macdonald, A.J.; Goulding, K.W.T.; Whitmore, A.P., 2012. The potential to increase soil carbon stocks through reduced tillage or organic material additions in England and Wales: A case study. Agriculture Ecosystems

& Environment, 146 (1): 23-33. http://dx.doi.org/10.1016/j.agee.2011.10.004

Powlson, D.S.; Whitmore, A.P.; Goulding, K.W.T., 2011. Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false. European Journal of Soil Science, 62 (1): 42-55. http://dx.doi.org/10.1111/j.1365-2389.2010.01342.x Robin, D., 1997. Usefulness of organic profiles for evaluating the stable organic matter fraction produced during decomposition in soil and

the classification of organic manures. Agronomie, 17 (3): 157-171. http://dx.doi.org/10.1051/agro:19970303

Schouten, S.; van Groenigen, J.W.; Oenema, O.; Cayuela, M.L., 2012. 'Bioenergy from cattle manure? Implications of anaerobic digestion and subsequent pyrolysis for carbon and nitrogen dynamics in soil'. Global Change Biology Bioenergy, 4 (6): 751-760. http://dx.doi.org/10.1111/j.1757-1707.2012.01163.x

Smith, P.; Martino, D.; Cai, Z.C.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O'Mara, F.; Rice, C.; Scholes, B.; Sirotenko, O.; Howden, M.; McAllister, T.; Pan, G.X.; Romanenkov, V.; Schneider, U.; Towprayoon, S., 2007. Policy and technological constraints to

implementation of greenhouse gas mitigation options in agriculture. Agriculture Ecosystems & Environment, 118 (1-4): 6-28. http://dx.doi.org/10.1016/j.agee.2006.06.006

Smith, P.; Powlson, D.S., 2000. Considering manure and carbon sequestration. Science, 287 (5452): 428-429. http://dx.doi.org/10.1126/science.287.5452.427e

Spokas, K.A., 2010. Review of the stability of biochar in soils: predictability of O:C molar ratios. Carbon Management, 1 (2): 289-303. http://dx.doi.org/10.4155/cmt.10.32

Tambone, F.; Genevini, P.; D'Imporzano, G.; Adani, F., 2009. Assessing amendment properties of digestate by studying the organic matter composition and the degree of biological stability during the anaerobic digestion of the organic fraction of MSW. Bioresource

Technology, 100 (12): 3140-3142. http://dx.doi.org/10.1016/j.biortech.2009.02.012

Tambone, F.; Scaglia, B.; D'Imporzano, G.; Schievano, A.; Orzi, V.; Salati, S.; Adani, F., 2010. Assessing amendment and fertilizing properties of digestates from anaerobic digestion through a comparative study with digested sludge and compost. Chemosphere, 81 (5): 577-583. http://dx.doi.org/10.1016/j.chemosphere.2010.08.034

Thomsen, I.K.; Christensen, B.T., 2010. Carbon sequestration in soils with annual inputs of maize biomass and maize-derived animal manure: Evidence from C-13 abundance. Soil Biology & Biochemistry, 42 (9): 1643-1646. http://dx.doi.org/10.1016/j.soilbio.2010.05.017

Thomsen, I.K.; Olesen, J.E.; Moller, H.B.; Sorensen, P.; Christensen, B.T., 2013. Carbon dynamics and retention in soil after anaerobic digestion of dairy cattle feed and faeces. Soil Biology & Biochemistry, 58: 82-87. http://dx.doi.org/10.1016/j.soilbio.2012.11.006 Wang, J.Y.; Xiong, Z.Q.; Kuzyakov, Y., 2016. Biochar stability in soil: meta-analysis of decomposition and priming effects. Global Change

Biology Bioenergy, 8 (3): 512-523. http://dx.doi.org/10.1111/gcbb.12266

Wentzel, S.; Schmidt, R.; Piepho, H.P.; Semmler-Busch, U.; Joergensen, R.G., 2015. Response of soil fertility indices to long-term application of biogas and raw slurry under organic farming. Applied Soil Ecology, 96: 99-107. http://dx.doi.org/10.1016/j.apsoil.2015.06.015 Zavattaro, L.; Bechini, L.; Grignani, C.; van Evert, F.K.; Mallast, J.; Spiegel, H.; Sanden, T.; Pecio, A.; Cervera, J.V.G.; Guzman, G.;

Vanderlinden, K.; D'Hose, T.; Ruysschaert, G.; ten Berge, H.F.M., 2017. Agronomic effects of bovine manure: A review of long-term European field experiments. European Journal of Agronomy, 90: 127-138. http://dx.doi.org/10.1016/j.eja.2017.07.010

3.8.6. Autres pratiques : fertilisation minérale, irrigation, chaulage

Outline

Documents relatifs